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CONCENTRATION ANALYSIS FOR ELLIPTIC CRITICAL

EQUATIONS WITH NO BOUNDARY CONTROL:

GROUND-STATE BLOW-UP

HUSSEIN MESMAR AND FRÉDÉRIC ROBERT

Abstract. We perform the apriori analysis of solutions to critical nonlinear

elliptic equations on manifolds with boundary. The solutions are of minimiz-
ing type. The originality is that we impose no condition on the boundary,

which leads us to assume L2−concentration. We also analyze the effect of

a non-homogeneous nonlinearity that results in the fast convergence of the
concentration point.

Dedicated to Yihong Du on the occasion of his 60th birthday

1. Introduction

1.1. Context and main results. Let (M, g) be a Riemannian manifold of dimen-
sion n ≥ 3, with or without boundary ∂M . When ∂M ̸= ∅, M denotes the interior
of the manifold and M denotes its closure, so that M = M ∪ ∂M : in particular,
M is open in M . We let a, f ∈ C0(M) be functions and we consider u ∈ C2(M)
solution to

(1) ∆gu+ au = fu2⋆−1 ; u > 0 in M.

where ∆g := −divg(∇) is the Laplacian with minus sign convention and 2⋆ := 2n
n−2

is critical for the Sobolev embeddings H2
1 (M) ↪→ L2⋆(M). Here, the Sobolev space

H2
1 (M) is the completion of {u ∈ C∞(M)/ ∥u∥H2

1
< ∞} for the norm ∥ · ∥H2

1
:=

∥∇·∥2+∥·∥2. In the case of a Euclidean smooth domain Ω ⊂ Rn, then a, f ∈ C0(Ω̄)
and we consider u ∈ C2(Ω) solution to

(2) ∆u+ au = fu2⋆−1 ; u > 0 in Ω.

where ∆ := −div(∇) is the Euclidean Laplacian. Due to the critical exponent
2⋆, there might be families of solutions to (1) that are not relatively compact in
C2

loc(M). For instance, given x0 ∈ Rn and µ > 0, define the Bubble as

x 7→ Uµ,x0(x) :=

 µ

µ2 + c|x−x0|2
n(n−2)


n−2
2

.

Then for any domain Ω ⊂ Rn, Uµ,x0
is a solution to (2) when a ≡ 0 and f ≡ c.

Moreover, if x0 ∈ Ω̄, then supΩ Uµ,x0
→ +∞ as µ → +∞. In the Riemannian
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context, for x ∈ M and µ > 0, the Bubble writes

x 7→ U (M,g)
µ,x0

(x) :=

 µ

µ2 +
cdg(x,x0)2

n(n−2)


n−2
2

.

Concerning terminology, we say that a family (uϵ)ϵ ∈ C0(M) blows-up if limϵ→0 ∥uϵ∥∞ =
+∞.

When ∂M = ∅, the description of blowing-up families of (1) with bounded L2⋆−norm
has been performed by Druet-Hebey-Robert [7]. The main result in [7] is that
blowing-up families are controled from above by

(∑
i Uµi,ϵ,xi,ϵ

)
ϵ
, for given families

(xi,ϵ)ϵ ∈ M and (µi,ϵ)ϵ → 0. With this control, it is possible to give informations
on the localization of the limits xi,∞ := limϵ→0 xi,ϵ: see Druet [6]. This analysis
extends to manifolds with boundary provided a boundary condition like Dirichlet
(see Ghoussoub-Mazumdar-Robert [12]) or Neumann (see Druet-Robert-Wei [9]).
See Premoselli [17] for a more recent point of view.

The first objective of the present work is to perform an analysis similar to [7] and
[6] without condition on ∂M ̸= ∅. Tackling such generality requires additional
assumption: the relevant notion here is L2−concentration that already appeared
in Djadli-Druet [5] (see (7) below).

Our second objective is to analyse the effect of a nonconstant function f in (1). In
the case of a single peak, concentration occurs at a critical point. We prove that
when this critical point is nondegenerate, then the family of concentration points
converges very fast to its limit (see (6) below): this does not generally happen for
a constant function f . A similar control appears in Malchiodi-Mayer [16].

As was shown by Aubin [1], below a threshold, blow-up cannot occur. In this
manuscript, we are considering solutions (uϵ) that carry the minimal energy for
blow-up, namely ground-state type solution. The minimal energy is given by the
best constant in Sobolev embeddings:

1

K0(n)
= inf

φ∈D2
1(Rn)\{0}

∫
Rn |∇φ|2dX(∫
Rn |φ|2⋆dX

) 2
2⋆

,(3)

where D2
1(Rn) is the completion of C∞

c (Rn) for the norm φ 7→ ∥∇φ∥2. Aubin
[1] and Talenti [21] have computed this best constant and have showed that the
extremals are exactly C · Uµ,x0 for C ̸= 0, µ > 0 and x0 ∈ Rn. Our main theorem
for ground-state solutions is the following:

Theorem 1. Let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 4 with nonempty boundary ∂M ̸= ∅. We fix f ∈ C2(M) such that f > 0. We
consider a family (hϵ)ϵ ∈ C1(M) and f ∈ C2(M), f > 0, such that there exists
h ∈ C1(M) and such that ∆g + h is coercive and

(4) lim
ϵ→0

hϵ = h in C1(M).

We let (uϵ)ϵ ∈ C2(M) be a family of solutions to

(5) ∆guϵ + hϵuϵ = fu2⋆−1
ϵ in M.

Let xϵ ∈ M and µϵ > 0 be such that

uϵ(xϵ) = sup
M

uϵ = µ
1−n

2
ϵ
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We assume that

• uϵ → 0 in L2(M),
• limϵ→0 xϵ = x0 ∈ M is an interior point of M ,
• The solution has minimal-type energy, that is

lim
ϵ→0

∫
M

fu2⋆

ϵ dvg =
1

K0(n)
n
2 f(x0)

n−2
2

• The Hessian ∇2f(x0) is nondegenerate.

Then x0 is a critical point of f and

dg(xϵ, x0) = o(µϵ) as ϵ → 0,(6)

and for all ω ⊂ M such that ω ⊂ M and δ0 > 0, there exists C(ω, δ0) > 0 such that

uϵ(x) ≤ C(ω, δ0)

(
µϵ

µ2
ϵ + dg(x, x0)2

)n−2
2

+ C(ω, δ0) sup
∂Bδ0

(x0)

uϵ

for all x ∈ ω. In addition, assuming that for all δ > 0, we have that

(7) lim
ϵ→0

∫
M\B(x0,δ)

u2
ϵ dvg∫

M
u2
ϵ dvg

= 0 for n ∈ {4, 5, 6},

then

h(x0) =
n− 2

4(n− 1)

(
Scalg(x0)−

n− 4

2
· ∆gf(x0)

f(x0)

)
,(8)

where Scalg is the scalar curvature of (M, g).

Remark: Theorem 1 applies to the case of a bounded domain of Rn endowed with
the Euclidean metric g := Eucl. In this situation, M = Ω ⊂ Rn is a domain,
∆g = −

∑
i ∂ii, dg(x, y) = |x − y| is the usual Euclidean norm for x, y ∈ Rn and

Scalg = 0.

The control (6) is remarkable since it does not hold when f is degenerate. In-
deed, when f ≡ 1 there is an abundance of blowup profiles with various speeds of
convergence of the (xϵ)’s to their limit, see for instance Premoselli [18].

The restriction of dimension n ≥ 4 is not surprising: indeed, see Corollary 6.4 in
Druet-Hebey [8], (7) does not hold in general for n = 3. It is known since Aubin
and Schoen that for n = 3, blowup cannot be characterized by local arguments and
involves global arguments, like the mass. In the general local context of Theorems
1, no information is known regarding the boundary, which forbids to get any global
information.

1.2. Application to supercritical problems with symmetries. A natural set
application of Theorem 1 is in the context of manifolds invariant under a group
of isometries. We consider a compact Riemannian manifold (X, g) of dimension
n ≥ 3, but without boundary (∂X = ∅). The critical exponent 2⋆ can be improved
by imposing invariance under the action of an isometry group. Let G be a compact
subgroup of isometries of (X, g): we say that a function u : X → R is G−invariant if
u◦σ = u for all σ ∈ G. It follows from Hebey-Vaugon [13] that the critical exponent

in this setting is 2⋆(k) := 2(n−k)
n−k−2 where k := minx∈X dim Gx and assuming that

1 ≤ k < n − 2. We refer to Hebey-Vaugon [13], Saintier [20] and Faget [10] for
extensive considerations on problems invariant under isometries. In general, the
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quotient X/G is not a manifold of dimension n − k. Following Saintier [20], we
make the following assumption on G:

Assumption (H): For any x0 ∈ X such that the orbit Gx0 is of dimension k =
min
x∈X

dimGx ≥ 1 and of volume Vm = minx∈X{Volg(Gx)/ dim Gx = k}, there exists

δ > 0, and G′ a closed subgroup of Isomg(X) such that:

(1) G′x0 = Gx0;
(2) For all x ∈ Bδ(Gx0) := {y ∈ X/dg(y;Gx0) < δ}, then G′x is principal and

G′x ⊂ Gx.

In particular dimG′x = dimGx0 = k, ∀x ∈ Bδ(Gx0).

This assumption ensures that Bδ(Gx0)/G
′ is a Riemannian manifold of dimension

m := n − k with a nontrivial boundary. In the sequel, for any p ∈ N, we define
Cp

G(X) as the space of G−invariant functions of Cp(X). We prove the following in
the spirit of Faget [11].

Theorem 2. Let (X, g) be a compact Riemannian manifold of dimension n with-
out boundary, and let G be a compact subgroup of isometries of X which satisfies
Assumption (H) and such that 1 ≤ k < n− 2. Let (hϵ)ϵ ∈ C1

G(X) and h ∈ C1
G(X)

be such that ∆g + h is coercive and

(9) lim
ϵ→0

hϵ = h > 0 in C1
G(X).

Let (uϵ)ϵ ∈ C2
G(X) be a family of solutions to

(10) ∆guϵ + hϵuϵ = λϵu
2⋆(k)−1
ϵ ; uϵ > 0 in X,

∫
X

u2⋆(k)
ϵ dvg = 1

We assume that

• uϵ → 0 strongly in L2(X),
• The energy is of minimal type, that is

(11) lim
ϵ→0

λϵ =
V

1− 2
2⋆(k)

m

K0(n− k)
, where Vm := min

x∈X
{Volg(Gx)/ dim Gx = k}.

• For all point z0 ∈ X such that dim Gz0 = k and Volg(Gz0) = Vm, then the
function{

v̄ : Bδ(Gz0)/G
′ → R

G′x → Volg(G
′x)

}
is nondegenerate at Gz0.

This latest assumption makes sense due to Assumption (H). Let (xϵ)ϵ ∈ X be such

that uϵ(xϵ) = maxX uϵ and define µ
−n−k−2

2
ϵ = uϵ(xϵ). Then there exists x0 ∈ X

such that dim Gx0 = k and Volg(Gx0) = Vm such that limϵ→0 xϵ = x0 and

dg(xϵ, Gx0) = o(µϵ).(12)

Moreover, there exists C > 0 such that

(13) uϵ(x) ≤ C

(
µϵ

µ2
ϵ + dg(x,Gx0)2

)n−2
2

+

{
o(µϵ) if n− k ≥ 5

o
(
µϵ

√
ln 1

µϵ

)
if n− k = 4

and

(14) h(x0) =
n− k − 2

4(n− k − 1)

(
Scalḡ(x̄0) + 3

∆ḡ v̄(x̄0)

v̄(x̄0)

)
when n− k ≥ 4,
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where ḡ is the metric on Bδ(Gx0)/G
′ such that the canonical projection (Bδ(Gx0), g) →

(Bδ(Gx0)/G
′, ḡ) is a Riemannian submersion.

2. Pointwise control

We consider (uϵ) ∈ C2(M), (hϵ) ∈ C1(M), h ∈ C1(M), f ∈ C2(M), (xϵ)ϵ ∈ M
and (µϵ)ϵ ∈ (0,+∞) as in the statement of Theorem 1. In the sequel, we let
ig(M,x) > 0 be the injectivity radius of (M, g) at an interior point x ∈ M .

Claim 1. Set δ ∈ (0, ig(M,x0)) and define

wϵ(X) := µ
n−2
2

ϵ uϵ(expxϵ
(µϵX)) for any X ∈ B δ

µϵ
(0) ⊂ Rn

Then

(15) lim
ϵ→0

wϵ(X) = w(X) =

 1

1 + f(x0)|X|2
n(n−2)


n−2
2

for all X ∈ Rn.

Moreover, the convergence holds in C2
loc(Rn). In addition,

lim
R→+∞

lim
ϵ→0

∫
Bxϵ (Rµϵ)

fu2⋆

ϵ dvg =
1

K0(n)
n
2 f(x0)

n−2
2

.

In particular

(16) lim
R→+∞

lim
ϵ→0

∫
M\Bxϵ (Rµϵ)

fu2⋆

ϵ dvg = 0.

Proof of Claim 1: We define the metric gϵ := exp⋆xϵ
g(µϵ·) in B δ

µϵ
(0) ⊂ Rn. Since,

µϵ → 0 when ϵ → 0, then gϵ → ξ in C2
loc(Rn) as ϵ → 0 where ξ is the Euclidean

metric. The function wϵ satisfies the equation

(17) ∆gϵwϵ + µ2
ϵ h̃ϵwϵ = f̃ϵw

2⋆−1
ϵ in B δ

µϵ
(0)

where h̃ϵ(X) = hϵ

(
expxϵ

(µϵX)
)
and f̃ϵ(X) = f(expxϵ

(µϵX)) for all X ∈ B δ
µϵ
(0).

Since 0 < wϵ ≤ wϵ(0) = 1, there exists w ∈ C2 (Rn) such that the sequence wϵ → w
in C2

loc(Rn) as ϵ → 0 up to extraction. Passing to the limit in (17), we get that

(18) ∆ξw = f(x0)w
2⋆−1 in Rn, 0 ≤ w(0) = 1.

It follows from Cafarelli-Gidas-Spruck [3] that w(X) =
(
1 + f(x0)|X|2

n(n−2)

)−n−2
2

for all

X ∈ Rn. The change of variable x = expxϵ
(µϵX) yields∫

Bxϵ (Rµϵ)

fu2⋆

ϵ dvg =

∫
BR(0)

f(expxϵ
(µϵX)w2⋆

ϵ dvgϵ .

Therefore,

lim
R→+∞

lim
ϵ→0

∫
Bxϵ (Rµϵ)

fu2⋆

ϵ dvg = lim
R→+∞

lim
ϵ→0

∫
BR(0)

f(expxϵ
(µϵx)w

2⋆

ϵ dvgϵ

= f(x0)

∫
Rn

w2⋆ dx =
1

K0(n)
n
2 f(x0)

n−2
2

,

where we have used that w is a solution to (18) and is an extremal for the Sobolev
inequality (3). This proves Claim 1. □
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Claim 2. uϵ → 0 in C0
loc(M \ {x0}).

Proof of the claim: It follows from (16) and f > 0 that for all δ > 0, we have that

lim
ϵ→0

∫
M\Bx0 (δ)

u2⋆

ϵ dvg = 0.

Let us fix ω ⊂ M such that ω ⊂ M \ {x0}. We let ω′ open such that ω̄ ⊂ ω′ and
ω̄′ ⊂ M − {x0}. Let η ∈ C∞

c (ω′) such that η(x) = 1 for all x ∈ ω. Let us take
l > 1 to be fixed later. Integrating by parts as in Druet-Hebey ([8], Theorem 6.1),
we get that∫
M

η2ul
ϵ∆guϵ dvg =

∫
M

∇(η2ul
ϵ)∇uϵ dvg =

∫
M

lη2ul−1
ϵ |∇uϵ|2 dvg +

∫
M

∇η2∇ ul+1
ϵ

l + 1
dvg

=
4l

(l + 1)2

∫
M

η2|∇u
l+1
2

ϵ |2g dvg +
∫
M

∆η2

l + 1
ul+1
ϵ dvg

Independently, for any v ∈ C1(M), integrating also by parts, we get that∫
M

(|∇(ηv)|2g − η2|∇v|2g) dvg = −
∫
M

ηv2∆gη dvg.

Plugging these integrals together yields∫
M

|∇( ηu
l+1
2

ϵ )|2g dvg =
(l + 1)2

4l

∫
M

η2ul
ϵ∆guϵ dvg +

l + 1

2l

∫
M

(
|∇η|2g +

l − 1

l + 1
η∆gη

)
ul+1
ϵ dvg

We then get that∫
M

|∇( ηu
l+1
2

ϵ )|2g dvg

=
(l + 1)2

4l

∫
M

η2ul
ϵ∆guϵ dvg +

l + 1

2l

∫
M

(
|∇η|2g +

l − 1

l + 1
η∆gη

)
ul+1
ϵ dvg

=
(l + 1)2

4l
λϵ

∫
M

η2ul+2⋆−1
ϵ dvg −

(l + 1)2

4l

∫
M

η2hϵu
l+1
ϵ dvg

+
l + 1

2l

∫
M

(
|∇η|2g +

l − 1

l + 1
η∆gη

)
ul+1
ϵ dvg

≤ (l + 1)2

4l
λϵ

(∫
M

(
ηu

l+1
2

ϵ

)2⋆
dvg

) 2
2⋆
(∫

Bx(2δ)

ηu2⋆

ϵ dvg

)1− 2
2⋆

+ C

∫
Ω

ul+1
ϵ dvg

It follows from the Sobolev inequality that there exists C(ω′) > 0 independent of ϵ
such that(∫

ω′

(
ηu

l+1
2

ϵ

)2⋆
dvg

) 2
2⋆

≤ C(ω′)

(∫
ω′

|∇( ηu
l+1
2

ϵ )|2g dvg +B

∫
ω′

η2ul+1
ϵ dvg

)
Combining these inequalities yields(∫

ω

u
l+1
2 2⋆

ϵ dvg

) 2
2⋆

≤
(∫

ω′

(
ηu

l+1
2

ϵ

)2⋆
dvg

) 2
2⋆

≤ C

∫
ω′

ul+1
ϵ dvg

for ϵ > 0 small enough and where C is independent of ϵ. Taking 1 < l < 2⋆ − 1, we
then get that uϵ → 0 in Lq(ω) for some q > 2⋆. Since uϵ satisfies (5), it is classical
that uϵ → 0 in C0

loc(ω). This proves Claim 2. □
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Claim 3. For all ω ⊂ M such that ω ⊂ M , there exists C(ω) such that

(19) dg(x, xϵ)
n−2
2 uϵ(x) ≤ C(ω) for all ϵ > 0 and x ∈ ω.

Moreover,

(20) lim
R→0

lim
ϵ→0

sup
x∈ω\Bxϵ (Rµϵ)

dg(x, xϵ)
n−2
2 |uϵ(x)| = 0

Proof of the Claim: We argue by contradiction and we let (yϵ)ϵ ∈ ω be such that

dg(yϵ, xϵ)
n−2
2 uϵ(yϵ) = sup

x∈ω
dg(x, xϵ)

n−2
2 uϵ(x) → +∞ as ϵ → 0.

It follows from Claim 2 that limϵ→0 yϵ = x0. Arguing as in Step 2 of Chapter 4
in Druet-Hebey-Robert [7] and using (16), we get (19). The second estimate (20)
follows also from [7]. □

We now state and prove the main result of this section:

Proposition 1. Let δ > 0 be such that B2δ(x0) ⊂ M . Under the assumptions of
Theorem 1, we have that

(21) uϵ(yϵ) =

 µϵ

µ2
ϵ +

f(x0)
n(n−2)dg(xϵ, yϵ)2


n−2
2

(1+o(1))+O(θϵ) when lim
ϵ→0

yϵ = x0.

Moreover, there exists C(δ) > 0 independent of ϵ such that

uϵ(x) ≤ C
µ

n−2
2

ϵ

(µϵ + dg(x, xϵ))n−2
+ Cθϵ(22)

|∇uϵ|(x) ≤ C
µ

n−2
2

ϵ

(µϵ + dg(x, xϵ))n−1
+ Cθϵ(23)

for all x ∈ Bδ(x0) where

(24) θϵ := sup
x∈∂Bδ(x0)

uϵ(x) → 0 as ϵ → 0.

Proof of Proposition 1: We let ν ∈ (0, 1) to be fixed later. We let α0 > 0 such
that ∆g + h−α0

1−ν is coercive on B2δ(x0) where h is as in (4): up to taking δ > 0

small, this is always possible. We let G̃ν be the Green’s function of ∆g +
h−α0

1−ν1
on

B2δ(x0) with Dirichlet boundary condition. It follows from Robert [19] that there
exists c1, c2 > 0 such that

(25) c1dg(x, y)
2−n ≤ G̃ν(x, y) ≤ c2dg(x, y)

2−n for all x, y ∈ Bδ(x0), x ̸= y.

We define the operator

u 7→ Lϵu := ∆gu+ hϵu− fu2⋆−2
ϵ u,

so that (5) reads Lϵuϵ = 0. A straightforward computation yields

LϵG̃
1−ν
ν

G̃1−ν
ν

(x, xϵ) = α0 + hϵ(x)− h(x) + ν(1− ν)

∣∣∣∣∣∇G̃ν

G̃ν

∣∣∣∣∣
2

g

− fu2⋆−2
ϵ(26)

By standard properties of Green’s function [19], there exists c1, ρ > 0, such that

(27)
|∇g,xG̃ν |g

G̃ν

(x, xϵ) ≥
c1

dg(x, xϵ)
for all x ∈ Bρ(xϵ)− {xϵ}.
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Since uϵ → 0 in C0
loc(M \ {x0}) and hϵ → h in C0

loc(M \ {x0}), (26) yields

LϵG̃
1−ν
ν ≥ 0 in B2δ(x0) \Bρ(x0)

Let R > 0 to be fixed later. It follows from (20) that

dg(x, xϵ)
2
u2⋆−2
ϵ (x) ≤ η(R) for all x ∈ B(xϵ, ρ) \B(xϵ, Rµϵ),

where limR→+∞ η(R) = 0. Now, using hϵ → h in C0(M), (26) and (27), for any
x ∈ B(xϵ, ρ) \B(xϵ, Rµϵ), we get that

LϵG̃
1−ν
ν

G̃1−ν
ν

(x, xϵ) ≥
α0

2
+ ν(1− ν)

c21

dg(x, xϵ)
2 − fu2⋆−2

ϵ (x)

≥ α0

2
+

ν(1− ν)c21 − fη(R)

dg(x, xϵ)
2 ≥ 0

for R > 0 large enough. Therefore, we get that

LϵG̃
1−ν
ν (x, xϵ) ≥ 0 for all x ∈ Bδ(x0) \BRµϵ

(xϵ).(28)

We fix ν1 ∈ (0, 1). It follows from (25) and ||uϵ||∞ = µ
1−n/2
ϵ , that there exists

c3 > 0 such that

(29) uϵ(x) ≤ c3µ
n−2
2 −ν1(n−2)

ϵ G̃1−ν1
ν1

(x, xϵ) for all x ∈ ∂BRµϵ
(xϵ).

We set θϵ := supx∈∂Bδ(x0) uϵ(x). It follows from Claim 2 that limϵ→0 θϵ = 0. We

fix ν2 ∈ (0, 1) and we consider the Green’s function G̃ν2
. It follows from (25) that

there exists c4 > 0 such that

uϵ(x) ≤ c4θϵG̃
1−ν2
ν2

(x, xϵ) for all x ∈ ∂Bδ(x0).(30)

We define

Hϵ(x) := c3µ
n−2
2 −ν1(n−2)

ϵ G̃1−ν1
ν1

(x, xϵ) + c4θϵG̃
1−ν2
ν2

(x, xϵ) for x ∈ B2δ(xϵ)− {xϵ}.
It follows from (28), (29) and (30) that{

Lϵuϵ = 0 ≤ LϵHϵ in Bδ(x0) \BRµϵ
(xϵ))

0 < uϵ ≤ Hϵ on ∂ (Bδ(x0) \BRµϵ
(xϵ))

Since Lϵuϵ ≥ 0 in Bδ(x0) \BRµϵ(xϵ), it follows from [2] that

uϵ ≤ Hϵ in Bδ(x0) \BRµϵ(xϵ).

Using the pointwise control (25) and that ∥uϵ∥∞ = µ
1−n/2
ϵ , we get that for all

ν1, ν2 ∈ (0, 1), there exists Cν1,ν2
> 0 such that

(31) uϵ(x) ≤ Cν1,ν2

(
µ

n−2
2 −ν1(n−2)

ϵ

(µϵ + dg(x, xϵ))(n−2)(1−ν1)
+ θϵdg(x, xϵ)

(2−n)(1−ν2)

)
for all x ∈ Bδ(x0). Our next step is to prove (21). We let (yϵ)ϵ ∈ M such that
limϵ→0 yϵ = x0.

We first assume that dg(xϵ, yϵ) = O(µϵ) as ϵ → 0. Then, (21) is a direct consequence
of (15).

From now on, we assume that

lim
ϵ→0

dg(xϵ, yϵ) = 0 and lim
ϵ→0

dg(xϵ, yϵ)

µϵ
= +∞.
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We let Gϵ be the Green’s function for ∆g + hϵ in Bδ(x0) with Dirichlet boundary
condition. We let (yϵ)ϵ ∈ Bδ/2(x0). Green’s representation formula yields
(32)

uϵ(yϵ) =

∫
Bδ(x0)

Gϵ(yϵ, x)(∆guϵ+hϵuϵ)(x) dvg(x)−
∫
∂Bδ(x0)

∂n⃗Gϵ(yϵ, z)uϵ(z) dσg(z).

It follows from Robert [19] that there exists c5, c6 > 0 such that
(33)
dg(x, y)

n−2|Gϵ(x, y)|+ dg(x, y)
n−1|∇xGϵ(x, y)| ≤ c5 for all x, y ∈ Bδ(x0), x ̸= y

for all ϵ > 0. Combining these estimates with equation (5) and (24), we get that

uϵ(yϵ) =

∫
BRµϵ (xϵ)

Gϵ(yϵ, x)f(x)u
2⋆−1
ϵ (x) dvg(x) +Aϵ(R) +Bϵ(34)

where

|Aϵ(R)| ≤ C

∫
Bδ(x0)\BRµϵ (xϵ)

dg(x, yϵ)
2−nu2⋆−1

ϵ (x) dvg(x)

and |Bϵ| ≤ C

∫
∂Bδ(x0)

dg(z, yϵ)
1−nuϵ(z) dσg(z) ≤ Cθϵ.

We deal with the first term of (34). With a change of variable and (15), we get
that ∫

BRµϵ (xϵ)

Gϵ(yϵ, x)f(x)u
2⋆−1
ϵ (x) dvg(x)

= µn−2
ϵ

∫
BR(0)

Gϵ(yϵ, expxϵ
(µϵX))f(expxϵ

(µϵX))w2⋆−1
ϵ (X) dvgϵ(X)

It follow from [19] that for any (zϵ)ϵ ∈ M such that limϵ→0 dg(zϵ, xϵ) = 0 we have
that

lim
ϵ→0

dg(xϵ, zϵ)
n−2Gϵ(xϵ, zϵ) =

1

(n− 2)ωn−1
.

Since µϵ = o(dg(xϵ, yϵ)), we then get that∫
BRµϵ (xϵ)

Gϵ(yϵ, x)f(x)u
2⋆−1
ϵ (x) dvg(x)

=
f(x0)µ

n−2
ϵ

(n− 2)ωn−1dg(xϵ, yϵ)n−2

(∫
BR(0)

w2⋆−1(X) dX + o(1)

)

=
f(x0)µ

n−2
ϵ

(n− 2)ωn−1dg(xϵ, yϵ)n−2

(∫
Rn

w2⋆−1(X) dX + o(1) + η(R)

)
(35)

where limR→+∞ η(R) = 0. With (18) and (15), we get that

f(x0)

∫
Rn

w2⋆−1(X) dX = lim
R→+∞

∫
B(0,R)

∆w dX = lim
R→+∞

∫
∂B(0,R)

(−∂νw) dσ

=

(
n(n− 2)

f(x0)

)n−2
2

(n− 2)ωn−1.(36)
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We now deal with Aϵ(R). Using the pointwise control (31), we get that

|Aϵ(R)| ≤ Cν1,ν2

∫
Bδ(x0)\BRµϵ (xϵ)

dg(x, yϵ)
2−n µ

n+2
2 −ν1(n+2)

ϵ

(µϵ + dg(x, xϵ))(n+2)(1−ν1)
dvg(x)

+Cν1,ν2
θ2

⋆−1
ϵ

∫
Bδ(x0)

dg(x, yϵ)
2−ndg(x, xϵ)

−(n+2)(1−ν2) dvg(x) + Cθϵ.(37)

It follows from Giraud’s lemma (see Appendix A of [7] for instance) that for α, β ∈
(0, n− 2) such that α+ β > n, there exists C > 0 such that∫

Bδ(x0)

dg(y, x)
α−ndg(x, y)

β−n dvg(x) ≤ C for all y, z ∈ Bδ(x0).

Taking 1− ν2 > 0 close to 0, we then get that

(38) θ2
⋆−1

ϵ

∫
Bδ(x0)

dg(x, yϵ)
2−ndg(x, xϵ)

−(n+2)(1−ν2) dvg(x) ≤ Cθ2
⋆−1

ϵ ≤ Cθϵ.

We now deal with the remaining term of (37). We split the domain Bδ(x0) =
D1

ϵ ∪D2
ϵ where

D1
ϵ := {x ∈ Bδ(x0) s.t. dg(x, yϵ) ≥ dg(xϵ, yϵ)/2}

and D2
ϵ := {x ∈ Bδ(x0) s.t. dg(x, yϵ) < dg(xϵ, yϵ)/2}.

We fix R > 0. With the change of variable x := expg(µϵX), we get that∫
D1

ϵ\BRµϵ (xϵ)

dg(x, yϵ)
2−n µ

n+2
2 −ν1(n+2)

ϵ

(µϵ + dg(x, xϵ))(n+2)(1−ν1)
dvg(x)

≤ Cdg(xϵ, yϵ)
2−n

∫
B2δ(xϵ)\BRµϵ (xϵ)

µ
n+2
2 −ν1(n+2)

ϵ

(µϵ + dg(x, xϵ))(n+2)(1−ν1)
dvg(x)

≤ Cdg(xϵ, yϵ)
2−nµ

n−2
2

ϵ

∫
Rn\BR(0)

1

(1 + |X|)(n+2)(1−ν1)
dX

≤ η(R)dg(xϵ, yϵ)
2−nµ

n−2
2

ϵ where lim
R→+∞

η(R) = 0(39)

when ν1 < 2/(n + 2). Concerning the other integral, note that for all x ∈ D2
ϵ , we

have that dg(x, xϵ) ≥ dg(xϵ, yϵ)/2. Therefore∫
D2

ϵ

dg(x, yϵ)
2−n µ

n+2
2 −ν1(n+2)

ϵ

(µϵ + dg(x, xϵ))(n+2)(1−ν1)
dvg(x)

≤ C
µ

n+2
2 −ν1(n+2)

ϵ

dg(yϵ, xϵ)(n+2)(1−ν1)

∫
dg(x,yϵ)<dg(xϵ,yϵ)/2

dg(x, yϵ)
2−n dvg(x)

≤ C
µ

n+2
2 −ν1(n+2)

ϵ

dg(yϵ, xϵ)(n+2)(1−ν1)
dg(xϵ, yϵ)

2

≤ C
µ

n−2
2

ϵ

dg(xϵ, yϵ)n−2

(
µϵ

dg(yϵ, xϵ)

)2−ν1(n+2)

= o

(
µ

n−2
2

ϵ

dg(xϵ, yϵ)n−2

)
(40)
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when ν1 < 2/(n+ 2). Putting (35), (36), (37), (38), (39) and (40) together yields

uϵ(yϵ) =

(
n(n− 2)

f(x0)

)n−2
2 µ

n−2
2

ϵ

dg(xϵ, yϵ)n−2
(1 + o(1)) +O(θϵ)

This yields (21) since dg(xϵ, yϵ)/µϵ → +∞ as ϵ → 0.

When dg(xϵ, yϵ) = o(1), (22) is a direct consequence of (21). Since uϵ → 0 in
C0

loc(M − {x0}) and uϵ > 0, it follows from Harnack’s inequality that there exists
c(τ) > 0 such that uϵ(x) ≤ c(τ)uϵ(y) for all x, y ∈ B2δ(x0) \ Bτ (x0). Therefore, if
(yϵ)ϵ ∈ B2δ(x0) is such that yϵ ̸→ x0, we have that uϵ(yϵ) = O(θϵ). This proves
(22) when x is far from x0. This proves (21) holds in all cases, which yields (22).

Concerning the gradient estimate, differentiate Green’s representation formula (32)
to obtain

∇uϵ(yϵ) =

∫
Bδ(x0)

∇yGϵ(yϵ, x)(∆guϵ+hϵuϵ)(x) dvg(x)−
∫
∂Bδ(x0)

∂n⃗∇yGϵ(yϵ, z)uϵ(z) dσg(z).

Using the pointwise control (33), we then get that

|∇uϵ(yϵ)| ≤ C

∫
Bδ(x0)

dg(yϵ, x)
1−nu2⋆−1

ϵ (x) dvg(x)+C

∫
∂Bδ(x0)

dg(yϵ, z)
−nuϵ(z) dσg(z).

We get (23) arguing as in the proof of (22). This proves Proposition 1. □

3. Speed of convergence of (xϵ)ϵ

Let Ω ⊂ Rn be a smooth bounded domain. Let u ∈ C2(Ω̄), u > 0, and f ∈ C1(Ω̄)
be functions and c ∈ R. Then for all z ∈ Rn, the Pohozaev identity writes∫

Ω

(
(x− z)i∂iu+

n− 2

2
u

)(
∆ξu− cfu2⋆−1

)
dx(41)

=

∫
∂Ω

[
(x− z, ν)

(
|∇u|2ξ
2

− cfu2⋆

2⋆

)
−
(
(x− z)i∂iu+

n− 2

2
u

)
∂νu

]
dσ

+
1

2⋆

∫
Ω

c⟨∇f(x), x− z⟩ξu2⋆dx

Differentiating with respect to z, we get that for any j ∈ {1, ..., n}

−
∫
Ω

∂ju
(
∆ξu− cfu2⋆−1

)
dx(42)

=

∫
∂Ω

[
−νj

(
|∇u|2ξ
2

− cfu2⋆

2⋆

)
+ ∂ju ∂νu

]
dσ − c

2⋆

∫
Ω

∂jf(x)u
2⋆dx

We refer to Ghoussoub-Robert [12] for a proof. We fix δ ∈ (0, ig(M,x0)). We define

ûϵ(X) := uϵ

(
expxϵ

(X)
)
for all X ∈ Bδ(0) ⊂ Rn.

Therefore, equation (5) rewrites

∆ĝϵ ûϵ + ûϵuϵ = f̂ϵû
2⋆−1
ϵ in Bδ(0).

where ĥϵ(X) := hϵ

(
expxϵ

(X)
)
and f̂ϵ(X) := f

(
expxϵ

(X)
)
for all X ∈ Bδ(0) ⊂ Rn

and ĝϵ := exp⋆xϵ
g is the pull-back of g via the exponential map.
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Lemma 1. Let (ϕϵ)ϵ ∈ C0(Bδ(0)) such that{
limϵ→0 ϕϵ(0) = s ∈ R,

|ϕϵ(X)− ϕϵ(0)| ≤ C|X| for all X ∈ Bδ(0) and ϵ > 0.

We fix p ≥ 0 and q ≥ 1. Then∫
Bδ(0)

ϕϵ|X|pûq
ϵ dX

=


µ
n+p− q(n−2)

2
ϵ

(
s
∫
Rn |X|pwqdX + o(1)

)
+O(θqϵ ) if (n− 2)q > p+ n,(

s
(

n(n−2)
f(x0)

)q n−2
2

ωn−1 + o(1)

)
µ

q(n−2)
2

ϵ ln
(

1
µϵ

)
+O(θqϵ ) if (n− 2)q = p+ n,

O(µ
q n−2

2
ϵ ) +O(θqϵ ) if (n− 2)q < p+ n

Moreover, for any family (δϵ)ϵ ∈ (0, 1) such that limϵ→0 δϵ = limϵ→0
µϵ

δϵ
= 0, we

have that
(43)∫
Bδϵ (0)

ϕϵ|X|pûq
ϵ dX = µ

n+p− q(n−2)
2

ϵ

(
s

∫
Rn

|X|pwqdX + o(1)

)
+O(θqϵ ) if q >

p+ n

n− 2
.

Proof: We fix ν > 0. It follows from (21) and (22) that there exists α ∈ (0, δ) such
that ∣∣∣∣∣∣∣ûq

ϵ(X)−

 µϵ

µ2
ϵ +

f(x0)
n(n−2) |X|2

q n−2
2

∣∣∣∣∣∣∣ ≤ ν

 µϵ

µ2
ϵ +

f(x0)
n(n−2) |X|2

q n−2
2

+ Cθqϵ

for all X ∈ Bρ(0) \Bα(0). Note that for all α ∈ (0, δ), it follows from the Harnack
inequality that ∫

Bδ(0)\Bα(0)

ϕϵ|X|pûq
ϵ dX = O(θqϵ ).

We then get that∣∣∣∣∣∣∣
∫
Bδ(0)

ϕϵ|X|pûq
ϵ dX −

∫
Bα(0)

ϕϵ|X|p
 µϵ

µ2
ϵ +

f(x0)
n(n−2) |X|2

q n−2
2

dX

∣∣∣∣∣∣∣
≤ Cν

∫
Bδ(0)

|X|p
(

µϵ

µ2
ϵ + |X|2

)q n−2
2

dX + Cθqϵ

We the get Lemma 1 when q(n−2) < n+p. With the change of variable X = µϵY ,
we get that∫

Bα(0)

ϕϵ|X|p
 µϵ

µ2
ϵ +

f(x0)
n(n−2) |X|2

q n−2
2

dX

= µ
n+p−q n−2

2
ϵ

∫
Bα/µϵ (0)

ϕϵ(µϵY )|Y |p
 1

1 + f(x0)
n(n−2) |Y |2

q n−2
2

dY

= µ
n+p−q n−2

2
ϵ

 s
∫
Rn |Y |pwq(Y ) dY + o(1) if q(n− 2) > p+ n

s
(

n(n−2)
f(x0)

)q n−2
2

ωn−1 ln
(

1
µϵ

)
+ o(lnµϵ) if q(n− 2) = p+ n
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The proof of (43) is similar by taking α := δϵ. Putting these estimates together
yields Lemma 1. □

We now prove (6). We fix l ∈ {1, ..., n}. We define

δϵ := µ
1

n−1
ϵ .

Pohozaev’s identity (42) applied to ûϵ reads

Aϵ = −Bϵ + Cϵ −Dϵ(44)

With

Aϵ := − 1

2⋆

∫
Bδϵ (0)

∂lf̂ϵû
2⋆

ϵ dX

Bϵ :=

∫
∂Bδϵ (0)

−

[
νl

(
|∇ûϵ|2

2
− f̂ϵû

2⋆

ϵ

2⋆

)
+ ∂lûϵ∂ν ûϵ

]
dν

Cϵ :=

∫
Bδϵ (0)

∂lûϵĥϵûϵdX and Dϵ :=

∫
Bδϵ (0)

∂lûϵ(∆ξûϵ −∆ĝϵ ûϵ)dX

We estimate these terms separately. It follows from (22) and (23) that

Bϵ = O

(
µϵ

((
µϵ

δϵ

)n−3

+
µn−1
ϵ

δn+1
ϵ

+
δn−1
ϵ

µϵ
θ2ϵ

))
= o(µϵ) as ϵ → 0.

Concerning Cϵ, integrating by parts, we have that

Cϵ =

∫
Bδϵ (0)

∂lûϵĥϵûϵdX = −
∫
Bδϵ (0)

∂l
ĥϵ

2
û2
ϵdX +

∫
∂Bδϵ (0)

ĥϵ
û2
ϵ

2
ν⃗ldσ

With (22) and Lemma 1, we then get that

Cϵ = O

(
µϵ

(
o(1) +

(
µϵ

δϵ

)n−3

+
δn−1
ϵ

µϵ
θ2ϵ

))
= o(µϵ) as ϵ → 0.

We now estimate Dϵ. We write

−(∆ĝϵ −∆ξ) = (ĝijϵ − δij)∂ij − ĝijϵ Γ̂k
ij(ĝϵ)∂k

where the Γ̂k
ij ’s are the Christoffel symbols of the metric ĝϵ. The following lemma

is reminiscent in such problems:

Lemma 2. Let Ω be a smooth domain of Rn. For any i, j, k ∈ {1, ..., n}, let us
consider aijk ∈ C1(Rn). We assume that aijk = ajik for all i, j, k ∈ {1, ..., n}.
Then for all u ∈ C2(Rn), we have that∫

Ω

aijk∂iju∂ku dx =

∫
Ω

(
−∂la

lij +
1

2
∂la

ijl

)
∂iu∂ju dx

+

∫
∂Ω

(
−1

2
aijlν⃗l + aljiν⃗l

)
∂iu∂ju dσ

where ν⃗ is the outer normal vector at ∂Ω and Einstein’s summation convention has
been used.
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The proof is by integrations by parts and goes back to Hebey-Vaugon [14] and
can also be found in Cheikh-Ali [4]. It follows from Lemma 2 that∫
Bδϵ (0)

(ĝijϵ − δij)∂ij ûϵ∂lûϵ dx =

∫
Bδϵ (0)

(
−∂mĝmj

ϵ δj,l +
1

2
∂lĝ

ij
ϵ δm,l

)
∂iûϵ∂j ûϵ dx

+

∫
∂Bδϵ (0)

(
−1

2
(ĝijϵ − δij)δm,lν⃗m + (ĝmj

ϵ − δmj)δi,lν⃗l

)
∂iûϵ∂j ûϵ dσ

Using (22) to control the boundary terms, we get that

Dϵ =

∫
Bδϵ (0)

(
−∂mĝmj

ϵ δj,l +
1

2
∂mĝijϵ δm,l

)
∂iûϵ∂j ûϵ dx

−
∫
Bδϵ (0)

ĝijϵ Γk
ij(ĝϵ)∂kûϵ∂lûϵ dX +O

(
µϵ

((
µϵ

δϵ

)n−3

+
δn−1
ϵ

µϵ
θ2ϵ

))
︸ ︷︷ ︸

=o(µϵ)

as ϵ → 0. Since

Γk
ij(ĝϵ) =

1

2
ĝkmϵ (∂i(ĝϵ)jm + ∂j(ĝϵ)im − ∂m(ĝϵ)ij)

and ĝϵ is normal at 0 (that is ∂m(ĝϵ)ij(0) = 0 for all i, j,m ∈ {1, ..., n}), we then
get that there exists aijα ∈ R, i, j, α ∈ {1, ..., n} such that

Dϵ =

∫
Bδϵ (0)

aijαX
α∂iûϵ∂j ûϵ dx+O

(∫
Bδϵ (0)

|X|2|∇ûϵ|2 dX

)
+ o(µϵ)

With (23), we get that∫
Bδϵ (0)

|X|2|∇ûϵ|2 dX ≤ C

∫
Bδϵ (0)

|X|2 µn−2
ϵ

(µϵ + |X|)2(n−1)
dX + Cθ2ϵ δ

n
ϵ

≤ Cµ2
ϵ

∫
Bδϵ/µϵ (0)

|X|2 dX
(1 + |X|)2(n−1)

+ Cθ2ϵ δ
n
ϵ = o(µϵ)

With (23), given R > 0, using (46) and n > 3, we have that∣∣∣∣∣
∫
Bδϵ (0)\BRµϵ (0)

Xα∂iûϵ∂j ûϵ dx

∣∣∣∣∣ ≤ C

∫
Bδϵ (0)\BRµϵ (0)

µn−2
ϵ |X| dX

(µϵ + |X|)2(n−1)
+ Cθ2ϵ δ

n
ϵ

≤ Cµϵ

∫
Rn\BR(0)

|Y | dX
(1 + |Y |)2(n−1)

+ Cθ2ϵ δ
n
ϵ ≤ η(R)µϵ + o(µϵ)

where limR→+∞ η(R) = 0. Using the change of variable X = µϵY , the convergence
(15) and the radial symmetry of w, we have that∫
BRµϵ (0)

Xα∂iûϵ∂j ûϵ dx = µϵ

∫
BR(0)

Y α∂iwϵ∂jwϵ dY

= µϵ

(∫
BR(0)

Xα∂iw∂jw dY + o(1)

)
= o(µϵ) since n > 3.

Therefore, we get that
∫
Bδϵ (0)

Xα∂iûϵ∂j ûϵ dx = o(µϵ), and then

Dϵ = o(µϵ) for n ≥ 4.
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We now deal with Aϵ. With a Taylor expansion of f , we get

Aϵ = − 1

2⋆

∫
Bδϵ (0)

∂lf̂ϵû
2⋆

ϵ dX

= − 1

2⋆
∂lf̂ϵ(0)

∫
Bδϵ (0)

û2⋆

ϵ dX − 1

2⋆
∂lj f̂ϵ(0)

∫
Bδϵ (0)

Xj û2⋆

ϵ dX

+O

(∫
Bδϵ (0)

|X|2û2⋆

ϵ dX

)
Arguing as above, we get that∫

Bδϵ (0)

|X|2û2⋆

ϵ dX = o(µϵ) and

∫
Bδϵ (0)

Xj û2⋆

ϵ dX = o(µϵ) as ϵ → 0.

With (21), we get that there exists C0 > 0 such that∫
Bδϵ (0)

û2⋆

ϵ dX = C0 + o(1) as ϵ → 0.

Therefore, we get that

Aϵ =

(
−C0

2⋆
+ o(1)

)
∂lf̂ϵ(0) + o(µϵ) as ϵ → 0.

Putting the estimates of Aϵ, Bϵ, Cϵ and Dϵ into (44) yields

(45) ∂lf̂ϵ(0) = o(µϵ) as ϵ → 0 for all l ∈ {1, ..., n}.

Passing to the limit, we get that ∇f(x0) = 0. We now express ∂lf̂ϵ(0) more
precisely. We write

f̂ϵ(X) = f ◦ expxϵ
(X) = f̃ ◦ φ(Xϵ, X)forX ∈ Rn

where f̃ := f ◦ expx0
and φ(Z,X) := exp−1

x0
◦ expexpx0

(Z)(X) for X,Z ∈ Rn. We

set Xϵ := exp−1
x0

(xϵ). Since ∇f̃(0) = 0, we get that

∂l(f ◦ expxϵ
)(0) =

∂2(f ◦ expx0
)

∂xl∂xj
(0)Xj

ϵ + o(|Xϵ|)

therefore, with (45), we get that

∂2(f ◦ expx0
)

∂xl∂xj
(0)Xj

ϵ = o(|Xϵ|) + o(µϵ) as ϵ → 0 for all l = 1, .., n.

Since ∇2f(x0) is nondegenerate, we then get that |Xϵ| = o(µϵ), in other words
dg(xϵ, x0) = o(µϵ) as ϵ → 0. This proves (6).

Lemma 3. Under the assumptions of Theorem 1, we have that

θϵ =


o(1) if n ≥ 7,
o(µϵ) if n ∈ {5, 6}.
o
(
µϵ

√
ln( 1

µϵ

)
if n = 4.

(46)
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Proof: The case n ≥ 7 is simply (24). It follows from (22) that∫
Bδ(x0)

u2
ϵ dvg ≤

∫
B2δ(xϵ)

µn−2
ϵ

(µϵ + dg(x, xϵ))2(n−2)
dvg + Cθ2ϵ

≤ µ2
ϵ

∫
B2δ/µϵ (0)

1

(1 + |X|))2(n−2)
dvg + Cθ2ϵ

≤ C

{
µ2
ϵ if n ≥ 5

µ2
ϵ ln(

1
µϵ
) if n = 4

Equation (5) rewrites ∆guϵ+(hϵ− fu2⋆−2
ϵ )uϵ = 0 in M . Since uϵ → 0 in C0

loc(M −
{x0}) and uϵ > 0, it follows from Harnack’s inequality that there exists c > 0 such
that uϵ(x) ≤ cuϵ(y) for all x, y ∈ B2δ(x0) \Bδ/3(x0). Therefore, with the definition
(24) of θϵ, we get that ∫

B2δ(x0)\Bδ(x0)

u2
ϵ dvg ≥ c−2θ2ϵ .

When 4 ≤ n ≤ 6, it follows from L2−concentration assumption (7) that∫
B2δ(x0)\Bδ(x0)

u2
ϵ dvg ≤

∫
M\Bδ(x0)

u2
ϵ dvg = o

(∫
Bδ(x0)

u2
ϵ dvg

)
as ϵ → 0.

Putting these inequalities together, we get (46). This proves Lemma 3. □

4. Interaction with the scalar curvature: proof of (8)

This part is strongly inspired by Cheikh-Ali [4]. We define

δϵ :=

{
µ

2
n−2
ϵ if n ≥ 7
δ if n ∈ {4, 5, 6}.

Writing the Pohozaev identity (41) for ûϵ that satisfies (5), we get that

Aϵ +Bϵ = Cϵ +Dϵ(47)

where

Bϵ :=

∫
∂Bδϵ (0)

[
(X, ν)

(
|∇ûϵ|2ξ

2
− f̂ϵû

2⋆

ϵ

2⋆

)
−
(
X l∂lûϵ +

n− 2

2
ûϵ

)
∂ν ûϵ

]
dν

Cϵ := −
∫
Bδϵ (0)

(
X l∂lûϵ +

n− 2

2
ûϵ

)
ĥϵûϵdX

Dϵ := −
∫
Bδϵ (0)

(
X l∂lûϵ +

n− 2

2
ûϵ

)
(∆ĝϵ ûϵ −∆ξûϵ)dX

Aϵ :=
1

2⋆

∫
Bδϵ (0)

(∇f̂ϵ, X)û2⋆

ϵ dX

Following Cheikh-Ali [4] and using the pointwise controls (21), (22), (23) and the
control (46) on (θϵ)ϵ when n ∈ {4, 5, 6}, we get that

Bϵ =

{
o(µ2

ϵ) if n ≥ 5

o
(
µ2
ϵ ln

1
µϵ

)
if n = 4.

as ϵ → 0,
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Cϵ =

{
h(x0)µ

2
ϵ ln

(
1
µϵ

)(
8

f(x0)

)2
ω3 + o(µ2

ϵ ln
1
µϵ
) if n = 4

h(x0)µ
2
ϵ

∫
Rn w2dX + o(µ2

ϵ) if n ≥ 5

Dϵ =

 −µ2
ϵ ln

(
1
µϵ

)
1
6Scalg(xϵ)

(
8

f(x0)

)2
ω3 + o(µ2

ϵ ln
1
µϵ
) if n = 4

−µ2
ϵ

n−2
4(n−1)Scalg(xϵ)

∫
Rn w2dX + o(µ2

ϵ) if n ≥ 5

We are then left with estimating Aϵ. With a Taylor expansion of f̂ϵ, we get that

Aϵ =
1

2⋆

∫
Bδϵ (0)

∂if̂ϵ(0)X
iû2⋆

ϵ dX +
1

2⋆
∂ij f̂ϵ(0)

∫
Bδϵ (0)

XiXj û2⋆

ϵ dX

+O

(∫
Bδϵ (0)

|X|3û2⋆

ϵ dX

)
Since f̂ϵ := f◦expxϵ

and∇f(x0) = 0, we get that∇f̂ϵ(0) = O(dg(xϵ, x0)). With (6),

we then get that∇f̂ϵ(0) = o(µϵ). It follows from Lemma 1 that
∫
Bδϵ (0)

|X|3û2⋆

ϵ dX =

o(µ2
ϵ) and

∫
Bδϵ (0)

|X|û2⋆

ϵ dX = O(µϵ). Therefore, we get that

Aϵ =
1

2⋆
∂ij f̂ϵ(0)

∫
Bδϵ (0)

XiXj û2⋆

ϵ dX + o(µ2
ϵ)

Arguing as in the proof of Lemma 1, we get∫
B δϵ

µϵ

(0)

XiXj û2⋆

ϵ dX = µ2
ϵ

∫
Rn

XiXjw2⋆dX + o(µ2
ϵ) when n ≥ 4.

Since w is radially symmetric, we get that
∫
Rn XiXjw2⋆dX =

δij
n

∫
Rn |X|2w2⋆dX.

Since ĝϵ is normal at 0, we have that ∆gf(xϵ) = −
∑

i ∂iif̂ϵ(0), which yields We
claim that

Aϵ = − 1

2⋆n
∆gf(x0)µ

2
ϵ

∫
Rn

|X|2w2⋆dX + o(µ2
ϵ) if n ≥ 4

By Jaber [15] we have that∫
Rn |X|2w2⋆dX∫

Rn w2dX
=

n2(n− 4)

4(n− 1)f(x0)
for n ≥ 5.

Putting the expressions of Aϵ, Bϵ, Cϵ and Dϵ in (47) and letting ϵ → 0 yield (8).
This ends the proof of Theorem 1.

5. Application to a super-critical problem: proof of Theorem 2

We follow the notations and assumptions of Theorem 2. We consider a family
(uϵ)ϵ>0 ∈ C2

G(X) of G−invariant solutions to the problem

(48) ∆guϵ + hϵuϵ = λϵu
2⋆(k)−1
ϵ ,

∫
X

u2⋆(k)
ϵ dvg = 1 , ∥uϵ∥2 → 0 as ϵ → 0

where (hϵ)ϵ>0 ∈ C1
G(X) is such that there exists h ∈ C1

G(X) such that (9) holds
and (λϵ)ϵ is such that (11) holds.

Claim 4. There exists x0 ∈ X such that

(49) lim
ϵ→0

∫
Bδ(Gx0)

u2⋆(k)
ϵ dvg = 1 for all δ > 0.
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Proof: We fix a point z0 ∈ X. We choose η0 ∈ C∞(R) such that η0(t) = 1 for t ≤ 1

and η0(t) = 0 for t ≥ 2. Given δ > 0, we define η(x) := η0(
dg(Gx0,x)

δ ) for all x ∈ X.

For δ > 0 small enough, we have that η ∈ C∞
G (X). Multiply (10) by η2ul

ϵ for some
l > 1 and integrate over X, we get that

(50)

∫
M

η2ul
ϵ∆guϵdvg +

∫
M

η2hϵu
l+1
ϵ dvg = λϵ

∫
M

η2ul+2⋆(k)−1
ϵ dvg

As in the proof of Claim 2, we get that∫
M

|∇( ηu
l+1
2

ϵ )|2g dvg =
(l + 1)2

4l

∫
M

η2ul
ϵ∆guϵ dvg +

l + 1

2l

∫
M

(
|∇η|2g +

l − 1

l + 1
η∆gη

)
ul+1
ϵ dvg

Using (50) and Hölder’s inequality, we get∫
X

|∇( ηu
l+1
2

ϵ )|2g dvg ≤ C

∫
X

ul+1
ϵ dvg(51)

+
(l + 1)2

4l
λϵ

(∫
X

(
ηu

l+1
2

ϵ

)2⋆(k)
dvg

) 2
2⋆(k)

(∫
B2δ(Gz0)

u2⋆(k)
ϵ dvg

)1− 2
2⋆(k)

It follows from Faget [10] that for all α > 0, there exists B > 0 such that, for all ϵ,(∫
X

(
ηu

l+1
2

ϵ

)2⋆(k)
dvg

) 2
2⋆(k)

≤ K0(n− k)(1 + α)

V
1− 2

2⋆(k)
m

∫
X

|∇( ηu
l+1
2

ϵ )|2g dvg +B

∫
X

η2ul+1
ϵ dvg

where K0(n − k) is as in (3) and Vm = minx∈X{V olg(Gx)/ dim Gx = k}. By
combining this inequality with (51), we obtain:

(52)

(∫
X

(
ηu

l+1
2

ϵ

)2⋆(k)
dvg

) 2
2⋆(k)

χϵ ≤ C∥uϵ∥l+1
l+1

where

χϵ := 1− (l + 1)2

4l
λϵ

K0(n− k)(1 + α)

V
1− 2

2⋆(k)
m

(∫
B2δ(Gz0)

u2⋆(k)
ϵ dvg

)1− 2
2⋆(k)

Assume that, up to extraction,

lim
ϵ→0

∫
B2δ(Gz0)

u2⋆(k)
ϵ dvg < 1.

Using (11), there exists 1 < l < 2⋆(k)− 1 such that χϵ ≥ β > 0 for all ϵ > 0 up to
taking α small. As uϵ → 0 in Ll+1(X) since l + 1 < 2⋆(k), with (52), we then get

that limϵ→0

∫
Bδ(Gz0)

u
l+1
2 2⋆(k)

ϵ dvg = 0. With similar arguments, we get that for all

δ′ < δ, uϵ → 0 in Lq(Bδ′(Gz0) for all q ≥ 1. It then follows from (10) and elliptic
theory that uϵ → 0 in C0(Bδ′(Gz0)). Since

∫
X
u2⋆

ϵ dvg = 1 and X is compact, the
existence of x0 ∈ X such that (49) holds follows. This proves the claim. □

Claim 5. We have that dim Gx0 = k and Volg(Gx0) = Vm.

Proof: We follow Faget [10]. Assume that dim Gx0 > k. Therefore, there exists
δ > 0 such that dim Gx ≥ k1 > k for all x ∈ B2δ(Gx0). It then follows from Hebey-
Vaugon [13] that H2

1,G(Bδ(Gx0)) ↪→ Lp(Bδ(Gx0)) is compact for 1 ≤ p < 2⋆(k1).

Since 2⋆(k) < 2⋆(k1) and uϵ → 0 in L2(X), we get that uϵ → 0 strongly in
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L2⋆(k)(Bδ(Gx0)), contradicting (49). Therefore dim Gx0 = k. It follows from
Faget (formula (8) in [10]) that for all α > 0, there exists δα > 0 such that(∫

Bδα (Gx0)

|v|2
⋆(k) dvg

) 2
2⋆(k)

≤ (1 + α)
K0(n− k)

Volg(Gx0)
1− 2

2⋆(k)

∫
Bδα (Gx0)

|∇v|2 dvg

for all v ∈ C1
G(Bδα(Gx0)) with compact support in Bδα(Gx0). Let us fix ηα ∈

C∞
G (X) with compact support in Bδα(Gx0) and such that 0 ≤ ηα ≤ 1 and ηα(x) = 1

for dg(x,Gx0) < δα/2. We then get that(∫
Bδα/2(Gx0)

u2⋆(k)
ϵ dvg

) 2
2⋆(k)

≤

(∫
Bδα (Gx0)

(ηαuϵ)
2⋆(k) dvg

) 2
2⋆(k)

≤ (1 + α)
K0(n− k)

Volg(Gx0)
1− 2

2⋆(k)

∫
X

|∇(ηαuϵ)|2 dvg(53)

Integrating by parts and using ∥uϵ∥2 → 0, we get that
(54)∫

X

|∇(ηαuϵ)|2g dvg =

∫
X

η2α|∇uϵ|2g dvg +
∫
X

η(∆gη)u
2
ϵ dvg ≤

∫
X

|∇uϵ|2g dvg + o(1)

Multiplying (48) by uϵ, integrating and using again ∥uϵ∥2 → 0, we get that

(55) λϵ =

∫
X

λϵu
2⋆(k)
ϵ dvg =

∫
X

|∇uϵ|2 dvg +
∫
X

hϵu
2
ϵ dvg =

∫
X

|∇uϵ|2 dvg + o(1).

Putting together (53), (54), (55) and (49), we get that

1 ≤ (1 + α)
K0(n− k)

Volg(Gx0)
1− 2

2⋆(k)

λϵ + o(1).

Using (11), letting ϵ → 0 and then α → 0 yields Volg(Gx0) ≤ Vm. Therefore
Volg(Gx0) = Vm and the claim is proved. □

Claim: The following L2−concentration holds

(56) lim
ϵ→0

∫
X\Bδ(Gx0)

u2
ϵ dvg∫

X
u2
ϵ dvg

= 0 for n− k ≥ 4.

We prove the claim by arguing as in Djadli-Druet [5]. We have that∫
X\Bδ(Gx0)

u2
ϵ dvg ≤

(
sup

X\Bδ(Gx0)

uϵ

)∫
X\Bδ(Gx0)

uϵ dvg

Since uϵ → 0 in C0
loc(X \Gx0), Harnack’s inequality yields c > 0 such that∫

X\Bδ(Gx0)

u2
ϵ dvg ≤ c inf

X\Bδ(Gx0)
uϵ

∫
X\Bδ(Gx0)

uϵ dvg

≤ c

(∫
X\Bδ(Gx0)

u2
ϵ dvg

) 1
2 ∫

X

uϵ dvg ≤ c∥uϵ∥2
∫
X

uϵ dvg

Integrating (10) yields
∫
X
hϵuϵ dvg =

∫
X
u
2⋆(k)−1
ϵ dvg. It follows from (9) that there

exists β > 0 such that hϵ ≥ β for all ϵ > 0. Therefore we get that∫
X\Bδ(Gx0)

u2
ϵ dvg ≤ cβ−1∥uϵ∥2∥uϵ∥2

⋆(k)−1
2⋆(k)−1.
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if n−k ≥ 6, we have 2⋆(k)−1 ≤ 2. Using Hölder inequalities, we have ∥uϵ∥2
⋆(k)−1

2⋆(k)−1 ≤
c∥uϵ∥2

⋆(k)−1
2 . Since uϵ → 0 in L2(X), we get that∫

X\Bδ(Gx0)

u2
ϵ dvg ≤ c∥uϵ∥2

⋆(k)
2 = o(∥uϵ∥22)

if 4 ≤ n − k ≤ 5, we have 2⋆(k) − 1 = 2ω + (1 − ω)2⋆(k) with ω = n−k−2
4 > 0.

Hölder’s inequality yields ∥uϵ∥2
⋆(k)−1

2⋆(k)−1 ≤ ∥uϵ∥2ω2 ∥uϵ∥(1−ω)2⋆(k)
2⋆(k) . As a result∫

X\Bδ(Gx0)

u2
ϵ dvg ≤ ∥uϵ∥2

⋆(k)−1
2⋆(k)−1∥uϵ∥2 ≤ ∥uϵ∥1+2ω

2 ∥uϵ∥(1−ω)2⋆(k)
2⋆(k) = o(∥uϵ∥22).

This proves the claim. □

We are now in position to take the quotient. Since dim Gx0 = k, we choose δ > 0
and G′ ⊂ G as in Assumption (H). Then M := Bδ(Gx0)/G

′ is a manifold of
dimension n − k that is endowed with the metric ḡ on Bδ(Gx0)/G

′ such that the
projection (Bδ(Gx0), g) → (Bδ(Gx0)/G

′, ḡ) is a Riemannian submersion. We define
ūϵ ∈ C2(M), h̄ϵ ∈ C1(M) and v̄ ∈ C2(M) be such that

ūϵ(x̄) = uϵ(x) , h̄ϵ(x̄) = hϵ(x) and v̄(x̄) = Volg(G
′x) for all x ∈ Bδ(Gx0).

Let us first rewrite equation (48) as in Saintier [20]. Let φ̄ ∈ C∞
c (M) be a function

on M = Bδ(Gx0)/G
′. Define φ(x) := φ̄(x̄) for all x ∈ Bδ(Gx0): as one checks,

φ ∈ C∞
c (Bδ(Gx0)) and is G−invariant. It then follows from (48) that∫

X

(∇uϵ,∇φ)g dvg +

∫
X

hϵuϵφdvg = λϵ

∫
X

u2⋆(k)−1
ϵ φdvg.

We define g̃ := v̄
2

n−k−2 ḡ. Since uϵ, φ are G−invariant, we get that∫
X

(∇uϵ,∇φ)g dvg =

∫
Bδ(Gx0)/G′

v̄(x̄)(∇ūϵ,∇φ̄)ḡ dvḡ =

∫
Bδ(Gx0)/G′

(∇ūϵ,∇φ̄)g̃ dvg̃.

Performing the same computations for the remaining terms, setting h̃ϵ := v̄−
2

n−k−2 h̄ϵ,

f̃ := v̄−
2

n−k−2 and ũϵ := λ
1

2⋆−2
ϵ ūϵ, we get that

∆g̃ũϵ + h̃ϵũϵ = f̃ ũ2⋆(k)−1
ϵ in M.

We deal with the L2⋆(k)−norm. The definitions of f̃ and g̃ and (49) yield

lim
ϵ→0

∫
M

f̃ ũ2⋆(k)
ϵ dvg̃ = lim

ϵ→0
λ

2⋆(k)
2⋆(k)−2
ϵ =

1

K0(n− k)
n−k

2 f̃(x̄0)
n−k−2

2

.

Concerning the L2−concentration, it follows from (56) that for any r < δ, for
n− k ≥ 4, we have that∫

Bδ(Gx0)\Br(Gx0)

u2
ϵ dvg ≤

∫
X\Br(Gx0)

u2
ϵ dvg = o

(∫
Br(Gx0)

u2
ϵ dvg

)
.

Taking the quotient, we get that∫
M\Br(x̄0)

ũ2
ϵ dvg̃ = o

(∫
Br(x̄0)

ũ2
ϵ dvg̃

)
when n− k ≥ 4,



CONCENTRATION ANALYSIS FOR NONLINEAR EQUATIONS 21

which yields the L2−concentration on M . We apply Theorem 1. Taking (xϵ)ϵ ∈ X

such that ∥uϵ∥∞ = uϵ(xϵ) = µ
−n−k−2

2
ϵ , we get (12) and (13). Equation (8) rewrites

h̃(x̄0) =
n− k − 2

4(n− k − 1)

(
Scalg̃(x̄0)−

n− k − 4

2
· ∆g̃ f̃(x̄0)

f̃(x̄0)

)
where h̃ := limϵ→0 h̃ϵ. Using the invariance of the conformal Laplacian, that is

∆g̃φ+
m− 2

4(m− 1)
Scalg̃φ = ω−m+2

m−2

(
∆ḡ(ωφ) +

m− 2

4(m− 1)
Scalḡωφ

)
for any φ ∈ C2(M) and where g̃ = ω

4
m−2 ḡ, m = n − k, we get (14). This proves

Theorem 2.

Acknowledgement: The initial version of this article required the L2−concentration
(7) for all dimensions n ≥ 4. The authors are grateful to the anonymous referee
who noticed that this concentration could be bypassed for n ≥ 7.
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