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CONCENTRATION ANALYSIS FOR ELLIPTIC CRITICAL
EQUATIONS WITH NO BOUNDARY CONTROL:
GROUND-STATE BLOW-UP

HUSSEIN MESMAR AND FREDERIC ROBERT

ABSTRACT. We perform the apriori analysis of solutions to critical nonlinear
elliptic equations on manifolds with boundary. The solutions are of minimiz-
ing type. The originality is that we impose no condition on the boundary,
which leads us to assume L2—concentration. We also analyze the effect of
a non-homogeneous nonlinearity that results in the fast convergence of the
concentration point.

Dedicated to Yihong Du on the occasion of his 60th birthday

1. INTRODUCTION

1.1. Context and main results. Let (M, g) be a Riemannian manifold of dimen-
sion n > 3, with or without boundary OM. When OM # (), M denotes the interior
of the manifold and M denotes its closure, so that M = M U OM: in particular,
M is open in M. We let a, f € C°(M) be functions and we consider u € C?(M)
solution to

(1) Agu+au= fu? "1 u>0in M.

where A, := —divy(V) is the Laplacian with minus sign convention and 2* := n2_”2

is critical for the Sobolev embeddings HZ(M) < L* (M). Here, the Sobolev space
HZ(M) is the completion of {u € C*°(M)/ |ullgz < oo} for the norm || - [|g2 =
[V-ll2+]-|l2. In the case of a Euclidean smooth domain 2 C R™, then a, f € C°(Q)
and we consider u € C?(£2) solution to

(2) Au+au= fu* "' u>0in Q.

where A := —div(V) is the Euclidean Laplacian. Due to the critical exponent
2*, there might be families of solutions to (1) that are not relatively compact in

C? .(M). For instance, given zg € R™ and p > 0, define the Bubble as
n—2
I
x> Upyp (@) = | ——=
’ 9 | clz—xo|?
w+ n(n—2)

Then for any domain Q C R", Uy, 4, is a solution to (2) when a = 0 and f = c.
Moreover, if zo € 2, then supg U, o, — +00 as p — +oo. In the Riemannian
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2 HUSSEIN MESMAR AND FREDERIC ROBERT

context, for x € M and p > 0, the Bubble writes

n—2
(M,g) () . H
e U;mco ($) : /ﬂ N cdi((:ff;))z

Concerning terminology, we say that a family (u.). € C°(M) blows-up if lim o [|tc||oo =
+o00.

When dM = {), the description of blowing-up families of (1) with bounded L?" —norm
has been performed by Druet-Hebey-Robert [7]. The main result in [7] is that
blowing-up families are controled from above by (3}, Um@_’zi,é)s, for given families
(@ie)e € M and (pi¢)e — 0. With this control, it is possible to give informations

on the localization of the limits x; o := lime_,o 2;: see Druet [6]. This analysis
extends to manifolds with boundary provided a boundary condition like Dirichlet

(see Ghoussoub-Mazumdar-Robert [12]) or Neumann (see Druet-Robert-Wei [9]).

See Premoselli [17] for a more recent point of view.

The first objective of the present work is to perform an analysis similar to [7] and
[6] without condition on OM # (). Tackling such generality requires additional
assumption: the relevant notion here is L?—concentration that already appeared
in Djadli-Druet [5] (see (7) below).
Our second objective is to analyse the effect of a nonconstant function f in (1). In
the case of a single peak, concentration occurs at a critical point. We prove that
when this critical point is nondegenerate, then the family of concentration points
converges very fast to its limit (see (6) below): this does not generally happen for
a constant function f. A similar control appears in Malchiodi-Mayer [16].
As was shown by Aubin [1], below a threshold, blow-up cannot occur. In this
manuscript, we are considering solutions (u.) that carry the minimal energy for
blow-up, namely ground-state type solution. The minimal energy is given by the
best constant in Sobolev embeddings:
2

" I lVePaX

0(n)  EDREINO}L ([ [pf2*dX) >

where D}(R") is the completion of C2°(R") for the norm ¢ + [|[V¢l|l2. Aubin
[1] and Talenti [21] have computed this best constant and have showed that the
extremals are exactly C'- U, 4, for C'# 0, u > 0 and zg € R"®. Our main theorem
for ground-state solutions is the following:

Theorem 1. Let (M, g) be a smooth compact Riemannian manifold of dimension
n > 4 with nonempty boundary OM # (. We fiz f € C*(M) such that f > 0. We
consider a family (he). € C1(M) and f € C*(M), f > 0, such that there exists
h € CY(M) and such that A, + h is coercive and

(4) lim he = h in C(M).
We let (uc). € C2(M) be a family of solutions to

(5) Ague + heue = fuf*_1 in M.
Let z. € M and pe > 0 be such that

1—n
Ue(Te) = SUpue = pie *

M
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We assume that
o u.— 0 in L2(M),
e lim. ,gx. =g € M is an interior point of M,
e The solution has minimal-type energy, that is
lim fuf* dvg = — L —
=0 M Ko(n)= f(zo) =

e The Hessian V2 f(z¢) is nondegenerate.

Then xg is a critical point of f and

(6) dg (e, m0) = 0pic) as € =0,
and for allw C M such thatw C M and §g > 0, there exists C(w,do) > 0 such that
He =
uel@) < Cler o) (M? + dg($a$0)2> + Ol do) BBS;OJE%) o

for all x € w. In addition, assuming that for all § > 0, we have that

2
) lim fM\B(xo,é) ug dvg

T w2 do, =0 for n € {4,5,6},

B e =gy (St S,

where Scaly is the scalar curvature of (M, g).

Remark: Theorem 1 applies to the case of a bounded domain of R™ endowed with
the Fuclidean metric g := FEucl. In this situation, M = Q C R™ is a domain,
Ay = =3, 0, dg(z,y) = |x — y| is the usual Euclidean norm for x,y € R™ and
Scal, = 0.

The control (6) is remarkable since it does not hold when f is degenerate. In-
deed, when f =1 there is an abundance of blowup profiles with various speeds of
convergence of the (z¢)’s to their limit, see for instance Premoselli [18].

The restriction of dimension n > 4 is not surprising: indeed, see Corollary 6.4 in
Druet-Hebey [8], (7) does not hold in general for n = 3. It is known since Aubin
and Schoen that for n = 3, blowup cannot be characterized by local arguments and
involves global arguments, like the mass. In the general local context of Theorems
1, no information is known regarding the boundary, which forbids to get any global
information.

1.2. Application to supercritical problems with symmetries. A natural set
application of Theorem 1 is in the context of manifolds invariant under a group
of isometries. We consider a compact Riemannian manifold (X, g) of dimension
n > 3, but without boundary (80X = (}). The critical exponent 2* can be improved
by imposing invariance under the action of an isometry group. Let G be a compact
subgroup of isometries of (X, g): we say that a function u : X — R is G—invariant if
uoc = u for all o € G. It follows from Hebey-Vaugon [13] that the critical exponent
in this setting is 2*(k) := % where k£ := min,cx dim Gz and assuming that
1 <k < n—2. We refer to Hebey-Vaugon [13], Saintier [20] and Faget [10] for
extensive considerations on problems invariant under isometries. In general, the
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quotient X/G is not a manifold of dimension n — k. Following Saintier [20], we
make the following assumption on G:
Assumption (H): For any xo € X such that the orbit Gzq is of dimension k =

Hg)l(l dimGz > 1 and of volume V,,, = minge x { Vol,(Gx)/ dim Gz = k}, there exists

0 >0, and G’ a closed subgroup of Isomgy(X) such that:

(1) Glafo = Gﬂ?o,‘

(2) For all x € Bs(Gxy) :={y € X/dy(y; Gxo) < 0}, then G'x is principal and

G'z C Gr.

In particular dim G'x = dim Gz = k, Vo € Bs(Gxo).
This assumption ensures that Bs(Gxo)/G’ is a Riemannian manifold of dimension
m = n — k with a nontrivial boundary. In the sequel, for any p € N, we define
C%(X) as the space of G—invariant functions of C?(X). We prove the following in
the spirit of Faget [11].

Theorem 2. Let (X, g) be a compact Riemannian manifold of dimension n with-
out boundary, and let G be a compact subgroup of isometries of X which satisfies
Assumption (H) and such that 1 <k <n —2. Let (he)e € CL(X) and h € CL(X)
be such that A, + h is coercive and

. o . 1

9) 1gr(1)h6—h>0 in Ca(X).

Let (ue)e € C4(X) be a family of solutions to

(10) Ague + heue = )\Euz*(k)_l s ue >0 in X, / ug*(k) dvg =1
X

We assume that
e u. — 0 strongly in L*(X),
o The energy is of minimal type, that is
1— 2 _
Vm 2% (k)
11 lim A\, = ———,
( ) egr(l) K() (n — k)
e For all point zp € X such that dim Gzo = k and Voly(Gzg) = Vi, then the
function
v: Bs(Gz)/G — R
Gz —  Voly(G'x

where Vi, = rni)r(l{ Voly(Gz)/ dim Go = k}.
S

) } is nondegenerate at Gz.

This latest assumption makes sense due to Assumption (H). Let (z.). € X be such
n—k—2
2

that u.(x.) = maxy u. and define e = uc(xze). Then there exists g € X
such that dim Gz =k and Voly(Gzo) = Vi, such that lime_,o zc = zo and

(12) dy (e, Gro) = o).
Moreover, there exists C' > 0 such that

(13)  uc(z) <C e o ole) : n—k>5
‘ N ,ug‘i‘dg(ﬂ%Gl‘o)Q O(M6 ]nf) lfn—k:4
and

(1) o) =
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where g is the metric on Bs(Gxzg) /G’ such that the canonical projection (Bs(Gxo),g) —
(Bs(Gxo)/G',g) is a Riemannian submersion.

2. POINTWISE CONTROL

We consider (uc) € C2(M), (he) € CY(M), h € CY (M), f € C2(M), (). € M
and (pte)e € (0,400) as in the statement of Theorem 1. In the sequel, we let
ig(M,x) > 0 be the injectivity radius of (M, g) at an interior point € M.

Claim 1. Set 6 € (0,i4(M,z0)) and define

n—2

we(X) 1= pe * ue(exp,, (peX)) for any X € Bs (0) CR”
B He

Then

n—2

1

9 im0 =l = | 1 e

for all X € R™.

Moreover, the convergence holds in C’ZQOC(R”). In addition,

. 1
lim lim fu? dvg = n n-2’
R—+oc0e—0 Ba. (Rpuc) I(O(n)if(xo)T
In particular
(16) lim lim fuf* dvg = 0.

R—+o00€e—0 M\Ba, (Rpe)
Proof of Claim 1: We define the metric g. := exp};_g(u.-) in Bs (0) C R™. Since,

pe — 0 when € — 0, then g. — ¢ in C?_(R™) as € — 0 where £ is the Euclidean
metric. The function w, satisfies the equation

(17) Ay we + pPhew, = few? =V in B (0)

He

where h(X) = h, (exp,_ (X)) and f(X) = flexp, (uX)) for all X € B‘%(O).

Since 0 < we < we(0) = 1, there exists w € C? (R™) such that the sequence we — w
in C? (R™) as e — 0 up to extraction. Passing to the limit in (17), we get that

(18) Acw = flzo)w® ~!in R™, 0 < w(0) = 1.

s\~
It follows from Cafarelli-Gidas-Spruck [3] that w(X) = (1 + %) for all
X € R". The change of variable x = exp,_(uX) yields

/ fu? dvg = / flexp,, (e X)w? do,, .
B (Bite) Br(0)

Therefore,
lim i 2 v, = lim L 2q
RAI)IEOO EE)r(l) Bz (RIJ‘E) fue Ug R*I>I£OO 614% BR(O) f(expme (Mex)we Ugé

B —_ 1
- f(x‘))/nw dx_Ko(n)%f(xo)";’“

where we have used that w is a solution to (18) and is an extremal for the Sobolev
inequality (3). This proves Claim 1. O
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Claim 2. u. — 0 in CP (M \ {xo}).
Proof of the claim: It follows from (16) and f > 0 that for all § > 0, we have that

lim uf* dvg = 0.
e—0 ]\4\31.0 (6)

Let us fix w C M such that @ C M \ {zo}. We let w’ open such that & C w’ and
W C M — {xo}. Let n € C°(w') such that n(x) = 1 for all z € w. Let us take
[ > 1 to be fixed later. Integrating by parts as in Druet-Hebey ([8], Theorem 6.1),
we get that

l+1

/nQUiAguEdvg = V(n2ul€)Vu€dvg:/ n*ul= Ve |? dv, + /VnQV £ dvg
M M M

4l p) I+1
e /77|Vu6 |gdvg /l—l—l u. " dug

Independently, for any v € C(M), integrating also by parts, we get that

[ (9@l — Vo) oy, =~ [ po2ande,
M M

Plugging these integrals together yields

[+1)° I+1
/ IV( 17u6 3 | dvy = ( 1 ) /M n*ul Agu dvg + TZ/M (|V77|§ I 177A977> L du,

We then get that

l+1
/ IV (nue? dvg
+1)2 I+1 l
— 41 +1) /M 2 IA gUe Vg + B /M (V?ﬂfl l+177Ag77> I+1 dvg
1+1)2 . l+ 1)2
4l ) Ae/ 772ul6+2 1d’Ug _ ( ) / n he 141 d’Ug
M

l+1
+Tl/M <|V |g 77Ag77> A dvg

z -
/ nu?’ dvg + C/ ultt do,
B (26) Q

(1+1)? / 21\ 2" >
< 2
< 1 Ae y (nu6 ) dvg

It follows from the Sobolev inequality that there exists C'(w’) > 0 independent of e
such that

1y 2"
(/ (nue2 ) dvg) </ [V ( nuE dvg—i—B/ 2 l“ dvg)

Combining these inequalities yields

2 2
*

I+1 % Pid i+1 2* 2
</ Ue 2 2 dvg> < (/ (77“52 ) dvg> < C/ ule“’l dUg

for € > 0 small enough and where C' is independent of €. Taking 1 < < 2* —1, we
then get that u. — 0 in L9(w) for some ¢ > 2*. Since u. satisfies (5), it is classical
that uc — 0 in CP(w). This proves Claim 2. O
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Claim 3. For allw C M such that @ C M, there exists C(w) such that

(19) dg(x,:ce)anzuE(:c) < C(w) foralle >0 and x € w.
Moreover,
(20) lim lim sup dg(x,xe)an|uE(x)| =0

R—0e—0 JJEW\BQ:E (RHE)
Proof of the Claim: We argue by contradiction and we let (y.). € @ be such that

dg(ye,xe)%ué(ye) = supdg(x,ms)%ue(x) — 400 as € — 0.
TEW
It follows from Claim 2 that lim._,qy. = xo. Arguing as in Step 2 of Chapter 4
in Druet-Hebey-Robert [7] and using (16), we get (19). The second estimate (20)
follows also from [7]. O

We now state and prove the main result of this section:

Proposition 1. Let 6 > 0 be such that Bas(xo) C M. Under the assumptions of
Theorem 1, we have that

n—2

2

Le
(21) ue(ye) = -
12 + ek dy (e, y.)?

(I1+0(1))+0(8) when lir%y6 = 9.
e—

Moreover, there exists C(§) > 0 independent of € such that

fre *
22 u(z) < C + C4,
. = T gl n )2

fhe
23 Vue|(z) < C + C0.
(23) [Vaue|(x) (ie + dg(z,20))7
for all x € Bs(xo) where
(24) O.:= sup wu(r) —>0ase—0.

z€0Bs (o)

Proof of Proposition 1: We let v € (0,1) to be fixed later. We let oy > 0 such
that A, + hl_jj’ is coercive on Bas(zg) where h is as in (4): up to taking 6 > 0

small, this is always possible. We let G,, be the Green’s function of Ay + q:ﬁf on

Bss () with Dirichlet boundary condition. It follows from Robert [19] that there
exists c¢1,co > 0 such that

(25)  eadyl,9)* " < Gl y) < cady ()2 for all 2,y € By (o), @ # y.
We define the operator

u Leu = Agu+ heu — fuf 2y,

so that (5) reads L.ue = 0. A straightforward computation yields
2
L

él—y GV *
(20) E () = a0t (o) — (o) + (1) || pu
1% 14 g
By standard properties of Green’s function [19], there exists ¢1, p > 0, such that
VoG
(27) |g’gf7|g(x, Te) > D forallze B,(ze) — {xze}.

T dg(z, z)

v
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Since ue — 0 in CY (M \ {zo}) and he — h in C (M \ {z0}), (26) yields
Leéll,71’ Z O in ng(l’()) \Bp((ﬂo)
Let R > 0 to be fixed later. It follows from (20) that

dy(z, z)*u? ~2(z) < n(R) for all z € B(z, p) \ Blx., Rpe),

€

where limp_, o n(R) = 0. Now, using h. — h in C%(M), (26) and (27), for any
x € B(ze,p) \ B(ze, Rue), we get that

LGy Qo cf 2% -2
W(Iﬁe) 2 5 T v(l— V)W — fu; ()
_ 2 _
> @0 v(l —v)ei J;U(R) >0
2 dg(xa Te)
for R > 0 large enough. Therefore, we get that
(28) L.GL ™" (2,x.) > 0 for all @ € Bs(xo) \ Bry, ().

We fix v; € (0,1). It follows from (25) and ||uc||,, = ui_"m, that there exists
c3 > 0 such that

n—2

(29) ue(x) < cgpie 7111("72)@11,:”1 (@, z¢) for all z € OBRy,, (x).
We set 0 1= SUDP,cop, (aq) ue(z). It follows from Claim 2 that lim.,00. = 0. We

fix 15 € (0,1) and we consider the Green’s function G,,. It follows from (25) that
there exists ¢4 > 0 such that

(30) ue(z) < 04966’11,2_”2 (x,z.) for all x € OBs(xp).
We define
"2y (n—2) 51— ~1—
H.(z):=c3pe? a 2)Gll,1 Yz, xe) + abcGL 2 (2, 3e) for T € Bag(e) — {z.}-
It follows from (28), (29) and (30) that

Lou.=0<L.H, in Bs(xo) \ Brpu. (xc))
0 <u < H. on 0 (Bs(zo) \ Bry, (xe))

Since L.ue > 0 in Bs(xo) \ Bry. (ze), it follows from [2] that
ue < He in Bs(2o) \ Brp, (2c)-

Using the pointwise control (25) and that ||uc|lcc = ﬂi_n/2, we get that for all

v1,va € (0,1), there exists Cy, ,, > 0 such that

”;2 —v1(n—2)

Me
31 € <Cu v
(31) ue(z) < Cyy 1 ((Me T dg(x’xe))("—2)(1—l/l)

for all € Bs(zp). Our next step is to prove (21). We let (y.)e € M such that
lime o ye = zo.

We first assume that dg(zc, ye) = O(pe) as € = 0. Then, (21) is a direct consequence
of (15).

From now on, we assume that

+ 0.dy(x, 336)(2_")(1_”2)>

dg(Te, Ye
lin(l) dg(ze,ye) =0 and lim dy(Te, ye) = +oo.
e—

e—0 Me
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We let Ge be the Green’s function for A, + h. in Bs(xo) with Dirichlet boundary
condition. We let (yc)e € Bs/2(x0). Green’s representation formula yields
(32)

welye) = /B Oy ) (Bt hcn ) deya) /8 o PGl 2 (2) ).

It follows from Robert [19] that there exists c5, cg > 0 such that
(33)
dg(z,9)"2|Ge(z,y)| + dy(z,y)" | VeGe(z,y)| < c5 for all z,y € Bs(xo), x £y

for all € > 0. Combining these estimates with equation (5) and (24), we get that

(34)  ue(ye) = / Ge(ye, ) f(x)u?” " (x) dvg(z) + Ac(R) + B
BRue(ze)
where
Ami<c [ g, 90> "2 " () duy ()
Bs(20)\BRuc (Te)
and |B.| < C dg(2,ye)' " "uc(z) doy(2) < CO,.
0Bs(wo)

We deal with the first term of (34). With a change of variable and (15), we get
that

/ Ge(ye, 2) f(2)u2 = (z) dvg ()
Bry.(zc)

— /B ) Gl O (1 X)) e, (1 X)) 00 o, ()
r(O

It follow from [19] that for any (z.)e € M such that lim._,o dy(ze, zc) = 0 we have
that
1

. n—2 =
limy dg(ze,2e)" " Ge(e, 2e) = (n—2)w, 1’

Since pe = 0(dg(xe,ye)), we then get that

/ Ge(ye,x)f(:t)u?*_l(x) dvg(z)
Bruc(ze)

B Slao)pl 2 w2 -1 o
" (n = 2)wn—1dg (e, ye)" 2 (/BR(O) (X)aX + (1)>

fwo)pe > (/ 2*—1 )
35 = £ w X)dX +o(1)+n(R
(3) e (T 0 ax o) 4 ()
where limp_, oo n(R) = 0. With (18) and (15), we get that
f(xo)/ w HYX)dX = lim AwdX = lim (—=0,w) do
n R—=+00 JB(0,R) R—=+00 JoB(0,R)

(36) - (W) T e 2,
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We now deal with A.(R). Using the pointwise control (31), we get that

# —v1(n+2)

_ e
AR < Con [ dy (52"
* JBs(@o)\ By, (v0) I (pe + dg(, xc))(n+2)(A=0)

d”g(I)
(37) +Cy 87 / dy (2,9 )2 "dy (2, 7)DA= 4y () 4 6.
Bs(xo)

It follows from Giraud’s lemma (see Appendix A of [7] for instance) that for «, 8 €
(0,n — 2) such that a + § > n, there exists C' > 0 such that

/ dy(y, ) "dy(z,y)P " dvy(z) < C for all y, z € Bs(x).
B (zo)
Taking 1 — v5 > 0 close to 0, we then get that

(38)  6>! / dg(z,ye)? " dy(z, z)” ") qy (2) < COZ 7 < O,
Bs(zo0)
We now deal with the remaining term of (37). We split the domain Bs(zg) =
D! U D? where
D! :={z € Bs(wo) s.t. dy(w,ye) > dy(ze,y.)/2}
and D? := {2 € Bs(wo) s.t. dy(z,y.) < dg(ze,yc)/2}
We fix R > 0. With the change of variable x := exp, (1 X), we get that

242y (n+2)

_ He
d (gv,ye)2 n dvg(z)
/Dsl\BRue(:Ee) ! (ﬂe+dy(xa$6))(n+2)(1im) !

"‘2*'2 —v1(n+2)

_ Me
< Cdy(xe,ye)? "/
g Bas(0)\Brp. (20) (pe + dg(x,xe))(n+2)(1,u1)

dvg(z)

n—2

—n 2 1
< Cdg(xm ye)2 He

/R"\BR(O) (1+ (X)) A=)
n—2
(39) = n<R)d9<vaye>2_n,UeT where lim 7n(R)=0

R—+o00

dX

when 11 < 2/(n + 2). Concerning the other integral, note that for all z € D?, we
have that dg(x, ) > dg4(ze, ye)/2. Therefore

"T"'qul(n+2)
d(](xa yE)Q_n ME
pz (He + dg (2, )+ A=)
2
3= —v1(n+2)
<C fe (n+2)(1—v1) /
dg (Ye, we) V) Sy (90 <dy(@ewe) 2
n+2
=5 —vi(nt2)
<ot
dy(y€7x

dvg(z)

dy(@,ye)* ™" dvg(w)

2
e do(Te o)

n—2

2—v1 (n+2) v,7
e ( e ) He
4.0 S C =0 —_—_—
( ) dg(xeaye)n72 dg(ysvxe) (dg($€7y€)n2>
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when v; < 2/(n + 2). Putting (35), (36), (37), (38), (39) and (40) together yields

~(n(n—2) N e ® o
ue(ye)< o) > dg<x€7y€)n_2(1+ (1)) +O(6.)

This yields (21) since dg(e, ye)/pe = +00 as € — 0.

When dg(zc,ye) = o(1), (22) is a direct consequence of (21). Since u — 0 in
CP (M — {xz0}) and u. > 0, it follows from Harnack’s inequality that there exists

loc

¢(7) > 0 such that uc(x) < c(r)uc(y) for all z,y € Bas(xo) \ Br(zg). Therefore, if
(Ye)e € Bas(xp) is such that y. 4 xo, we have that uc(y.) = O(f¢). This proves
(22) when z is far from x. This proves (21) holds in all cases, which yields (22).

Concerning the gradient estimate, differentiate Green’s representation formula (32)
to obtain

Vue(ye) = / VyGe(ye, ) (Aguetheu)(z) dvg(x)—/ 07V yGe(ye, 2)uc(z) dogy(z).
Bs(zo) 9Bs(x0)

Using the pointwise control (33), we then get that

[Vue(ye)| < C dy(ye, @)' " " () dug (@) +C dg(ye; 2)""ue(2) dog(2).

B (z0) ‘ 9B (o)

We get (23) arguing as in the proof of (22). This proves Proposition 1. O

3. SPEED OF CONVERGENCE OF (),

Let 2 C R™ be a smooth bounded domain. Let u € C?(Q), u > 0, and f € C*(Q)
be functions and ¢ € R. Then for all z € R™, the Pohozaev identity writes

(41) /Q ((x — 2)' O+ n;2u> <A5u - cfug*_l) dx

2 *
= /asz l(m —z,V) <|V2u|f - Cf;z ) - ((I — 2)" Opu + z ; 2u> 8yu] do

1 *
+o7 | «Vi(@),r— 2)eu? dr
2" Ja

Differentiating with respect to z, we get that for any j € {1,...,n}

(42) —/ Jju (Agu - cfu2*_1) dx
Q

Vul? 2 .
:/ [—Vj < ule _du ) +8ju81,u] do — i/ 9 f(z)u? dz
20 2 2% 2% Ja

We refer to Ghoussoub-Robert [12] for a proof. We fix § € (0,i4(M, z¢)). We define
e(X) == ue (exp, (X)) for all X € Bs(0) C R™.

Therefore, equation (5) rewrites
Ag. e + Geue = fea? ~ in B;(0).

where he(X) = he (exp,, (X)) and fo(X):=f (exp,, (X)) for all X € B;(0) C R"
and g. := exp}_g is the pull-back of g via the exponential map.
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Lemma 1. Let (¢.)e € C°(Bs(0)) such that

lime_,0 ¢<(0) = s € R,
|pe(X) — ¢c(0)| < C|X| for all X € Bs(0) and € > 0.

We fitp >0 and g > 1. Then
| sdxpizax
B;5(0)

n _q( — )
P (s [ [XPwtdX + o(1)) + O(02) if (n—2)g>p+n,

_ n(n—2) nT % 1 q .
) ¢ ( 7o) ) wWn-1+0(1) Jpe * In (,7) +0(08) if (n—2)g=p+n,

n-2
O(pd = ) +0(07) if(n—2)g<p+n
Moreover, for any family () € (0,1) such that lim._d. = lime 0 ‘g— =0, we
have that

(43)
n _a(n—=2) ’
/ b X [PaddX = P (s/ | X|Pw?dX + o1 )>+0( 9 if g > p*”.
Bs,(0) R™ -2

Proof: We fix v > 0. It follows from (21) and (22) that there exists o € (0,4) such
that

qTLEQ qn;2
N He e
a3 (X) — —— o <v SR + Co?
T AR A A

for all X € B,(0) \ B4(0). Note that for all a € (0,9), it follows from the Harnack
inequality that

/ b X [Pl dX = O(6).
Bs(0)\Ba(0)

We then get that

N He
¢>E\X|Pu3dX—/ plxp |t ) x
/35(0) B (0) p2 + Lok x |2

n(n—2)

973
< cu/ X [P (2’“‘2> dX + Co?
B;(0) He + |X‘

We the get Lemma 1 when ¢(n —2) < n+p. With the change of variable X = u.Y,
we get that

a3
e
X"\ ——Faa s ax
/Ba<0> p2 + e x|
n—2
93
_ nﬂHI”T’Z/ p 1
= He Pe(uYNY P | — 75— dy
P ALl Ewas s
S [an |Y\pwq(Y) dY +o(1) ifgln—2)>p+n

n+p—qry=

= € qn
() () i -2
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The proof of (43) is similar by taking « := .. Putting these estimates together
yields Lemma 1. ([

We now prove (6). We fix [ € {1,...,n}. We define

1
n—1

O 1= pd "
Pohozaev’s identity (42) applied to . reads

(44) Ae == 7Be + Cs - De
With
1 A o
Aci= —— O fea? dX
2% JBs,(0)

A2 £ o~2*
B. = / | (Vi _fE“; + Dyitcdyite | dv
9Bs, (0) 2 2

C. = / Atich i dX and D, := / Nt (Agtic — Ng, i )dX
Bs, (0) Bs, (0)

We estimate these terms separately. It follows from (22) and (23) that

L n—3 ’unfl 677.71
B. =0 | pe ((;) + 5;“ ; 62 ] ) =o(ue) as e — 0.

Concerning C., integrating by parts, we have that

. he .
Ce= OitchcticdX = —/ 6l*ﬂ§dX +/ he—=<v,do
Bs, (0) Bs.(0) 2 0B, (0) 2

With (22) and Lemma 1, we then get that

n—3 —
. on 1
C.=0 (ue (0(1) + (t;) + GM 03)) =o(u) as € = 0.

We now estimate D.. We write

—(Ag, — D) = (99 — )05 — GITF(9e) Ok

where the ffj’s are the Christoffel symbols of the metric g.. The following lemma

is reminiscent in such problems:

Lemma 2. Let 2 be a smooth domain of R™. For any i,j5,k € {1,...,n}, let us
consider a'’* € CY(R™). We assume that a* = a/** for all i,j,k € {1,....,n}.
Then for all u € C*(R™), we have that

3 1
/ a”k@jué‘ku der = / <5‘lal” + 3[(1”l> Oiudju dx
Q Q 2

1 .. ..
+/ (—ZG”ZD} —|—al”17;) O;udjudo
o0

where UV is the outer normal vector at 02 and Einstein’s summation convention has
been used.
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The proof is by integrations by parts and goes back to Hebey-Vaugon [14] and
can also be found in Cheikh-Ali [4]. It follows from Lemma 2 that

/ (gzj — 6”)6@]‘&58['&5 der = / (_amg:njég,l + Qalgéj(st) 81’11587126 dr
B (0) Bs, (0)
1. -
+/ (_2@23 — 613)5m,lﬁm + (gzn] _ (57”])51‘,lﬁl) 6¢ﬁ66j@6 do
9Bs.(0)
Using (22) to control the boundary terms, we get that

D, = / <_amggw5j7l + Qamgg(sm,l) B51.0;4i. do
51, (0)

n—3 _
.. . gn 1
Bs (O) € e

=o(fte)

as € — 0. Since

N 1. m ~ P a
% (ge) = 5gf (9:(9¢) jm + 05(9c)im — Om(9e)ij)

and . is normal at 0 (that is 0,,(ge)i;(0) = 0 for all ¢,j,m € {1,...,n}), we then
get that there exists a;jo € R, 4, j,a € {1,...,n} such that

D, = / ija X 01051 dx + O / | X|?| Vi |* dX | + o(ue)
B, (0) Bs, (0)

With (23), we get that

n—2
He 25n
C IX|2—FHe __gx 4 o2t
Bs. (0) (e + | X[)2(0=D

X2 dX )
op? / e 1 CO%5 = ()
Bs. . (0) (14 [ X[)20n=1)

With (23), given R > 0, using (46) and n > 3, we have that

/ Xaaiﬁeajfl/e dx
Bs. (0)\Bry.(0)

Y|dx
Re\Br(0) (1 +[Y])2(n—1)

IN

/ IX|?| Vit |? dX
Bs,(0)

IN

pe 2| X|dX

<C 2(n—1)

+ o257
Bs. (0\Bry, (0) (He +|X])

< Ce +CO257 < n(R)pe + ofpue)

where limpg_, o 7(R) = 0. Using the change of variable X = p. Y, the convergence
(15) and the radial symmetry of w, we have that

/ Xaaﬂleajﬂe dl‘ = M / Y“@iweajwe dY
BRrpu(0) Br(0)

= [l / X*0;wojwdY + o(1) | = o(ue) since n > 3.
Br(0)

Therefore, we get that fB5 © X*0;1e0jlie dx = o(f1e), and then
D, = o(pe) for n > 4.
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We now deal with A.. With a Taylor expansion of f, we get
1 A ok
Ac = —= o fa? dx
2 B;. (0)

]. ~ * ]_ A~ 3 *
- f—*alfe(())/ a2 dx — Taljfs(())/ Xia2 dx
2 Bs, (0) 2

B;.(0)
+0 / | X262 dX
Bs.(0)

Arguing as above, we get that
/ | X202 dX = o(yc) and X702 dX = o(pe) as e — 0.
Bs. (0) Bs.(0)

With (21), we get that there exists Cp > 0 such that

/ 42"dX = Cy+o(1) as e = 0.
Bs. (0)
Therefore, we get that
Co P
A= o +0(1) ) O1fe(0) + o(pe) as € — 0.
Putting the estimates of A, B,, C. and D, into (44) yields
(45) A fe(0) = o) as e — 0 for all € {1,...,n}.

Passing to the limit, we get that Vf(zo) = 0. We now express df.(0) more
precisely. We write

f(Xx)=f oexp, (X) = fop(X, X)forX e R"

where f := f oexp,, and ¢(Z, X) 1= exp, ! 0expy,, (7)(X) for X,Z € R*. We
~ 0
set X, := expy(ze). Since V f(0) = 0, we get that

0%(f o expy,)

XJ X
axlaxj (0) € +0(| GD

Oi(f o exp, )(0) =

therefore, with (45), we get that

9*(f oexp,,)

D10z, (0)X7 = o(|Xc]) + o(pe) as € — 0 for all [ =1, .., .

Since V2f(zo) is nondegenerate, we then get that |X.| = o(u.), in other words
dg(ze,z0) = o(pe) as € = 0. This proves (6).
Lemma 3. Under the assumptions of Theorem 1, we have that

o(1) ifn>7,
(46) 9. = ¢ olpe) if n € {5,6}.
0 (ue 1n(i) ifn=4.
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Proof: The case n > 7 is simply (24). It follows from (22) that

n—2

2 I )
uedvg < / dvg + COZ
/Bo’(zo) g Bas (x2) (jte + dg(x’xe))Q(n—Q) g
1
= Mg/ o Wy T C’e?
Bagp (o) (1] X[))200=2) 7
<

o u? ifn>5
u? ln(ﬂi) ifn=4

Equation (5) rewrites Aguc + (he — fu? ~?)ue = 0 in M. Since ue — 0 in Cph (M —

{zo}) and u. > 0, it follows from Harnack’s inequality that there exists ¢ > 0 such
that u.(z) < cuc(y) for all 2,y € Bas(xo) \ Bs/3(xo). Therefore, with the definition
(24) of 0., we get that

/ u? dv, > c 262
Bas (20)\Bs (o)

When 4 < n < 6, it follows from L?—concentration assumption (7) that

/ ufdvgg/ u?dv, = o / uZdv, | ase— 0.
Bas(z0)\Bs (o) M\B;(z0) Bs(wo)

Putting these inequalities together, we get (46). This proves Lemma 3. O

4. INTERACTION WITH THE SCALAR CURVATURE: PROOF OF (8)
This part is strongly inspired by Cheikh-Ali [4]. We define
2
5. = e 2 ifn>7
] if n € {4,5,6}.
Writing the Pohozaev identity (41) for 4. that satisfies (5), we get that

(47) Ae"'Be:Ce_"DE
where
Va2  fa2 -2
Be = / (X’ V) | |£ feu: - (Xlala6 + nae) au’&e dV
8Bs, ( 2 2 2
-2\ .
C. = (X Oytie + ue) hetiedX
35 (0)
2 . N
DE (X lue > (Agsue - Ague)dX
35 (0)
A= [ (V.x)a2ax
2 Bs.(0)

Following Cheikh-Ali [4] and using the pointwise controls (21), (22), (23) and the
control (46) on (6.). when n € {4,5,6}, we get that

o(u?) ifn>5
Be = o(p?lnL if n=4. as € =0,
€ pie
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2
C. — h(zo)p? In (i) (f(20)> w3 + o(p? In l%) ifn=4
h(xo)p? [on w?dX + o(u?) ifn>5

2
D, - —p21n (;%) Scalgy(z.) (%) wy+o(uZln ) ifn=4
—ufﬁScalg(xe) S w?dX + o(u?) ifn>5

We are then left with estimating A.. With a Taylor expansion of fe, we get that
1 A ok 1 R .
A = % aife(O)Xlﬁ? dX + Taijfg(o)/ XZX]'ELE dXxX
2* Js. 0 2 Bs_ (0)

+0 / X P2 dx
Bs. (0)

Since f, := foexp, and V f(z¢) = 0, we get that V/.(0) = O(dy(ze, z0)). With (6),
we then get that V£, (0) = o(ue). It follows from Lemma 1 that st © |X[P02 dX =
o(u?) and fBé ©) |X|62"dX = O(uc). Therefore, we get that

1 o L ok

A= 3205000 [ XOXIGE QX + o)
2 Bs.(0)

Arguing as in the proof of Lemma 1, we get

/ X'X942 dX = 2 X' XTw? dX + o(u?) when n > 4.
B, (0)

Rn
He

Since w is radially symmetric, we get that [5, X'X/w? dX = 6777 Jon [ X Pw? dX.
Since g. is normal at 0, we have that Ay f(z.) = =), 3iif€(0), which yields We
claim that

1 x

A = —ﬂAgf(xo)uf/ |X[2Pw? dX +o(p?) ifn>4
Rn

By Jaber [15] we have that

Jon | XPw¥dX  p%(n—4)

Jen w2dX  4(n—1)f (o)

Putting the expressions of A., B, C. and D, in (47) and letting ¢ — 0 yield (8).
This ends the proof of Theorem 1.

for n > 5.

5. APPLICATION TO A SUPER-CRITICAL PROBLEM: PROOF OF THEOREM 2

We follow the notations and assumptions of Theorem 2. We consider a family
(te)es0 € C4(X) of G—invariant solutions to the problem

(48) Ague + heue = )\Euf*(k)_l , / uf*(k)dvg =1, ||lul2 = 0ase—0
X

where (he)eso € CL(X) is such that there exists h € CL(X) such that (9) holds
and (Ac)c is such that (11) holds.

Claim 4. There exists g € X such that

(49) lim u? (®) dvg =1 for all 6 > 0.
<0 B;(Gao)
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Proof: We fix a point zp € X. We choose 179 € C*°(R) such that no(t) =1 fort <1
and 19(t) =0 for t > 2. Given d > 0, we define n(z) := UO(M) for all z € X.
For § > 0 small enough, we have that n € C(X). Multiply (10) by n?ul for some
[ > 1 and integrate over X, we get that

(50) / nzuiAguedvng/ n?heuldv, = )\e/ nult? =1y,
M M

As in the proof of Claim 2, we get that

1+1)? I+1
/ IV ( 77uE 5 | dv, = ( o ) /M n2ul Agu. dvg + TZ/M (|V77|_(2] 7 177A977) M du,

Using (50) and Holder’s inequality, we get

(51) |V(77u62 )| dvy <C’/ ult do,

1——2
14+1)2 141 27 (k) 0l . 25
+( ), Ae </ (77“52 ) dvg) </ u?" () dvg>
4l
X Bas(Gz0)

It follows from Faget [10] that for all & > 0, there exists B > 0 such that, for all e,

2
11y 27 (K) (%) K — k)1
(/ (nue2 ) dvg> < O(n t+a) / [V ( nuE dvg—i—B/ nzuljl dvg
X 2*(k) X

where Ko(n — k) is as in (3) and Vm = min,e x{Voly(Gz)/dim Gz = k}. By
combining this inequality with (51), we obtain:

Ly 2 () (0 -
52 ([ () ) < ot

where

1- 52
o= 1o (z+1)2/\ Ko(n —k)(1+a) / 20 g 7w
4l v 0] Bas(Gzo) J

Assume that, up to extraction,

lim uf*(k) dvg < 1.

e—0 BZ&(GZU)
Using (11), there exists 1 <1 < 2*(k) — 1 such that x. > 8 > 0 for all ¢ > 0 up to
taking o small. As u. — 0 in L'T1(X) since [ + 1 < 2*(k), with (52), we then get

l+1
that lim._,q fB (G20) Ue? 2R dvgy = 0. With similar arguments, we get that for all

§ < 6, ue = 01in LY(Bs/(Gzp) for all ¢ > 1. Tt then follows from (10) and elliptic
theory that u. — 0 in C°(By (Gz)). Since [ u?" dv, = 1 and X is compact, the
existence of zy € X such that (49) holds follows. This proves the claim. O

Claim 5. We have that dim Gzo = k and Voly,(Gzy) =V,

Proof: We follow Faget [10]. Assume that dim Gzo > k. Therefore, there exists
0 > 0 such that dim Ga > ki > k for all z € Bos(Gxg). It then follows from Hebey-
Vaugon [13] that Hf,G(B(;(GxO)) — LP(Bs(Gxy)) is compact for 1 < p < 2*(ky).
Since 2*(k) < 2*(k1) and u. — 0 in L?*(X), we get that u, — 0 strongly in
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L¥ (F)(Bs(Gxy)), contradicting (49). Therefore dim Gzg = k. Tt follows from
Faget (formula (8) in [10]) that for all o > 0, there exists d,, > 0 such that

2
2% (k)
N K —k
/ STRCT N IRC P e Gt / Vol? do,
Bs,, (Gzo) VOlg(Gl‘o) T 2R(R) Bs,, (Gzo)

for all v € CL(Bs,(Gxo)) with compact support in Bs_ (Gxo). Let us fix n, €
C& (X) with compact support in Bs, (Gz) and such that 0 < 7, < 1and n4(z) =1
for dg(z, Gxg) < 04/2. We then get that

PR M T
Bs,, /2(Gxo) Bs,, (Gzo)

Ko
(53) o / IV (naue)|? du,
Vol (Gxo —

Integrating by parts and using ||ue||2 — 0, we get that
(54)
| 9B dvy = [ w2 iVulido, [ nagmdvy < [ (9l oy + o)
X X X X

Multiplying (48) by u., integrating and using again [Ju.||2 — 0, we get that

(55) )\E:/ Acu? () dvg:/ |Vu€|2dvg—|—/ hsufdvgz/ |V | dvg + o(1).
X b'e bl bl

Putting together (53), (54), (55) and (49), we get that
Ko(n —
1< (1+a)—Tolr 1k)2 Ae + o(1).
Voly (Gzg) @

Using (11), letting ¢ — 0 and then o« — 0 yields Voly(Gzg) < V. Therefore

IN

IA

1+a)

Voly(Gzo) = Vi, and the claim is proved. O
Claim: The following L?— concentration holds
u? dv
(56) lim fX\Bé(GI;) L =0 forn—k>A4.
e—0 fX uZ dvg

We prove the claim by arguing as in Djadli-Druet [5]. We have that

/ uf dvg < sup U / Ue dvg
X\Bg(GzO) X\B&(GCEQ) X\B(s(Gwo)

Since ue — 0 in C (X \ Gzo), Harnack’s inequality yields ¢ > 0 such that

/ uz dvy <c  inf ue/ Ue dvg
X\Bj;(Gao) XA\Bs(Gzo)  JX\Bs(Gao)

1
<c / u? dv, / Ue dvg < c||u€||2/ Ue dvg
X\Bs(Gzo) b's b's

2
Integrating (10) yields [y heue dvg = [y ue Z2=1 gy, Tt follows from (9) that there
exists 8 > 0 such that h. > ( for all € > O Therefore we get that

2% (k)—1
/ u? dvg < ¢ fuell2uell3 )7
X\Bs(Gzo)
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IN

if n—k > 6, we have 2*(k)—1 < 2. Using Holder inequalities, we have ||u6||Z:EZ§:
cllue H2 ®)=1 Since ue — 0 in L3(X), we get that

2
/ W dvg < clfuclZ® = o flucl?)
X\B;(Gzo)

if4 <n-—k<5, WehaveZ*(k)fl*2w+(17w)2*( ) with w = 2=k=2 > 0.

2 (k) =1 w)2* (k)

Holder’s inequality yields ||u€||2*(k) 1 < 6||2“’Hu5||2*(k) . As a result

(k)—1 (1—-w)2* (k
/ i dvg < el (o "y uellz < lucll3™ uellgr” © = of ucl3).
X\Bs(Gzo)

This proves the claim. O

We are now in position to take the quotient. Since dim Gxy = k, we choose § > 0
and G’ C G as in Assumption (H). Then M := Bs(Gxo)/G’ is a manifold of
dimension n — k that is endowed with the metric § on Bs(Gxzg)/G’ such that the
projection (Bs(Gxo),9) — (Bs(Gxo)/G’, g) is a Riemannian submersion. We define
u. € C*(M), he € CY(M) and v € C%(M) be such that

U (Z) = ue(x), he(Z) = he(x) and 9(z) = Voly(G'x) for all z € Bs(Gxo).

Let us first rewrite equation (48) as in Saintier [20]. Let ¢ € C°(M) be a function
on M = Bs(Gxg)/G'. Define p(z) := @(Z) for all z € Bs(Gxp): as one checks,
v € CX(Bs(Gxp)) and is G—invariant. It then follows from (48) that

/(VUE,V@)gdvg—F/ heuegadng/\e/ u? W=ty dy,.
X

We define § := o7=i=2 g. Since ue, p are G—invariant, we get that

/(VUE,V@)gdvg:/ 9(Z)(Vie, V@); dvg—/ (Vi., V@) dvg.
X Bs(Go) /G Bs(Go) /G

Performing the same computations for the remaining terms, setting h, := v~ nmh he,

1
f=0" ==2 and i, = A& 2., we get that

Agiie + hetie = fa2 ™~ in M.
We deal with the L2"(*) —norm. The definitions of f and § and (49) yield

2t (k) 1
lim/ fu " (k) dvg = hm AT = —— —-
e—0 Ko(n — k;)Tf(fO) 2

Concerning the L?—concentration, it follows from (56) that for any r < §, for
n — k > 4, we have that

/ uz dvg < / uf dvg =0 / ug dvg | .
B,;(GI(])\BT(GCE()) X\BT(GLE()) BT(GZL'O)

Taking the quotient, we get that

/ ﬂfdvgzo / ﬂ?dvg when n — k > 4,
M\BT(EO) Br(io)
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which yields the L?—concentration on M. We apply Theorem 1. Taking (z.). € X

n—k—2
such that ||uelloo = ue(we) =pe 2, we get (12) and (13). Equation (8) rewrites
. n—k-2 . n—k—4 Agf(@)
Zg) = ———— | Scalz(Zo) — N
(o) dn—k-1) 3(70) 2 F(z0)

where h = lim,_,q he. Using the invariance of the conformal Laplacian, that is

>

m— 2 m+2
n

_ m—2
AQQP + mSCalgip =w 7 (Ag(wgo) + MSC&%W@)

4

m=2g. m =n — k, we get (14). This proves

for any ¢ € C?(M) and where §j = w
Theorem 2.
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