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We perform the apriori analysis of solutions to critical nonlinear elliptic equations on manifolds with boundary. The solutions are of minimizing type. The originality is that we impose no condition on the boundary, which leads us to assume L 2 -concentration. We also analyze the effect of a non-homogeneous nonlinearity that results in the fast convergence of the concentration point.

Dedicated to Yihong Du on the occasion of his 60th birthday 1. Introduction 1.1. Context and main results. Let (M, g) be a Riemannian manifold of dimension n ≥ 3, with or without boundary ∂M . When ∂M ̸ = ∅, M denotes the interior of the manifold and M denotes its closure, so that M = M ∪ ∂M : in particular, M is open in M . We let a, f ∈ C 0 (M ) be functions and we consider u ∈ C 2 (M ) solution to [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] ∆ g u + au = f u 2 ⋆ -1 ; u > 0 in M.

where ∆ g := -div g (∇) is the Laplacian with minus sign convention and 2 ⋆ := 2n n-2

is critical for the Sobolev embeddings H 2 1 (M ) → L 2 ⋆ (M ). Here, the Sobolev space H 2 1 (M ) is the completion of {u ∈ C ∞ (M )/ ∥u∥ H 2 1 < ∞} for the norm ∥ • ∥ H 2 1 := ∥∇•∥ 2 +∥•∥ 2 . In the case of a Euclidean smooth domain Ω ⊂ R n , then a, f ∈ C 0 ( Ω) and we consider u ∈ C 2 (Ω) solution to [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] ∆u + au = f u 2 ⋆ -1 ; u > 0 in Ω.

where ∆ := -div(∇) is the Euclidean Laplacian. Due to the critical exponent 2 ⋆ , there might be families of solutions to (1) that are not relatively compact in C 2 loc (M ). For instance, given x 0 ∈ R n and µ > 0, define the Bubble as

x → U µ,x0 (x) :=   µ µ 2 + c|x-x0| 2 n(n-2)   n-2 2 
.

Then for any domain Ω ⊂ R n , U µ,x0 is a solution to (2) when a ≡ 0 and f ≡ c. Moreover, if x 0 ∈ Ω, then sup Ω U µ,x0 → +∞ as µ → +∞. In the Riemannian context, for x ∈ M and µ > 0, the Bubble writes

x → U (M,g) µ,x0 (x) :=   µ µ 2 + cdg(x,x0) 2 n(n-2)   n-2 2
.

Concerning terminology, we say that a family (u ϵ ) ϵ ∈ C 0 (M ) blows-up if lim ϵ→0 ∥u ϵ ∥ ∞ = +∞.

When ∂M = ∅, the description of blowing-up families of (1) with bounded L 2 ⋆ -norm has been performed by Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF]. The main result in [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] is that blowing-up families are controled from above by i U µi,ϵ,xi,ϵ ϵ , for given families (x i,ϵ ) ϵ ∈ M and (µ i,ϵ ) ϵ → 0. With this control, it is possible to give informations on the localization of the limits x i,∞ := lim ϵ→0 x i,ϵ : see Druet [START_REF] Druet | From one bubble to several bubbles: the low-dimensional case[END_REF]. This analysis extends to manifolds with boundary provided a boundary condition like Dirichlet (see Ghoussoub-Mazumdar-Robert [START_REF] Ghoussoub | The Hardy-Schrödinger operator on the Poincaré ball: compactness, multiplicity, and stability of the Pohozaev obstruction[END_REF]) or Neumann (see Druet-Robert-Wei [START_REF] Druet | The Lin-Ni's problem for mean convex domains[END_REF]). See Premoselli [START_REF] Premoselli | A priori estimates for finite-energy sign-changing blowing-up solutions of critical elliptic equations[END_REF] for a more recent point of view.

The first objective of the present work is to perform an analysis similar to [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] and [START_REF] Druet | From one bubble to several bubbles: the low-dimensional case[END_REF] without condition on ∂M ̸ = ∅. Tackling such generality requires additional assumption: the relevant notion here is L 2 -concentration that already appeared in Djadli-Druet [START_REF] Djadli | Extremal functions for optimal Sobolev inequalities on compact manifolds[END_REF] (see [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] below). Our second objective is to analyse the effect of a nonconstant function f in [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF]. In the case of a single peak, concentration occurs at a critical point. We prove that when this critical point is nondegenerate, then the family of concentration points converges very fast to its limit (see [START_REF] Druet | From one bubble to several bubbles: the low-dimensional case[END_REF] below): this does not generally happen for a constant function f . A similar control appears in Malchiodi-Mayer [START_REF] Malchiodi | Prescribing Morse scalar curvatures: blow-up analysis[END_REF]. As was shown by Aubin [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF], below a threshold, blow-up cannot occur. In this manuscript, we are considering solutions (u ϵ ) that carry the minimal energy for blow-up, namely ground-state type solution. The minimal energy is given by the best constant in Sobolev embeddings:

1 K 0 (n) = inf φ∈D 2 1 (R n )\{0} R n |∇φ| 2 dX R n |φ| 2 ⋆ dX 2 2 ⋆ , (3) 
where

D 2 1 (R n ) is the completion of C ∞ c (R n ) for the norm φ → ∥∇φ∥ 2 .
Aubin [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] and Talenti [START_REF] Talenti | Best constant in Sobolev inequality[END_REF] have computed this best constant and have showed that the extremals are exactly C • U µ,x0 for C ̸ = 0, µ > 0 and x 0 ∈ R n . Our main theorem for ground-state solutions is the following:

Theorem 1. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 4 with nonempty boundary ∂M ̸ = ∅. We fix f ∈ C 2 (M ) such that f > 0. We consider a family (h ϵ ) ϵ ∈ C 1 (M ) and f ∈ C 2 (M ), f > 0, such that there exists h ∈ C 1 (M ) and such that ∆ g + h is coercive and (4) lim ϵ→0 h ϵ = h in C 1 (M ).
We let (u ϵ ) ϵ ∈ C 2 (M ) be a family of solutions to

(5) ∆ g u ϵ + h ϵ u ϵ = f u 2 ⋆ -1 ϵ in M.
Let x ϵ ∈ M and µ ϵ > 0 be such that

u ϵ (x ϵ ) = sup M u ϵ = µ 1-n 2 ϵ
We assume that

• u ϵ → 0 in L 2 (M ), • lim ϵ→0 x ϵ = x 0 ∈ M is an interior point of M ,
• The solution has minimal-type energy, that is

lim ϵ→0 M f u 2 ⋆ ϵ dv g = 1 K 0 (n) n 2 f (x 0 ) n-2 2
• The Hessian ∇ 2 f (x 0 ) is nondegenerate. Then x 0 is a critical point of f and

d g (x ϵ , x 0 ) = o(µ ϵ ) as ϵ → 0, ( 6 
)
and for all ω ⊂ M such that ω ⊂ M and δ 0 > 0, there exists C(ω, δ 0 ) > 0 such that

u ϵ (x) ≤ C(ω, δ 0 ) µ ϵ µ 2 ϵ + d g (x, x 0 ) 2 n-2 2 + C(ω, δ 0 ) sup ∂B δ 0 (x0)
u ϵ for all x ∈ ω. In addition, assuming that for all δ > 0, we have that

(7) lim ϵ→0 M \B(x0,δ) u 2 ϵ dv g M u 2 ϵ dv g = 0 for n ∈ {4, 5, 6}, then h(x 0 ) = n -2 4(n -1) Scal g (x 0 ) - n -4 2 • ∆ g f (x 0 ) f (x 0 ) , (8) 
where Scal g is the scalar curvature of (M, g).

Remark: Theorem 1 applies to the case of a bounded domain of R n endowed with the Euclidean metric g := Eucl. In this situation, M = Ω ⊂ R n is a domain, ∆ g =i ∂ ii , d g (x, y) = |x -y| is the usual Euclidean norm for x, y ∈ R n and Scal g = 0. The control ( 6) is remarkable since it does not hold when f is degenerate. Indeed, when f ≡ 1 there is an abundance of blowup profiles with various speeds of convergence of the (x ϵ )'s to their limit, see for instance Premoselli [START_REF]Towers of bubbles for Yamabe-type equations and for the Brézis-Nirenberg problem in dimensions n ≥ 7[END_REF].

The restriction of dimension n ≥ 4 is not surprising: indeed, see Corollary 6.4 in Druet-Hebey [START_REF] Druet | The AB program in geometric analysis: sharp Sobolev inequalities and related problems[END_REF], [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] does not hold in general for n = 3. It is known since Aubin and Schoen that for n = 3, blowup cannot be characterized by local arguments and involves global arguments, like the mass. In the general local context of Theorems 1, no information is known regarding the boundary, which forbids to get any global information.

1.2. Application to supercritical problems with symmetries. A natural set application of Theorem 1 is in the context of manifolds invariant under a group of isometries. We consider a compact Riemannian manifold (X, g) of dimension n ≥ 3, but without boundary (∂X = ∅). The critical exponent 2 ⋆ can be improved by imposing invariance under the action of an isometry group. Let G be a compact subgroup of isometries of (X, g): we say that a function u : that the critical exponent in this setting is 2

X → R is G-invariant if u•σ = u for all σ ∈ G. It follows from
⋆ (k) := 2(n-k) n-k-2
where k := min x∈X dim Gx and assuming that 1 ≤ k < n -2. We refer to Hebey-Vaugon [START_REF] Hebey | Sobolev spaces in the presence of symmetries[END_REF], Saintier [START_REF] Saintier | Blow-up theory for symmetric critical equations involving the p-Laplacian[END_REF] and Faget [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF] for extensive considerations on problems invariant under isometries. In general, the quotient X/G is not a manifold of dimension n -k. Following Saintier [START_REF] Saintier | Blow-up theory for symmetric critical equations involving the p-Laplacian[END_REF], we make the following assumption on G: Assumption (H): For any x 0 ∈ X such that the orbit Gx 0 is of dimension k = min x∈X dimGx ≥ 1 and of volume V m = min x∈X {Vol g (Gx)/ dim Gx = k}, there exists δ > 0, and G ′ a closed subgroup of Isom g (X) such that:

(1) G ′ x 0 = Gx 0 ;

(2) For all x ∈ B δ (Gx 0 ) := {y ∈ X/d g (y; Gx 0 ) < δ}, then G ′ x is principal and

G ′ x ⊂ Gx. In particular dim G ′ x = dim Gx 0 = k, ∀x ∈ B δ (Gx 0 ).
This assumption ensures that B δ (Gx 0 )/G ′ is a Riemannian manifold of dimension m := n -k with a nontrivial boundary. In the sequel, for any p ∈ N, we define C p G (X) as the space of G-invariant functions of C p (X). We prove the following in the spirit of Faget [START_REF]Second-best constant and extremal functions in Sobolev inequalities in the presence of symmetries[END_REF].

Theorem 2. Let (X, g) be a compact Riemannian manifold of dimension n without boundary, and let G be a compact subgroup of isometries of X which satisfies Assumption (H) and such that

1 ≤ k < n -2. Let (h ϵ ) ϵ ∈ C 1 G (X) and h ∈ C 1 G (X) be such that ∆ g + h is coercive and (9) lim ϵ→0 h ϵ = h > 0 in C 1 G (X). Let (u ϵ ) ϵ ∈ C 2 G (X) be a family of solutions to (10) ∆ g u ϵ + h ϵ u ϵ = λ ϵ u 2 ⋆ (k)-1 ϵ ; u ϵ > 0 in X, X u 2 ⋆ (k) ϵ dv g = 1
We assume that • u ϵ → 0 strongly in L 2 (X),

• The energy is of minimal type, that is

(11) lim ϵ→0 λ ϵ = V 1-2 2 ⋆ (k) m K 0 (n -k)
, where V m := min x∈X {Vol g (Gx)/ dim Gx = k}.

• For all point z 0 ∈ X such that dim Gz 0 = k and Vol g (Gz 0 ) = V m , then the function

v : B δ (Gz 0 )/G ′ → R G ′ x → Vol g (G ′ x) is nondegenerate at Gz 0 .
This latest assumption makes sense due to Assumption (H). Let (x ϵ ) ϵ ∈ X be such that u ϵ (x ϵ ) = max X u ϵ and define µ

-n-k-2 2 ϵ = u ϵ (x ϵ ).
Then there exists x 0 ∈ X such that dim Gx 0 = k and Vol g (Gx 0 ) = V m such that lim ϵ→0 x ϵ = x 0 and

d g (x ϵ , Gx 0 ) = o(µ ϵ ). ( 12 
)
Moreover, there exists C > 0 such that

(13) u ϵ (x) ≤ C µ ϵ µ 2 ϵ + d g (x, Gx 0 ) 2 n-2 2 + o(µ ϵ ) if n -k ≥ 5 o µ ϵ ln 1 µϵ if n -k = 4 and (14) h(x 0 ) = n -k -2 4(n -k -1) Scal ḡ (x 0 ) + 3 ∆ ḡ v(x 0 ) v(x 0 ) when n -k ≥ 4,
where ḡ is the metric on B δ (Gx 0 )/G ′ such that the canonical projection

(B δ (Gx 0 ), g) → (B δ (Gx 0 )/G ′ , ḡ) is a Riemannian submersion.

Pointwise control

We consider (u

ϵ ) ∈ C 2 (M ), (h ϵ ) ∈ C 1 (M ), h ∈ C 1 (M ), f ∈ C 2 (M ), (x ϵ ) ϵ ∈ M and (µ ϵ ) ϵ ∈ (0, +∞)
as in the statement of Theorem 1. In the sequel, we let i g (M, x) > 0 be the injectivity radius of (M, g) at an interior point x ∈ M .

Claim 1. Set δ ∈ (0, i g (M, x 0 )) and define w ϵ (X) := µ n-2 2 ϵ u ϵ (exp xϵ (µ ϵ X)) for any X ∈ B δ µϵ (0) ⊂ R n Then (15) lim ϵ→0 w ϵ (X) = w(X) =   1 1 + f (x0)|X| 2 n(n-2)   n-2 2
for all X ∈ R n .

Moreover, the convergence holds in C 2 loc (R n ). In addition,

lim R→+∞ lim ϵ→0 Bx ϵ (Rµϵ) f u 2 ⋆ ϵ dv g = 1 K 0 (n) n 2 f (x 0 ) n-2 2 
.

In particular

(16) lim R→+∞ lim ϵ→0 M \Bx ϵ (Rµϵ) f u 2 ⋆ ϵ dv g = 0.
Proof of Claim 1: We define the metric

g ϵ := exp ⋆ xϵ g(µ ϵ •) in B δ µϵ (0) ⊂ R n . Since, µ ϵ → 0 when ϵ → 0, then g ϵ → ξ in C 2 loc (R n ) as ϵ → 0
where ξ is the Euclidean metric. The function w ϵ satisfies the equation ( 17)

∆ gϵ w ϵ + µ 2 ϵ hϵ w ϵ = fϵ w 2 ⋆ -1 ϵ in B δ µϵ (0)
where hϵ (X) = h ϵ exp xϵ (µ ϵ X) and fϵ (X) = f (exp xϵ (µ ϵ X)) for all X ∈ B δ µϵ (0).

Since 0 < w ϵ ≤ w ϵ (0) = 1, there exists w ∈ C 2 (R n ) such that the sequence w ϵ → w in C 2 loc (R n ) as ϵ → 0 up to extraction. Passing to the limit in [START_REF] Premoselli | A priori estimates for finite-energy sign-changing blowing-up solutions of critical elliptic equations[END_REF], we get that ( 18)

∆ ξ w = f (x 0 )w 2 ⋆ -1 in R n , 0 ≤ w(0) = 1. It follows from Cafarelli-Gidas-Spruck [3] that w(X) = 1 + f (x0)|X| 2 n(n-2) -n-2 2 for all X ∈ R n . The change of variable x = exp xϵ (µ ϵ X) yields Bx ϵ (Rµϵ) f u 2 ⋆ ϵ dv g = B R (0) f (exp xϵ (µ ϵ X)w 2 ⋆ ϵ dv gϵ . Therefore, lim R→+∞ lim ϵ→0 Bx ϵ (Rµϵ) f u 2 ⋆ ϵ dv g = lim R→+∞ lim ϵ→0 B R (0) f (exp xϵ (µ ϵ x)w 2 ⋆ ϵ dv gϵ = f (x 0 ) R n w 2 ⋆ dx = 1 K 0 (n) n 2 f (x 0 ) n-2 2 
, where we have used that w is a solution to [START_REF]Towers of bubbles for Yamabe-type equations and for the Brézis-Nirenberg problem in dimensions n ≥ 7[END_REF] and is an extremal for the Sobolev inequality (3). This proves Claim 1.

□ Claim 2. u ϵ → 0 in C 0 loc (M \ {x 0 }).
Proof of the claim: It follows from ( 16) and f > 0 that for all δ > 0, we have that

lim ϵ→0 M \Bx 0 (δ) u 2 ⋆ ϵ dv g = 0. Let us fix ω ⊂ M such that ω ⊂ M \ {x 0 }. We let ω ′ open such that ω ⊂ ω ′ and ω′ ⊂ M -{x 0 }. Let η ∈ C ∞ c (ω ′ ) such that η(x) = 1 for all x ∈ ω.
Let us take l > 1 to be fixed later. Integrating by parts as in , Theorem 6.1), we get that

M η 2 u l ϵ ∆ g u ϵ dv g = M ∇(η 2 u l ϵ )∇u ϵ dv g = M lη 2 u l-1 ϵ |∇u ϵ | 2 dv g + M ∇η 2 ∇ u l+1 ϵ l + 1 dv g = 4l (l + 1) 2 M η 2 |∇u l+1 2 ϵ | 2 g dv g + M ∆η 2 l + 1 u l+1 ϵ dv g
Independently, for any v ∈ C 1 (M ), integrating also by parts, we get that

M (|∇(ηv)| 2 g -η 2 |∇v| 2 g ) dv g = - M ηv 2 ∆ g η dv g .
Plugging these integrals together yields

M |∇( ηu l+1 2 ϵ )| 2 g dv g = (l + 1) 2 4l M η 2 u l ϵ ∆ g u ϵ dv g + l + 1 2l M |∇η| 2 g + l -1 l + 1 η∆ g η u l+1 ϵ dv g
We then get that

M |∇( ηu l+1 2 ϵ )| 2 g dv g = (l + 1) 2 4l M η 2 u l ϵ ∆ g u ϵ dv g + l + 1 2l M |∇η| 2 g + l -1 l + 1 η∆ g η u l+1 ϵ dv g = (l + 1) 2 4l λ ϵ M η 2 u l+2 ⋆ -1 ϵ dv g - (l + 1) 2 4l M η 2 h ϵ u l+1 ϵ dv g + l + 1 2l M |∇η| 2 g + l -1 l + 1 η∆ g η u l+1 ϵ dv g ≤ (l + 1) 2 4l λ ϵ M ηu l+1 2 ϵ 2 ⋆ dv g 2 2 ⋆ Bx(2δ) ηu 2 ⋆ ϵ dv g 1-2 2 ⋆ + C Ω u l+1 ϵ dv g
It follows from the Sobolev inequality that there exists C(ω ′ ) > 0 independent of ϵ such that

ω ′ ηu l+1 2 ϵ 2 ⋆ dv g 2 2 ⋆ ≤ C(ω ′ ) ω ′ |∇( ηu l+1 2 ϵ )| 2 g dv g + B ω ′ η 2 u l+1 ϵ dv g
Combining these inequalities yields

ω u l+1 2 2 ⋆ ϵ dv g 2 2 ⋆ ≤ ω ′ ηu l+1 2 ϵ 2 ⋆ dv g 2 2 ⋆ ≤ C ω ′ u l+1 ϵ dv g
for ϵ > 0 small enough and where C is independent of ϵ. Taking 1 < l < 2 ⋆ -1, we then get that u ϵ → 0 in L q (ω) for some q > 2 ⋆ . Since u ϵ satisfies (5), it is classical that u ϵ → 0 in C 0 loc (ω). This proves Claim 2. □ Claim 3. For all ω ⊂ M such that ω ⊂ M , there exists C(ω) such that

(19) d g (x, x ϵ ) n-2 2 u ϵ (x) ≤ C(ω)
for all ϵ > 0 and x ∈ ω. Moreover, [START_REF] Saintier | Blow-up theory for symmetric critical equations involving the p-Laplacian[END_REF] lim

R→0 lim ϵ→0 sup x∈ω\Bx ϵ (Rµϵ) d g (x, x ϵ ) n-2 2 |u ϵ (x)| = 0
Proof of the Claim: We argue by contradiction and we let (y ϵ ) ϵ ∈ ω be such that

d g (y ϵ , x ϵ ) n-2 2 u ϵ (y ϵ ) = sup x∈ω d g (x, x ϵ ) n-2 2 u ϵ (x) → +∞ as ϵ → 0.
It follows from Claim 2 that lim ϵ→0 y ϵ = x 0 . Arguing as in Step 2 of Chapter 4 in Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] and using ( 16), we get [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux[END_REF]. The second estimate [START_REF] Saintier | Blow-up theory for symmetric critical equations involving the p-Laplacian[END_REF] follows also from [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF]. □ We now state and prove the main result of this section: Proposition 1. Let δ > 0 be such that B 2δ (x 0 ) ⊂ M . Under the assumptions of Theorem 1, we have that

(21) u ϵ (y ϵ ) =   µ ϵ µ 2 ϵ + f (x0) n(n-2) d g (x ϵ , y ϵ ) 2   n-2 2 (1 + o(1)) + O(θ ϵ ) when lim ϵ→0 y ϵ = x 0 .
Moreover, there exists C(δ) > 0 independent of ϵ such that

u ϵ (x) ≤ C µ n-2 2 ϵ (µ ϵ + d g (x, x ϵ )) n-2 + Cθ ϵ (22) |∇u ϵ |(x) ≤ C µ n-2 2 ϵ (µ ϵ + d g (x, x ϵ )) n-1 + Cθ ϵ (23) for all x ∈ B δ (x 0 ) where (24) θ ϵ := sup x∈∂B δ (x0) u ϵ (x) → 0 as ϵ → 0.
Proof of Proposition 1: We let ν ∈ (0, 1) to be fixed later. We let α 0 > 0 such that ∆ g + h-α0 1-ν is coercive on B 2δ (x 0 ) where h is as in (4): up to taking δ > 0 small, this is always possible. We let Gν be the Green's function of ∆ g + h-α0

1-ν1 on B 2δ (x 0 ) with Dirichlet boundary condition. It follows from Robert [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux[END_REF] that there exists c 1 , c 2 > 0 such that

(25) c 1 d g (x, y) 2-n ≤ Gν (x, y) ≤ c 2 d g (x, y) 2-n for all x, y ∈ B δ (x 0 ), x ̸ = y.
We define the operator

u → L ϵ u := ∆ g u + h ϵ u -f u 2 ⋆ -2 ϵ u, so that (5) reads L ϵ u ϵ = 0. A straightforward computation yields L ϵ G1-ν ν G1-ν ν (x, x ϵ ) = α 0 + h ϵ (x) -h(x) + ν(1 -ν) ∇ Gν Gν 2 g -f u 2 ⋆ -2 ϵ ( 26 
)
By standard properties of Green's function [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux[END_REF], there exists c 1 , ρ > 0, such that

(27) |∇ g,x Gν | g Gν (x, x ϵ ) ≥ c 1 d g (x, x ϵ ) for all x ∈ B ρ (x ϵ ) -{x ϵ }. Since u ϵ → 0 in C 0 loc (M \ {x 0 }) and h ϵ → h in C 0 loc (M \ {x 0 }), (26) yields L ϵ G1-ν ν ≥ 0 in B 2δ (x 0 ) \ B ρ (x 0 )
Let R > 0 to be fixed later. It follows from (20) that

d g (x, x ϵ ) 2 u 2 ⋆ -2 ϵ (x) ≤ η(R) for all x ∈ B(x ϵ , ρ) \ B(x ϵ , Rµ ϵ ),
where lim R→+∞ η(R) = 0. Now, using h ϵ → h in C 0 (M ), ( 26) and ( 27), for any x ∈ B(x ϵ , ρ) \ B(x ϵ , Rµ ϵ ), we get that

L ϵ G1-ν ν G1-ν ν (x, x ϵ ) ≥ α 0 2 + ν(1 -ν) c 2 1 d g (x, x ϵ ) 2 -f u 2 ⋆ -2 ϵ (x) ≥ α 0 2 + ν(1 -ν)c 2 1 -f η(R) d g (x, x ϵ ) 2 ≥ 0
for R > 0 large enough. Therefore, we get that

L ϵ G1-ν ν (x, x ϵ ) ≥ 0 for all x ∈ B δ (x 0 ) \ B Rµϵ (x ϵ ). ( 28 
)
We fix ν 1 ∈ (0, 1). It follows from (25) and

||u ϵ || ∞ = µ 1-n/2 ϵ
, that there exists

c 3 > 0 such that (29) u ϵ (x) ≤ c 3 µ n-2 2 -ν1(n-2) ϵ G1-ν1 ν1 (x, x ϵ ) for all x ∈ ∂B Rµϵ (x ϵ ).
We set θ ϵ := sup x∈∂B δ (x0) u ϵ (x). It follows from Claim 2 that lim ϵ→0 θ ϵ = 0. We fix ν 2 ∈ (0, 1) and we consider the Green's function Gν2 . It follows from (25) that there exists c 4 > 0 such that

u ϵ (x) ≤ c 4 θ ϵ G1-ν2 ν2 (x, x ϵ ) for all x ∈ ∂B δ (x 0 ). ( 30 
)
We define

H ϵ (x) := c 3 µ n-2 2 -ν1(n-2) ϵ G1-ν1 ν1 (x, x ϵ ) + c 4 θ ϵ G1-ν2 ν2 (x, x ϵ ) for x ∈ B 2δ (x ϵ ) -{x ϵ }.
It follows from (28), ( 29) and (30) that

L ϵ u ϵ = 0 ≤ L ϵ H ϵ in B δ (x 0 ) \ B Rµϵ (x ϵ )) 0 < u ϵ ≤ H ϵ on ∂ (B δ (x 0 ) \ B Rµϵ (x ϵ )) Since L ϵ u ϵ ≥ 0 in B δ (x 0 ) \ B Rµϵ (x ϵ ), it follows from [2] that u ϵ ≤ H ϵ in B δ (x 0 ) \ B Rµϵ (x ϵ ).
Using the pointwise control (25) and that ∥u ϵ ∥ ∞ = µ

1-n/2 ϵ
, we get that for all ν 1 , ν 2 ∈ (0, 1), there exists C ν1,ν2 > 0 such that (31)

u ϵ (x) ≤ C ν1,ν2 µ n-2 2 -ν1(n-2) ϵ (µ ϵ + d g (x, x ϵ )) (n-2)(1-ν1) + θ ϵ d g (x, x ϵ ) (2-n)(1-ν2)
for all x ∈ B δ (x 0 ). Our next step is to prove [START_REF] Talenti | Best constant in Sobolev inequality[END_REF]. We let (y ϵ ) ϵ ∈ M such that lim ϵ→0 y ϵ = x 0 . We first assume that d g (x ϵ , y ϵ ) = O(µ ϵ ) as ϵ → 0. Then, ( 21) is a direct consequence of [START_REF] Jaber | Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF]. From now on, we assume that lim ϵ→0 d g (x ϵ , y ϵ ) = 0 and lim

ϵ→0 d g (x ϵ , y ϵ ) µ ϵ = +∞.
We let G ϵ be the Green's function for ∆ g + h ϵ in B δ (x 0 ) with Dirichlet boundary condition. We let (y ϵ ) ϵ ∈ B δ/2 (x 0 ). Green's representation formula yields (32)

u ϵ (y ϵ ) = B δ (x0) G ϵ (y ϵ , x)(∆ g u ϵ +h ϵ u ϵ )(x) dv g (x)- ∂B δ (x0) ∂ ⃗ n G ϵ (y ϵ , z)u ϵ (z) dσ g (z).
It follows from Robert [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux[END_REF] that there exists c 5 , c 6 > 0 such that (33)

d g (x, y) n-2 |G ϵ (x, y)| + d g (x, y) n-1 |∇ x G ϵ (x, y)| ≤ c 5 for all x, y ∈ B δ (x 0 ), x ̸ = y
for all ϵ > 0. Combining these estimates with equation ( 5) and ( 24), we get that

u ϵ (y ϵ ) = B Rµϵ (xϵ) G ϵ (y ϵ , x)f (x)u 2 ⋆ -1 ϵ (x) dv g (x) + A ϵ (R) + B ϵ (34)
where

|A ϵ (R)| ≤ C B δ (x0)\B Rµϵ (xϵ) d g (x, y ϵ ) 2-n u 2 ⋆ -1 ϵ (x) dv g (x)
and

|B ϵ | ≤ C ∂B δ (x0) d g (z, y ϵ ) 1-n u ϵ (z) dσ g (z) ≤ Cθ ϵ .
We deal with the first term of (34). With a change of variable and ( 15), we get that

B Rµϵ (xϵ) G ϵ (y ϵ , x)f (x)u 2 ⋆ -1 ϵ (x) dv g (x) = µ n-2 ϵ B R (0) G ϵ (y ϵ , exp xϵ (µ ϵ X))f (exp xϵ (µ ϵ X))w 2 ⋆ -1 ϵ (X) dv gϵ (X)
It follow from [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux[END_REF] that for any (z ϵ ) ϵ ∈ M such that lim ϵ→0 d g (z ϵ , x ϵ ) = 0 we have that lim

ϵ→0 d g (x ϵ , z ϵ ) n-2 G ϵ (x ϵ , z ϵ ) = 1 (n -2)ω n-1
.

Since µ ϵ = o(d g (x ϵ , y ϵ )), we then get that

B Rµϵ (xϵ) G ϵ (y ϵ , x)f (x)u 2 ⋆ -1 ϵ (x) dv g (x) = f (x 0 )µ n-2 ϵ (n -2)ω n-1 d g (x ϵ , y ϵ ) n-2 B R (0) w 2 ⋆ -1 (X) dX + o(1) = f (x 0 )µ n-2 ϵ (n -2)ω n-1 d g (x ϵ , y ϵ ) n-2 R n w 2 ⋆ -1 (X) dX + o(1) + η(R) (35)
where lim R→+∞ η(R) = 0. With ( 18) and ( 15), we get that

f (x 0 ) R n w 2 ⋆ -1 (X) dX = lim R→+∞ B(0,R) ∆w dX = lim R→+∞ ∂B(0,R) (-∂ ν w) dσ = n(n -2) f (x 0 ) n-2 2 (n -2)ω n-1 . (36) 
We now deal with A ϵ (R). Using the pointwise control (31), we get that

|A ϵ (R)| ≤ C ν1,ν2 B δ (x0)\B Rµϵ (xϵ) d g (x, y ϵ ) 2-n µ n+2 2 -ν1(n+2) ϵ (µ ϵ + d g (x, x ϵ )) (n+2)(1-ν1) dv g (x) +C ν1,ν2 θ 2 ⋆ -1 ϵ B δ (x0) d g (x, y ϵ ) 2-n d g (x, x ϵ ) -(n+2)(1-ν2) dv g (x) + Cθ ϵ . ( 37 
)
It follows from Giraud's lemma (see Appendix A of [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] for instance) that for α, β ∈ (0, n -2) such that α + β > n, there exists C > 0 such that

B δ (x0) d g (y, x) α-n d g (x, y) β-n dv g (x) ≤ C for all y, z ∈ B δ (x 0 ).
Taking 1 -ν 2 > 0 close to 0, we then get that (38)

θ 2 ⋆ -1 ϵ B δ (x0) d g (x, y ϵ ) 2-n d g (x, x ϵ ) -(n+2)(1-ν2) dv g (x) ≤ Cθ 2 ⋆ -1 ϵ ≤ Cθ ϵ .
We now deal with the remaining term of (37). We split the domain

B δ (x 0 ) = D 1 ϵ ∪ D 2 ϵ where D 1 ϵ := {x ∈ B δ (x 0 ) s.t. d g (x, y ϵ ) ≥ d g (x ϵ , y ϵ )/2} and D 2 ϵ := {x ∈ B δ (x 0 ) s.t. d g (x, y ϵ ) < d g (x ϵ , y ϵ )/2}. We fix R > 0.
With the change of variable x := exp g (µ ϵ X), we get that

D 1 ϵ \B Rµϵ (xϵ) d g (x, y ϵ ) 2-n µ n+2 2 -ν1(n+2) ϵ (µ ϵ + d g (x, x ϵ )) (n+2)(1-ν1) dv g (x) ≤ Cd g (x ϵ , y ϵ ) 2-n B 2δ (xϵ)\B Rµϵ (xϵ) µ n+2 2 -ν1(n+2) ϵ (µ ϵ + d g (x, x ϵ )) (n+2)(1-ν1) dv g (x) ≤ Cd g (x ϵ , y ϵ ) 2-n µ n-2 2 ϵ R n \B R (0) 1 (1 + |X|) (n+2)(1-ν1) dX ≤ η(R)d g (x ϵ , y ϵ ) 2-n µ n-2 2 ϵ
where lim R→+∞ η(R) = 0 (39) when ν 1 < 2/(n + 2). Concerning the other integral, note that for all x ∈ D 2 ϵ , we have that

d g (x, x ϵ ) ≥ d g (x ϵ , y ϵ )/2. Therefore D 2 ϵ d g (x, y ϵ ) 2-n µ n+2 2 -ν1(n+2) ϵ (µ ϵ + d g (x, x ϵ )) (n+2)(1-ν1) dv g (x) ≤ C µ n+2 2 -ν1(n+2) ϵ d g (y ϵ , x ϵ ) (n+2)(1-ν1) dg(x,yϵ)<dg(xϵ,yϵ)/2 d g (x, y ϵ ) 2-n dv g (x) ≤ C µ n+2 2 -ν1(n+2) ϵ d g (y ϵ , x ϵ ) (n+2)(1-ν1) d g (x ϵ , y ϵ ) 2 ≤ C µ n-2 2 ϵ d g (x ϵ , y ϵ ) n-2 µ ϵ d g (y ϵ , x ϵ ) 2-ν1(n+2) = o µ n-2 2 ϵ d g (x ϵ , y ϵ ) n-2 (40)
when ν 1 < 2/(n + 2). Putting (35), ( 36), (37), ( 38), ( 39) and (40) together yields

u ϵ (y ϵ ) = n(n -2) f (x 0 ) n-2 2 µ n-2 2 ϵ d g (x ϵ , y ϵ ) n-2 (1 + o(1)) + O(θ ϵ )
This yields ( 21) since d g (x ϵ , y ϵ )/µ ϵ → +∞ as ϵ → 0.

When d g (x ϵ , y ϵ ) = o(1), ( 22) is a direct consequence of [START_REF] Talenti | Best constant in Sobolev inequality[END_REF]. Since u ϵ → 0 in C 0 loc (M -{x 0 }) and u ϵ > 0, it follows from Harnack's inequality that there exists c(τ ) > 0 such that u ϵ (x) ≤ c(τ )u ϵ (y) for all x, y ∈ B 2δ (x 0 ) \ B τ (x 0 ). Therefore, if (y ϵ ) ϵ ∈ B 2δ (x 0 ) is such that y ϵ ̸ → x 0 , we have that u ϵ (y ϵ ) = O(θ ϵ ). This proves (22) when x is far from x 0 . This proves ( 21) holds in all cases, which yields (22).

Concerning the gradient estimate, differentiate Green's representation formula (32) to obtain

∇u ϵ (y ϵ ) = B δ (x0) ∇ y G ϵ (y ϵ , x)(∆ g u ϵ +h ϵ u ϵ )(x) dv g (x)- ∂B δ (x0) ∂ ⃗ n ∇ y G ϵ (y ϵ , z)u ϵ (z) dσ g (z).
Using the pointwise control (33), we then get that

|∇u ϵ (y ϵ )| ≤ C B δ (x0) d g (y ϵ , x) 1-n u 2 ⋆ -1 ϵ (x) dv g (x)+C ∂B δ (x0) d g (y ϵ , z) -n u ϵ (z) dσ g (z).
We get (23) arguing as in the proof of ( 22). This proves Proposition 1. □

Speed of convergence of (x ϵ ) ϵ

Let Ω ⊂ R n be a smooth bounded domain. Let u ∈ C 2 ( Ω), u > 0, and f ∈ C 1 ( Ω) be functions and c ∈ R. Then for all z ∈ R n , the Pohozaev identity writes

Ω (x -z) i ∂ i u + n -2 2 u ∆ ξ u -cf u 2 ⋆ -1 dx (41) = ∂Ω (x -z, ν) |∇u| 2 ξ 2 - cf u 2 ⋆ 2 ⋆ -(x -z) i ∂ i u + n -2 2 u ∂ ν u dσ + 1 2 ⋆ Ω c⟨∇f (x), x -z⟩ ξ u 2 ⋆ dx
Differentiating with respect to z, we get that for any j ∈ {1, ..., n}

- Ω ∂ j u ∆ ξ u -cf u 2 ⋆ -1 dx (42) = ∂Ω -ν j |∇u| 2 ξ 2 - cf u 2 ⋆ 2 ⋆ + ∂ j u ∂ ν u dσ - c 2 ⋆ Ω ∂ j f (x)u 2 ⋆ dx
We refer to Ghoussoub-Robert [START_REF] Ghoussoub | The Hardy-Schrödinger operator on the Poincaré ball: compactness, multiplicity, and stability of the Pohozaev obstruction[END_REF] for a proof. We fix δ ∈ (0, i g (M, x 0 )). We define

ûϵ (X) := u ϵ exp xϵ (X) for all X ∈ B δ (0) ⊂ R n .
Therefore, equation ( 5) rewrites

∆ ĝϵ ûϵ + ûϵ u ϵ = fϵ û2 ⋆ -1 ϵ in B δ (0).
where ĥϵ (X) := h ϵ exp xϵ (X) and fϵ (X) := f exp xϵ (X) for all X ∈ B δ (0) ⊂ R n and ĝϵ := exp ⋆ xϵ g is the pull-back of g via the exponential map.

Lemma 1. Let (ϕ ϵ ) ϵ ∈ C 0 (B δ (0)) such that lim ϵ→0 ϕ ϵ (0) = s ∈ R, |ϕ ϵ (X) -ϕ ϵ (0)| ≤ C|X| for all X ∈ B δ (0) and ϵ > 0.
We fix p ≥ 0 and q ≥ 1. Then

B δ (0) ϕ ϵ |X| p ûq ϵ dX =          µ n+p- q(n-2) 2 ϵ s R n |X| p w q dX + o(1) + O(θ q ϵ ) if (n -2)q > p + n, s n(n-2) f (x0) q n-2 2 ω n-1 + o(1) µ q(n-2) 2 ϵ ln 1 µϵ + O(θ q ϵ ) if (n -2)q = p + n, O(µ q n-2 2 ϵ ) + O(θ q ϵ ) if (n -2)q < p + n
Moreover, for any family (δ ϵ ) ϵ ∈ (0, 1) such that lim ϵ→0 δ ϵ = lim ϵ→0 µϵ δϵ = 0, we have that (43)

B δϵ (0) ϕ ϵ |X| p ûq ϵ dX = µ n+p- q(n-2) 2 ϵ s R n |X| p w q dX + o(1) +O(θ q ϵ ) if q > p + n n -2 .
Proof: We fix ν > 0. It follows from ( 21) and ( 22) that there exists α ∈ (0, δ) such that

ûq ϵ (X) -   µ ϵ µ 2 ϵ + f (x0) n(n-2) |X| 2   q n-2 2 ≤ ν   µ ϵ µ 2 ϵ + f (x0) n(n-2) |X| 2   q n-2 2 + Cθ q ϵ for all X ∈ B ρ (0) \ B α (0).
Note that for all α ∈ (0, δ), it follows from the Harnack inequality that

B δ (0)\Bα(0) ϕ ϵ |X| p ûq ϵ dX = O(θ q ϵ ).
We then get that

B δ (0) ϕ ϵ |X| p ûq ϵ dX - Bα(0) ϕ ϵ |X| p   µ ϵ µ 2 ϵ + f (x0) n(n-2) |X| 2   q n-2 2 dX ≤ Cν B δ (0) |X| p µ ϵ µ 2 ϵ + |X| 2 q n-2 2 dX + Cθ q ϵ
We the get Lemma 1 when q(n -2) < n + p. With the change of variable X = µ ϵ Y , we get that

Bα(0) ϕ ϵ |X| p   µ ϵ µ 2 ϵ + f (x0) n(n-2) |X| 2   q n-2 2 dX = µ n+p-q n-2 2 ϵ B α/µϵ (0) ϕ ϵ (µ ϵ Y )|Y | p   1 1 + f (x0) n(n-2) |Y | 2   q n-2 2 dY = µ n+p-q n-2 2 ϵ    s R n |Y | p w q (Y ) dY + o(1) if q(n -2) > p + n s n(n-2) f (x0) q n-2 2 ω n-1 ln 1 µϵ + o(ln µ ϵ ) if q(n -2) = p + n
The proof of (43) is similar by taking α := δ ϵ . Putting these estimates together yields Lemma 1. □ We now prove [START_REF] Druet | From one bubble to several bubbles: the low-dimensional case[END_REF]. We fix l ∈ {1, ..., n}. We define

δ ϵ := µ 1 n-1 ϵ .
Pohozaev's identity (42) applied to ûϵ reads

A ϵ = -B ϵ + C ϵ -D ϵ (44) With A ϵ := - 1 2 ⋆ B δϵ (0) ∂ l fϵ û2 ⋆ ϵ dX B ϵ := ∂B δϵ (0) -ν l |∇û ϵ | 2 2 - fϵ û2 ⋆ ϵ 2 ⋆ + ∂ l ûϵ ∂ ν ûϵ dν C ϵ := B δϵ (0)
∂ l ûϵ ĥϵ ûϵ dX and D ϵ :=

B δϵ (0) ∂ l ûϵ (∆ ξ ûϵ -∆ ĝϵ ûϵ )dX
We estimate these terms separately. It follows from ( 22) and ( 23) that

B ϵ = O µ ϵ µ ϵ δ ϵ n-3 + µ n-1 ϵ δ n+1 ϵ + δ n-1 ϵ µ ϵ θ 2 ϵ = o(µ ϵ ) as ϵ → 0.
Concerning C ϵ , integrating by parts, we have that

C ϵ = B δϵ (0) ∂ l ûϵ ĥϵ ûϵ dX = - B δϵ (0) ∂ l ĥϵ 2 û2 ϵ dX + ∂B δϵ (0) ĥϵ û2 ϵ 2 ⃗ ν l dσ
With (22) and Lemma 1, we then get that

C ϵ = O µ ϵ o(1) + µ ϵ δ ϵ n-3 + δ n-1 ϵ µ ϵ θ 2 ϵ = o(µ ϵ ) as ϵ → 0.
We now estimate D ϵ . We write

-(∆ ĝϵ -∆ ξ ) = (ĝ ij ϵ -δ ij )∂ ij -ĝij ϵ Γk ij (ĝ ϵ )∂ k
where the Γk ij 's are the Christoffel symbols of the metric ĝϵ . The following lemma is reminiscent in such problems:

Lemma 2.
Let Ω be a smooth domain of R n . For any i, j, k ∈ {1, ..., n}, let us consider a ijk ∈ C 1 (R n ). We assume that a ijk = a jik for all i, j, k ∈ {1, ..., n}. Then for all u ∈ C 2 (R n ), we have that

Ω a ijk ∂ ij u∂ k u dx = Ω -∂ l a lij + 1 2 ∂ l a ijl ∂ i u∂ j u dx + ∂Ω - 1 2 a ijl ⃗ ν l + a lji ⃗ ν l ∂ i u∂ j u dσ
where ⃗ ν is the outer normal vector at ∂Ω and Einstein's summation convention has been used.

The proof is by integrations by parts and goes back to Hebey-Vaugon [START_REF]From best constants to critical functions[END_REF] and can also be found in Cheikh-Ali [START_REF] Cheikh | The second best constant for the Hardy-Sobolev inequality on manifolds[END_REF]. It follows from Lemma 2 that

B δϵ (0) (ĝ ij ϵ -δ ij )∂ ij ûϵ ∂ l ûϵ dx = B δϵ (0) -∂ m ĝmj ϵ δ j,l + 1 2 ∂ l ĝij ϵ δ m,l ∂ i ûϵ ∂ j ûϵ dx + ∂B δϵ (0) - 1 2 (ĝ ij ϵ -δ ij )δ m,l ⃗ ν m + (ĝ mj ϵ -δ mj )δ i,l ⃗ ν l ∂ i ûϵ ∂ j ûϵ dσ
Using (22) to control the boundary terms, we get that

D ϵ = B δϵ (0) -∂ m ĝmj ϵ δ j,l + 1 2 ∂ m ĝij ϵ δ m,l ∂ i ûϵ ∂ j ûϵ dx - B δϵ (0) ĝij ϵ Γ k ij (ĝ ϵ )∂ k ûϵ ∂ l ûϵ dX + O µ ϵ µ ϵ δ ϵ n-3 + δ n-1 ϵ µ ϵ θ 2 ϵ =o(µϵ) as ϵ → 0. Since Γ k ij (ĝ ϵ ) = 1 2 ĝkm ϵ (∂ i (ĝ ϵ ) jm + ∂ j (ĝ ϵ ) im -∂ m (ĝ ϵ ) ij )
and ĝϵ is normal at 0 (that is ∂ m (ĝ ϵ ) ij (0) = 0 for all i, j, m ∈ {1, ..., n}), we then get that there exists a ijα ∈ R, i, j, α ∈ {1, ..., n} such that

D ϵ = B δϵ (0) a ijα X α ∂ i ûϵ ∂ j ûϵ dx + O B δϵ (0) |X| 2 |∇û ϵ | 2 dX + o(µ ϵ )
With ( 23), we get that

B δϵ (0) |X| 2 |∇û ϵ | 2 dX ≤ C B δϵ (0) |X| 2 µ n-2 ϵ (µ ϵ + |X|) 2(n-1) dX + Cθ 2 ϵ δ n ϵ ≤ Cµ 2 ϵ B δϵ/µϵ (0) |X| 2 dX (1 + |X|) 2(n-1) + Cθ 2 ϵ δ n ϵ = o(µ ϵ )
With (23), given R > 0, using (46) and n > 3, we have that

B δϵ (0)\B Rµϵ (0) X α ∂ i ûϵ ∂ j ûϵ dx ≤ C B δϵ (0)\B Rµϵ (0) µ n-2 ϵ |X| dX (µ ϵ + |X|) 2(n-1) + Cθ 2 ϵ δ n ϵ ≤ Cµ ϵ R n \B R (0) |Y | dX (1 + |Y |) 2(n-1) + Cθ 2 ϵ δ n ϵ ≤ η(R)µ ϵ + o(µ ϵ )
where lim R→+∞ η(R) = 0. Using the change of variable X = µ ϵ Y , the convergence [START_REF] Jaber | Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF] and the radial symmetry of w, we have that

B Rµϵ (0) X α ∂ i ûϵ ∂ j ûϵ dx = µ ϵ B R (0) Y α ∂ i w ϵ ∂ j w ϵ dY = µ ϵ B R (0) X α ∂ i w∂ j w dY + o(1) = o(µ ϵ ) since n > 3.
Therefore, we get that B δϵ (0) X α ∂ i ûϵ ∂ j ûϵ dx = o(µ ϵ ), and then

D ϵ = o(µ ϵ ) for n ≥ 4.
We now deal with A ϵ . With a Taylor expansion of f , we get

A ϵ = - 1 2 ⋆ B δϵ (0) ∂ l fϵ û2 ⋆ ϵ dX = - 1 2 ⋆ ∂ l fϵ (0) B δϵ (0) û2 ⋆ ϵ dX - 1 2 ⋆ ∂ lj fϵ (0) B δϵ (0) X j û2 ⋆ ϵ dX +O B δϵ (0) |X| 2 û2 ⋆ ϵ dX
Arguing as above, we get that

B δϵ (0) |X| 2 û2 ⋆ ϵ dX = o(µ ϵ ) and B δϵ (0) X j û2 ⋆ ϵ dX = o(µ ϵ ) as ϵ → 0.
With [START_REF] Talenti | Best constant in Sobolev inequality[END_REF], we get that there exists C 0 > 0 such that

B δϵ (0) û2 ⋆ ϵ dX = C 0 + o(1) as ϵ → 0.
Therefore, we get that

A ϵ = - C 0 2 ⋆ + o(1) ∂ l fϵ (0) + o(µ ϵ ) as ϵ → 0.
Putting the estimates of A ϵ , B ϵ , C ϵ and D ϵ into (44) yields (45) ∂ l fϵ (0) = o(µ ϵ ) as ϵ → 0 for all l ∈ {1, ..., n}.

Passing to the limit, we get that ∇f (x 0 ) = 0. We now express ∂ l fϵ (0) more precisely. We write

fϵ (X) = f • exp xϵ (X) = f • φ(X ϵ , X)forX ∈ R n where f := f • exp x0 and φ(Z, X) := exp -1 x0 • exp exp x 0 (Z) (X) for X, Z ∈ R n . We set X ϵ := exp -1 x0 (x ϵ ). Since ∇ f (0) = 0, we get that ∂ l (f • exp xϵ )(0) = ∂ 2 (f • exp x0 ) ∂x l ∂x j (0)X j ϵ + o(|X ϵ |)
therefore, with (45), we get that

∂ 2 (f • exp x0 ) ∂x l ∂x j (0)X j ϵ = o(|X ϵ |) + o(µ ϵ ) as ϵ → 0 for all l = 1, .., n. Since ∇ 2 f (x 0 ) is nondegenerate, we then get that |X ϵ | = o(µ ϵ ), in other words d g (x ϵ , x 0 ) = o(µ ϵ ) as ϵ → 0. This proves (6).
Lemma 3. Under the assumptions of Theorem 1, we have that

θ ϵ =      o(1) if n ≥ 7, o(µ ϵ ) if n ∈ {5, 6}. o µ ϵ ln( 1 µϵ if n = 4. ( 46 
) C ϵ = h(x 0 )µ 2 ϵ ln 1 µϵ 8 f (x0) 2 ω 3 + o(µ 2 ϵ ln 1 µϵ ) if n = 4 h(x 0 )µ 2 ϵ R n w 2 dX + o(µ 2 ϵ ) if n ≥ 5 D ϵ =    -µ 2 ϵ ln 1 µϵ 1 6 Scal g (x ϵ ) 8 f (x0) 2 ω 3 + o(µ 2 ϵ ln 1 µϵ ) if n = 4 -µ 2 ϵ n-2 4(n-1) Scal g (x ϵ ) R n w 2 dX + o(µ 2 ϵ ) if n ≥ 5
We are then left with estimating A ϵ . With a Taylor expansion of fϵ , we get that

A ϵ = 1 2 ⋆ B δϵ (0) ∂ i fϵ (0)X i û2 ⋆ ϵ dX + 1 2 ⋆ ∂ ij fϵ (0) B δϵ (0) X i X j û2 ⋆ ϵ dX +O B δϵ (0) |X| 3 û2 ⋆ ϵ dX
Since fϵ := f •exp xϵ and ∇f 0 ) = 0, we get that ∇ fϵ (0) = O(d g (x ϵ , x 0 )). With (6), we then get that ∇ fϵ (0

) = o(µ ϵ ). It follows from Lemma 1 that B δϵ (0) |X| 3 û2 ⋆ ϵ dX = o(µ 2 ϵ ) and B δϵ (0) |X|û 2 ⋆ ϵ dX = O(µ ϵ )
. Therefore, we get that

A ϵ = 1 2 ⋆ ∂ ij fϵ (0) B δϵ (0) X i X j û2 ⋆ ϵ dX + o(µ 2 ϵ )
Arguing as in the proof of Lemma 1, we get

B δϵ µϵ (0) X i X j û2 ⋆ ϵ dX = µ 2 ϵ R n X i X j w 2 ⋆ dX + o(µ 2 ϵ ) when n ≥ 4.
Since w is radially symmetric, we get that

R n X i X j w 2 ⋆ dX = δij n R n |X| 2 w 2 ⋆ dX.
Since ĝϵ is normal at 0, we have that ∆ g f (x ϵ ) =i ∂ ii fϵ (0), which yields We claim that

A ϵ = - 1 2 ⋆ n ∆ g f (x 0 )µ 2 ϵ R n |X| 2 w 2 ⋆ dX + o(µ 2 ϵ ) if n ≥ 4
By Jaber [START_REF] Jaber | Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds[END_REF] we have that

R n |X| 2 w 2 ⋆ dX R n w 2 dX = n 2 (n -4) 4(n -1)f (x 0 )
for n ≥ 5.

Putting the expressions of A ϵ , B ϵ , C ϵ and D ϵ in (47) and letting ϵ → 0 yield [START_REF] Druet | The AB program in geometric analysis: sharp Sobolev inequalities and related problems[END_REF]. This ends the proof of Theorem 1.

Application to a super-critical problem: proof of Theorem 2

We follow the notations and assumptions of Theorem 2. We consider a family (u ϵ ) ϵ>0 ∈ C 2 G (X) of G-invariant solutions to the problem (48)

∆ g u ϵ + h ϵ u ϵ = λ ϵ u 2 ⋆ (k)-1 ϵ , X u 2 ⋆ (k) ϵ dv g = 1 , ∥u ϵ ∥ 2 → 0 as ϵ → 0
where (h ϵ ) ϵ>0 ∈ C 1 G (X) is such that there exists h ∈ C 1 G (X) such that (9) holds and (λ ϵ ) ϵ is such that (11) holds. Proof: We fix a point z 0 ∈ X. We choose η 0 ∈ C ∞ (R) such that η 0 (t) = 1 for t ≤ 1 and η 0 (t) = 0 for t ≥ 2. Given δ > 0, we define η(x) := η 0 ( dg(Gx0,x) δ

) for all x ∈ X. For δ > 0 small enough, we have that η ∈ C ∞ G (X). Multiply (10) by η 2 u l ϵ for some l > 1 and integrate over X, we get that 

u 2 ⋆ (k) ϵ dv g 1-2 2 ⋆ (k)
It follows from Faget [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF] that for all α > 0, there exists B > 0 such that, for all ϵ, Using [START_REF]Second-best constant and extremal functions in Sobolev inequalities in the presence of symmetries[END_REF], there exists 1 < l < 2 ⋆ (k) -1 such that χ ϵ ≥ β > 0 for all ϵ > 0 up to taking α small. As u ϵ → 0 in L l+1 (X) since l + 1 < 2 ⋆ (k), with (52), we then get that lim ϵ→0 B δ (Gz0) u l+1 2 2 ⋆ (k) ϵ dv g = 0. With similar arguments, we get that for all δ ′ < δ, u ϵ → 0 in L q (B δ ′ (Gz 0 ) for all q ≥ 1. It then follows from [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF] and elliptic theory that u ϵ → 0 in C 0 (B δ ′ (Gz 0 )). Since X u 2 ⋆ ϵ dv g = 1 and X is compact, the existence of x 0 ∈ X such that (49) holds follows. This proves the claim. □ Claim 5. We have that dim Gx 0 = k and Vol g (Gx 0 ) = V m .

X ηu l+1 2 ϵ 2 ⋆ (k) dv g 2 2 ⋆ (k) ≤ K 0 (n -k)(1 + α) V 1-2 2 ⋆ (k) m X

|∇( ηu

Proof: We follow Faget [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF]. Assume that dim Gx 0 > k. Therefore, there exists δ > 0 such that dim Gx ≥ k 1 > k for all x ∈ B 2δ (Gx 0 ). It then follows from Hebey-Vaugon [START_REF] Hebey | Sobolev spaces in the presence of symmetries[END_REF] that H 2 1,G (B δ (Gx 0 )) → L p (B δ (Gx 0 )) is compact for 1 ≤ p < 2 ⋆ (k 1 ). Since 2 ⋆ (k) < 2 ⋆ (k 1 ) and u ϵ → 0 in L 2 (X), we get that u ϵ → 0 strongly in

Claim 4 .

 4 There exists x 0 ∈ X such that(49) lim ϵ→0 B δ (Gx0) u 2 ⋆ (k)ϵ dv g = 1 for all δ > 0.

∆ g u ϵ dv g + M η 2 h ϵ u l+1 ϵ dv g = λ ϵ M η 2 u

 2 l+2 ⋆ (k)-1 ϵ dv gAs in the proof of Claim 2, we get that M

  K 0 (n -k) is as in (3) and V m = min x∈X {V ol g (Gx)/ dim Gx = k}. By combining this inequality with (51), we obtain: Assume that, up to extraction, lim ϵ→0 B 2δ (Gz0) u 2 ⋆ (k) ϵ dv g < 1.
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Proof: The case n ≥ 7 is simply (24). It follows from (22) that

Equation ( 5) rewrites ∆ g u ϵ + (h ϵ -f u 2 ⋆ -2 ϵ

)u ϵ = 0 in M . Since u ϵ → 0 in C 0 loc (M -{x 0 }) and u ϵ > 0, it follows from Harnack's inequality that there exists c > 0 such that u ϵ (x) ≤ cu ϵ (y) for all x, y ∈ B 2δ (x 0 ) \ B δ/3 (x 0 ). Therefore, with the definition (24) of θ ϵ , we get that

When 4 ≤ n ≤ 6, it follows from L 2 -concentration assumption (7) that

Putting these inequalities together, we get (46). This proves Lemma 3. □

4.

Interaction with the scalar curvature: proof of (8

This part is strongly inspired by Cheikh-Ali [START_REF] Cheikh | The second best constant for the Hardy-Sobolev inequality on manifolds[END_REF]. We define

Writing the Pohozaev identity (41) for ûϵ that satisfies (5), we get that

where

Following Cheikh-Ali [START_REF] Cheikh | The second best constant for the Hardy-Sobolev inequality on manifolds[END_REF] and using the pointwise controls (21), ( 22), (23) and the control (46) on (θ ϵ ) ϵ when n ∈ {4, 5, 6}, we get that 8) in [START_REF] Faget | Best constants in Sobolev inequalities on Riemannian manifolds in the presence of symmetries[END_REF]) that for all α > 0, there exists δ α > 0 such that

Integrating by parts and using ∥u ϵ ∥ 2 → 0, we get that (54)

Multiplying (48) by u ϵ , integrating and using again ∥u ϵ ∥ 2 → 0, we get that

.

Putting together (53), ( 54), ( 55) and (49), we get that

Using [START_REF]Second-best constant and extremal functions in Sobolev inequalities in the presence of symmetries[END_REF], letting ϵ → 0 and then α → 0 yields Vol g (Gx 0 ) ≤ V m . Therefore Vol g (Gx 0 ) = V m and the claim is proved. □ Claim: The following L 2 -concentration holds

We prove the claim by arguing as in Djadli-Druet [START_REF] Djadli | Extremal functions for optimal Sobolev inequalities on compact manifolds[END_REF]. We have that

dv g . It follows from ( 9) that there exists β > 0 such that h ϵ ≥ β for all ϵ > 0. Therefore we get that

if n-k ≥ 6, we have 2 ⋆ (k)-1 ≤ 2. Using Hölder inequalities, we have ∥u ϵ ∥

. As a result

This proves the claim. □

We are now in position to take the quotient. Since dim Gx 0 = k, we choose δ > 0 and

Let us first rewrite equation ( 48) as in Saintier [START_REF] Saintier | Blow-up theory for symmetric critical equations involving the p-Laplacian[END_REF].

We define g := v 2 n-k-2 ḡ. Since u ϵ , φ are G-invariant, we get that

Performing the same computations for the remaining terms, setting hϵ := v-2 n-k-2 hϵ , f := v-2 n-k-2 and ũϵ := λ

We deal with the L 2 ⋆ (k) -norm. The definitions of f and g and (49) yield

.

Concerning the L 2 -concentration, it follows from (56) that for any r < δ, for n -k ≥ 4, we have that

Taking the quotient, we get that