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Regular Article

RED CELLS, IRON, AND ERYTHROPOIESIS
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Key Points

• Plasmodium vivax merozoites
preferentially infect a
subgroup of reticulocytes
generally restricted to the
bone marrow.

• Accelerated “maturation” of
infected reticulocytes.

Plasmodium vivaxmerozoites only invade reticulocytes, a minor though heterogeneous

populationof redbloodcell precursors that canbegradedby levelsof transferrin receptor

(CD71) expression. The development of a protocol that allows sorting reticulocytes into

defined developmental stages and a robust ex vivo P vivax invasion assay has made it

possible for the first time to investigate the fine-scale invasion preference of P vivax

merozoites. Surprisingly, it was the immature reticulocytes (CD711) that are generally

restricted to the bone marrow that were preferentially invaded, whereas older reticulo-

cytes (CD712), principally found in the peripheral blood, were rarely invaded. Invasion

assays based on the CD711 reticulocyte fraction revealed substantial postinvasion

modification. Thus, 3 to 6 hours after invasion, the initially biomechanically rigid CD711

reticulocytes convert into a highly deformable CD712 infected red blood cell devoid of host reticular matter, a process that normally

spans 24 hours for uninfected reticulocytes. Concurrent with these changes, clathrin pits disappear by 3 hours postinvasion, replaced

by distinctive caveolae nanostructures. These 2 hitherto unsuspected features of P vivax invasion, a narrow preference for immature

reticulocytes and a rapid remodeling of the host cell, provide important insights pertinent to the pathobiology of the P vivax infection.

(Blood. 2015;125(8):1314-1324)

Introduction

The distinct tropism that different species of malaria parasites
exhibit with respect to the red blood cell (RBC) fractions has
a major impact on the course of infection and on the consequent
pathology. Thus, the ability of Plasmodium falciparum to invade
RBCs of all ages1 and the restriction of Plasmodium vivax to
reticulocytes,2,3 are considered to contribute to their contrasting
virulence. Although the predilection of P vivax for reticulocytes
was first noted in the 1930s, the red cell components that determine
this specificity remain unknown. The red cell Duffy receptor (DARC),
a known receptor for P vivax invasion,4 is clearly not implicated
because both reticulocytes and mature red cells (normocytes)
express similar quantities of DARC on their surfaces.5 On the other
hand, a family of Plasmodium merozoite proteins (reticulocyte
binding proteins) that preferentially bind to reticulocytes has been
identified,6 but the corresponding reticulocyte-specific receptors
remain unknown. Thus, the detailed mechanism by which P vivax
merozoites identify and invade human reticulocytes remains to be
elucidated.

One of the factors that has frustrated efforts to identify the key
reticulocyte receptor for P vivax is the significant heterogeneity of
the “reticulocyte” populations, first classified by Heilmeyer in the
1930s.7 Reticulocytes mature to form normocytes over a 72-hour
period, during which the reticulocytes produced by the expulsion of
the nucleus from the normoblast undergo a series of dramatic
biochemical, biophysical, andmetabolic changes. The large globular
and stiff nascent enucleated young reticulocyte sequentially ejects
defunct organelles (reticular matter) and loses much of its membrane
surface area. During maturation, there are particular subsets of
receptors that are significantly depleted or completely eliminated
predominantly by an exosome-dependent process.8 Notably, 1 such
receptor, the transferrin receptor (CD71), is sequentially lost and
becomes completely absent by the time the normocyte is formed,9-11

thus making it a useful biomarker for the fine-scale age-grading
of reticulocytes.5,12,13 Most crucially, CD71 is depleted ;20 hours
before the last remnants of reticular matter (commonly detected by
new methylene blue [NMB] or Thiazole Orange [TO] staining) are
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ejected; consequently, most reticulocytes (Heilmeyer stage IV) and
normocytes circulating in the peripheral blood system are CD712,
whereas the majority of immature (CD711) reticulocytes stages
(Heilmeyer stages 0, I, II, and III) are confined to the bone
marrow.14,15 Therefore,most studies on adult reticulocytes are in fact
restricted to observations of the stage III reticulocytes, which are
the first to emerge from the bone marrow, and stage IV CD712

reticulocytes.
Given that malaria parasites are observed not only in the pe-

ripheral blood but also in the bonemarrow, investigations of thefine-
scale tropism of P vivaxmerozoites must encompass all the stages of
reticulocyte development. Ideally, onewould assess the specificity of
P vivax invasion using reticulocytes purified from bone marrow
aspirates (which contain all reticulocyte developmental stages) as
well as those from the peripheral blood. However, bone marrow
aspirates are limited by practical and ethical considerations. One
alternative is to use cord blood, which is relatively easy to procure
andmoreover yields significant quantities of nascent reticulocytes.16

Indeed, the use of fresh and frozen fetal reticulocytes isolated from
cord blood has allowed the development of reliable P vivax invasion
assays.17-19

To define the fine scale tropism of P vivax,we conducted ex vivo
invasion assays on highly purified reticulocyte subsets (defined by
TO staining and CD71 expression) isolated from cord blood. We
further documented the remodeling of the reticulocyte following
the invasion by the parasite. The observations derived from these
investigations enhance our understanding of vivax malaria pathobi-
ology and will facilitate the discovery of the reticulocyte receptor
targeted by this important species of malaria parasite.

Methods

Ethics statement

The clinically infected RBC (IRBC) samples examined in this study were
collected under the following ethical guidelines in the approved protocols;
OXTREC 027-025 (University of Oxford, Centre for Clinical Vaccinology
and Tropical Medicine, UK) and MUTM 2008-215 from the Ethics Com-
mittee of the Faculty of Tropical Medicine, Mahidol University. Research
was conducted in accordance with the Declaration of Helsinki.

Human parasites

Thirty-four clinical isolates of P vivax were collected from malaria patients
receiving treatment at clinics run by the ShokloMalaria Research Unit on the
North Western border of Thailand. The project was explained to all the
patients before they provided informed consent and before collection of blood
by venipuncture. Five milliliters of whole blood were collected in lithium
heparin collection tubes. These sampleswere cryopreserved inGlycerolyte 57
(Baxter) after leukocyte depletion using cellulose columns (Sigma, catalog
#C6288).20 After thawing, the parasites present in the packed cells (1.5 mL
per isolate) were cultured to the schizont stage in 12 mL of McCoy 5A
medium supplementedwith 2.4 g/LD-glucose, 40mg/mLgentamycin sulfate,
and 20% heat-inactivated human AB serum in an atmosphere of 5% O2 at
37.5°C.21

Magnetic and flow cytometry reticulocyte sorting

The depletion of the CD711 reticulocytes was performed using the MACS
system (Miltenyi, Singapore). One to 2 mL of blood at 50% hematocrit in
phosphate-buffered saline were passed through the LS column, the purity of
the positive and negative fractions was monitored by flow cytometry using
TO staining. The yield of a CD711 cell is upper 80% of purity.

The different fraction of reticulocytes: TO2, TOlow, and TOhigh (CD711),
were sorted using Influx or FACSAria II (Becton Dickinson) from 25 mL of
cord blood. Three million reticulocytes were sorted for each of the subsets
for the experiment based on CD71/TO staining (Figure 1B), and 1.5 million
reticulocytes for each of the CD71 subsets (Figure 1D) were mixed with
schizonts at a ratio of 6 to 1. For the 5 invasion experiments quantified by flow
cytometry (Figure 1E-F), 24millionof cellsweremixedwith;250 000Pvivax
schizonts.

Parasitemia and parasite sorting by flow cytometry

The parasitemia following reinvasion in the assays using CD712 and CD711

reticulocytes wasmonitored by flow cytometry using the technique described
previously.22 Human parasites were sorted using the technique adopted from
Malleret et al22 using Hoechst (Sigma) and CD71 PE (Becton Dickinson)
from 25 mL of infected blood samples. Cell sorting was performed using
FACSAria II (Becton Dickinson).

Optical microscopy

Microscopic enumeration of IRBCs was performed using thin blood smears
stained with Giemsa. A minimum of 4000 RBCs were counted (20 fields at
1003 magnification). Live cell subvital staining of reticulocytes and of
parasites was done using Giemsa or NMB.23

AFM and electron microcopy

At the designated time point, the IRBCs were harvested and processed and
prepared as smears (unfixed and air dried) for atomic force microscopy
(AFM) as previously described.24,25 A copper microdisc grid (H7 finder grid,
SPI Supplies, PA) attached underneath the glass slide to allow colocation
when later imaging cells of interest.

Thin smears were AFM scanned by a Dimension 3100 model with a
Nanoscope IIIa controller (Veeco, Santa Barbara, CA) using tapping mode.
The probes used for imaging were 125 mm long3 30 mm wide single-beam
shaped cantilevers (model PPP-NCHR-50, Nanosensors) with tip radius of
curvature of 5 to 7 nm. Images were processed and measurements were
carried out using the Nanoscope 5.30 software (Veeco).

Electronmicroscopywas conducted on reticulocytes and IRBCs using the
methods outlined in Malleret et al.5

Confocal microscopy and western blot

After AFM scanning, immunofluorescent assay detection of caveolin-1 was
conducted on the isolates after cold acetone fixation. The primary antibodies
used were caveolin-1 (#C4490, Sigma).After the addition of a second an-
tibody (anti-rabbit immunoglobulin G fluorescein isothiocyanate [green] or
Alexa 568 [red], Invitrogen) the fluorescence images were obtained using
a confocal microscope (Olympus FluoView FV1000).

For the western blot, the RBC lysis and immunoblotting method was modi-
fied from Hanahan et al26 (anti-caveolin-1 [#C4490, Sigma], diluted at 1:1000).

Micropipette aspiration

The micropipette aspiration technique was modified from Hochmuth et al.27

Briefly, 1 mL of packed RBCs containing 0.5% to 1% IRBCs were resuspended
in 1 mL 13 phosphate-buffered saline containing 1% bovine serum albumin.
The samples were loaded into a sample chamber and mounted onto the
Olympus IX71 Inverted Microscope. A borosilicate glass micropipette (;1.5
inner diameter) was used to extract the cell membrane shear modulus by the
micropipette aspiration technique. Single cells were aspirated under a neg-
ative pressure at a pressure drop rate of 0.5 Pa/s. The cell membrane shear
modulus was calculated using the hemispherical cap model.27

Statistical analysis

Statistical analyses were performed using Graph Pad Prism (5.1). Median
values were compared nonparametrically using a Kruskal-Wallis test, with
Dunn’s test for post hoc analysis. Means compared by analysis of variance
and Tukey’s multicomparison test.
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Figure 1. Reticulocyte tropism of P vivax is restricted to CD711 reticulocytes. (A) Flow cytometry dot plot showing the CD71 and TO staining used to define the different

erythrocyte subsets: TO1/CD711 for the immature reticulocytes (green box), TOlow/CD712 for the mature reticulocytes (red box), and TO2/CD712 for the normocytes (black

box). The insets on the right show the NMB-stained reticulocytes sampled from these gates by flow cytometry sorting. (B) Histogram showing the fold increase reinvasion,

normalized to that measured for normocytes (TO2/CD712) (mean 2.17 6 1.23 standard deviation [SD] vs 9.47 6 4.81 SD), for the 3 reticulocyte subsets harvested by cell

sorting. Bar represents 8 mm. (C) Flow cytometry dot plot showing the reticulocyte sampling based on the CD71 expression (CD712, CD71low, CD71medium, CD71high). The top

insets show each population stained by NMB. Note the red arrows in the right insets showing the newly reinvaded erythrocytes stained with Hoechst. (D) Histogram showing

the fold increase reinvasion, normalized to that measured for the CD712 population and for the 3 younger reticulocyte populations (mean CD71low: 5.09 6 1.75 SD;

CD71medium: 6.53 6 2.41 SD; CD71high: 7.94 6 3.14 SD; n 5 3). Note the red arrows in the right insets showing the newly reinvaded erythrocytes stained with Hoechst. Bar

represents 8 mm. (E) Representative flow cytometry dot plot showing Hoechst and ethidium levels observed at the start (0 hours) and after 24 hours of the reinvasion assay

with CD712 erythrocytes, and CD711 reticulocytes treated or not with anti-Duffy antibodies. For the 0-hour data, the black thick-lined squares show the percentage of

schizonts; the black thin-lined squares show the percentage of rings before invasion. For the 24 hours of data, the black thin-lined squares at 24 hours show the percentage of

unburst schizonts; the orange thick-lined squares show the percentage of rings after invasion. (F) The percentage of rings after reinvasion (n 5 5). The value observed with

CD711 reticulocytes incubated with anti-Duffy antibodies was taken as the threshold of reinvasion (0.74%). hr, hour. *P , .05; **P , .01.
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Results

P vivax reticulocyte tropism

We first sought to determine whether the age of the reticulocytes
affects their receptiveness to invasion by P vivax. It is known that all
reticulocytes contain RNA and thus are stained by TO1; however,
only the immature reticulocytes (Heilmeyer class I to III) are CD711.5

Furthermore, whereas 60% of the reticulocytes in the peripheral
circulation (Heilmeyer class IV) no longer express CD71, they still
retain some residual RNA (TOlow).28 Normocytes (mature eryth-
rocytes) are negative both for CD71 and for RNA staining (TO2 and
CD712). Thus, using these 2 markers (TO and CD71), we were able
to sort the RBCs from cord blood samples into 3 broad age groups
(Figure 1A): immature reticulocytes TO1/CD711), mature retic-
ulocytes (TOlow//CD712), and normocytes (TO2/CD712). These 3
erythrocytic subsets were then used in a standardized P vivax rein-
vasion assaymodified to use cryopreserved isolates andmagnetically
enriched schizonts.18 The schizont preparation was added to equal
numbers of the RBC fractions sorted as described previously. After
an incubation period of 24 hours, the newly infected RBCswere quan-
tified by fluorescent and light microscopy (Figure 1B). Although
a small number of invasions was observed in the normocytes (TO2/
CD712) and mature reticulocytes (TOlow/CD711), most of the
invasions were observed in immature reticulocytes (TO1/CD711)
(P, .05) (Figure 1B).

The distinct preference for immature reticulocytes indicated by
this experiment prompted an invasion assay using more finely
defined reticulocyte subsets, which were obtained as 4 populations
defined by the level of CD71 expression (CD712, CD71low,
CD71medium, CD71high). The substantial chemical and mechanical
differences between these reticulocyte subsets have been described
recently byMalleret et al.5 Indeed, mere microscopic examination of
subvitally stained reticulocytes from each of these 4 groups is
sufficient to distinguish them, as is evident from the dark-staining
reticular content and the clumping that are particularly evident in the
CD71medium and CD71high nascent reticulocytes (Figure 1C). How-
ever, the reinvasion assays did not reveal any statistically significant
differences in the reinvasion efficacy for the 3 CD711 subsets,
although there was a tendency for higher P vivax reinvasion with
increasingCD71 levels (Figure 1D).We excludedCD71 as a receptor
for P vivax invasion because in assays conducted in the presence
of anti-CD71monoclonal antibodies orwith trypsinized reticulocytes
(CD71 is trypsin-sensitive), the invasion efficacy was not altered.18

The experiments described rely on cell sorting, are expensive, and
provide limited quantities of reticulocytes. We remedied this obstacle
by immunomagnetic sorting of Percoll-enriched reticulocytes labeled
with anti-CD71 antibodies, yielding relatively large volumes of
CD712andCD711 fractions.We further achievedan improvedquanti-
fication of invasions by using a flow cytometry approach22 that uses
an anti-DARC antibody to define the threshold level of significant
invasion (Figure 1E). Using this new rationalized protocol, we could
clearly confirm the distinct tropism of P vivax for immature
reticulocytes in 5 independent trials (P, .001) (Figure 1F).

Rapid remodeling of P vivax–infected reticulocytes

Given the distinct preference of P vivax for immature reticulocytes,
we hypothesized that the ring-stage parasites from P vivax–infected
patients would be predominantly CD711. Unexpectedly, when
P vivax–infected RBCs from 13 distinct isolates were analyzed, the
majority (an average of 83.0% 6 10.8%) were in fact CD712

(Figure 2A-B). To better understand this phenomenon, the P vivax
CD711 and CD712 rings were then sorted by flow cytometry using
DNA quantity (Hoechst signal) and CD71 expression (Figure 2C);
their morphology was compared by scanning electron microscopy
(SEM). Whereas the surface of the CD711 P vivax rings was
scattered with globular excrescences, they were almost completely
absent from the surface of the CD712 P vivax rings (Figure 2C). In
maturing uninfected reticulocytes, the disappearance of CD71 from
the surface only occurs after 24 hours ofmaturation,whereas ejection
of the reticular material is only completed about 16 hours later (ie,
after 40 hours of maturation).5,15 Thus, a possible explanation for the
stark contrast between the CD711 and CD712 rings is that invasion
by P vivax may induce or hasten the ejection of host cell material
(including CD71) from the invaded reticulocyte. This hypothesis
was supported in a series of ex vivo invasion assays in which
P vivax–infected reticulocytes were harvested close to the time of
invasion (0 hours) and then about 3 hours later; both subsets were
examined for the presence of reticular material (subvital Giemsa
stain) andCD71 expression (Figure 2D-F). As expected, themajority
of infected reticulocytes were CD711 immediately postinvasion
(Figure 2F), whereas most uninfected reticulocytes were CD712. By
3 hours postinvasion, the P vivax–invaded reticulocytes were mainly
CD712, as were the uninfected reticulocytes, but in stark contrast
to the uninfected cells, the P vivax–infected cells became almost
completely devoid of reticular matter by 3 hours postinvasion
(Figure 2D-E; supplemental Figure 1A).

Under normal circumstances, CD71 is lost from the maturing
reticulocyte by exocytosis (involving exosomes).9,29 However, the
excrescences (size.200 nm) observed on the infected reticulocytes
(Figure 2C) were more akin to microvesicles than exosomes.30 This
is consistent with the rapidity of microvesicle formation observed in
ionomycin-treated CD711 reticulocytes (supplemental Figure 1B)
and that reported for ionomycin-treated RBCs.31 Elucidating the
exact nature of the structures observed at the surface of early CD711

P vivax rings, however, remains a matter for future studies.

Changes in the membrane nanostructure of

P vivax–infected reticulocytes

In addition to the microvesicle-like structures at the surface of newly
invaded CD711 reticulocytes, the SEM scans also clearly revealed
the presence of “holes” of;100 nm in diameter (Figure 2B). How-
ever, SEM alone could not help distinguish whether these were the
openings to clathrin pits (a complex of clathrin proteins and CD71
receptors; vital for the endocytosis of iron-loaded transferrin into
the developing RBC) or whether they were the openings to the
parasite-derived “caveolae vesicle complexes” (CVCs).32 Thus, we
examined CD711 reticulocytes (3 isolates, 60 cells), newly invaded
reticulocytes (3 isolates, 60 cells), and ex vivo matured P vivax
IRBCs (10 isolates, 485 cells) by AFM and transmission electron
microscopy.

Examination of the reticulocytes’ clathrin pits (n5 124) and the
caveolae on mature P vivax IRBCs (n 5 343) clearly shows that they
differ morphologically and in size. Clathrin pits are cup-shaped
depressions with openings significantly larger than those of the
amphora-shapedcaveolae (meandiameters of 109.92nmand88.97nm,
respectively) of P vivax IRBCs (Figure 3A-B). It was also noted that
the apertures of clathrin pits were generally symmetrical, whereas
those of the caveolae were asymmetrical (Figure 3A). Using these
morphological characteristics, it was possible to examine AFM
smears from staged P vivax IRBCs and describe the evolution of
these 2 nanostructures as the parasites mature (Figure 3A). We are
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Figure 2. P vivax infection induces a rapid remodeling of the cell surface and the cytoplasmic compartments of immature reticulocytes. (A) Flow cytometry of

P vivax field isolates stained with Hoechst and for CD71 using a gating strategy to identity CD711 (pink) and CD712 (purple) P vivax–infected cells. (B) Proportion of CD712

(pink bars) and CD711 (purple bars) P vivax (Pv)-infected cells from 13 clinical samples. The mean percentage of uninfected CD711 cells is 1.29% 6 1.31% SD. (C) Gating

strategy for CD711 and CD712 P vivax rings flow cytometry sorting; the lower Hoechst signal is associated with ring-stage parasites. The insert on the right shows the SEM

scans of the 2 populations (scale bars represent 1 mm) and the blue box indicates the area shown at higher magnification (scale bars represent 100 nm). (D) The exclusion

reticular material (subvitally stained with Giemsa) in uninfected and P vivax–infected CD711 reticulocytes over a period of 40 hours. Scale bar represents 1 mm. (E) Rapid

disappearance of CD71 in an ex vivo P vivax–invaded reticulocyte. These freshly invaded CD711 reticulocytes with P vivax rings were counterstained with Alexa 546 and

Hoechst to stain parasite DNA and were observed under a fluorescent microscope during the first 3 hours postinvasion. Scale bar represents 1 mm. (F) Frequency of CD711

(pink) and CD712 (purple) uninfected or P vivax–infected reticulocytes at invasion 0 and 3 hours after reinvasion.
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aware that the rigid rule we adopted to define the 2 structures
(caveolaewith diameters#90 nm; clathrin pitswith diameters.90 nm,
associated to the radial symmetry of the opening) is subject to error,
resulting in some misidentification. Nonetheless, the general trends

are quite clear: the density of clathrin pits is greatly reduced
following the invasion event, whereas the highest density of the
caveolae is rapidly reached (within 6 to 8 hours) postinvasion (ring
stage) (Figure 3C-D).

Figure 3. Comparative phenotypic characterization of clathrin pits and caveolae in uninfected reticulocytes and P vivax IRBCs. (A) Representative AFM scans that

illustrate the presence and density of clathrin pits on uninfected reticulocytes and of caveolae on P vivax IRBCs; the bottom inserts show the shape of these 2 nanostructures

as revealed by transmission electron microscopy. (B) The range of the diameters of the 2 nanostructures observed on uninfected reticulocytes and on P vivax IRBCs and (C)

changes in the distribution of caveolae and clathrin pits with the ex vivo maturation of the P vivax IRBCs (both observations derived from the same 13 independent isolates

[staged ex vivo maturation], with total of 485 IRBCs examined). The P vivax isolates we received for this staged ex vivo maturation were .6 hours old (n 5 10), thus we

needed to conduct 3 invasion assays (n 5 3) to get AFM data on the missing 0 to 6 hour postinvasion window (tiny ring stage). (D) Representative AFM scans of P vivax

IRBCs at various stages of development and the directly corresponding Giemsa-stained picture. This set of scans was taken from staged ex vivo invasion and maturation

assay. Bar represents 10 mm.
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Biomechanical properties of immature reticulocytes infected

with P vivax

The deformability of staged P vivax IRBCs was investigated in 2
previous studies,33,34 but in neither was the membrane component of
an individual infected red cell specifically examined and, in both,
normocytes rather than reticulocyteswere used as controls.We opted
to use the gold standardmicropipette aspiration technique tomeasure
biomechanical changes to the infected reticulocyte (Figure 4A); to
our knowledge, the first time this has been applied to P vivax IRBCs.

The normal maturation from CD711 immature reticulocytes to
CD712 reticulocytes and normocytes is characterized by significant
reductions in shear modulus/rigidity (ie, an increase in membrane
deformability). The rigidity of freshly invaded CD711 reticulocytes
(tiny rings .3 hours postinvasion) was unchanged, if not slightly
increased, compared with uninfected control cells, but within 6 to 8
hours postinvasion (ring stage), the shear modulus was dramatically
reduced to reach levels identical to those measured for the highly
deformable uninfected normocytes (Figure 4B-C). Although the
trophozoite stages retained deformability, there was a slight increase
in the shear modulus at the schizont stage (Figure 4C).

Discussion

The significant contribution ofPvivax infections to the global burden
of malaria is now once again appreciated. The divergent biological
and clinical characteristics of the P vivax and P falciparum
infections dictate investigations specific to each species to elucidate
the mechanisms that underlie their distinct pathobiology. One of the
central factors that shape the virulence of the malaria blood infection
is the rate of parasite multiplication. This in turn rests on the
efficiency of RBC invasion and on the fraction of IRBCs that survive
to produce fresh merozoites. In this article, we present observations
on P vivax that provide novel insights into both of these phenomena.
The 2 salient features we uncovered are the distinct preference of
P vivax for immature reticulocytes and the rapidity with which the
invaded RBC is remodeled.

Narrow reticulocyte tropism and the implication of

bone marrow

The discovery that P vivax merozoites have a distinct preference
to invade CD711 reticulocytes, whereas CD712 reticulocytes are
relatively refractory to invasion,was unexpected. Indeed, theCD712

maturing reticulocytes are predominantly found in the peripheral
circulation, whereas the CD711 immature reticulocytes are largely
confined to the bone marrow.5,9,12-15,28,35 This raises the possibility
that the bulk ofP vivax invasion occurs in the bonemarrow and not in
the blood.

The first observations of malaria parasites in bone marrow were
made byMarchiafava and colleagues in the 1890s36 and confirmed in
the early 1920s by Seyfarth (the inventor of sternal punctures for
pathogen diagnosis).37 In one of thefirst published studies where this
was applied to a series of malaria patients, the authors concluded that
“Malarial parasites can always be found in the bone marrow in
tertian, quartan, and subtertian malaria, when found in the blood.
They may, however, be discoverable in the marrow when absent
from the blood”.38 Indeed, in subsequent studies, bone marrow
parasitemias were on average double those of the peripheral blood,39

and many patients with negative blood smears were only found to be
infected by P vivax by sternal puncture.40-43 These observations

suggest that the bone marrow is a site of P vivax accumulation, but
they do not shed any light on whether these parasites were collecting
in the primary extravascular sinusoids, in the lumen of the sinusoidal
capillaries, or in both. Recent histopathological observations_clearly
demonstrated the presence and enrichment of P falciparum game-
tocytes in the extravascular compartment of the bone marrow.44,45

Similar investigations of postmortem samples fromvivaxmalaria cases
would be of great value.

Under normal conditions, the sinusoidal lining (endothelial cells)
of the bone marrow is continuous, although temporary formation of
intracellular migratory pores occurs to allow the transit of Heilmeyer
stage III reticulocytes from the primary hematopoietic sinus (red
bone marrow) by diapedesis.46 Thus, only those stage III retic-
ulocytes that have migrated out of the red bone marrow, or indeed
that are in the process of doing so, would be available for P vivax
invasion (Figure 5), an event that would be confined to the marrow
capillaries and that is plausible with the accumulation of P vivax
IRBCs in the bone marrow. In an alternative scenario, one could
speculate that the invasion events take place principally extravascu-
larly, in the red bone marrow. Such a phenomenon implies that those
P vivax merozoites (or even maturing P vivax IRBCs) could migrate
from the sinusoidal capillary lumen to the primary hematopoietic
sinus (Figure 5). Furthermore, this would also entail a stage III
reticulocyte freshly invading into the red bonemarrowwould be able
to traverse the sinusoidal lining to reach the blood circulation. It
would seem improbable that the only permanent openings in the
sinusoidal lining, the intracellular sinusoidal channels of restricted
diameter (,100 nm) that only allow plasma transfer, would serve
as a conduit for the passage of merozoites, RBCs, or P vivax
IRBCs.46,47 However, it is possible that pathological changes
inherent to the P vivax infection, such as anemia or localized
inflammatory reactions, could cause a disruption of the sinusoidal
lining that would permit cellular transit.48 From a biomechanical
point of view, the high deformability of the P vivax IRBC would not
be an impediment for crossing the endothelial barrier.34 Finally,
extravascular invasion might account for the finding of P vivax in
bonemarrow aspirates in patients with undetectable peripheral blood
parasitemia. Irrespective of which scenario reflects best the actual
events inP vivax infections, it seems clear that the bonemarrow plays
an important role in the pathobiology of P vivax malaria, and future
studies should consider that the accumulation of P vivax in the bone
marrow might contribute to the total parasite biomass.

Rapid remodeling and accelerated aging of P vivax–infected

immature reticulocytes

The transformation of rigid CD711 immature reticulocytes to de-
formable CD712within 6 hours after invasion byP vivax infection is
astonishing. How P vivax causes the accelerated loss of the clathrin
pits containing CD71 is not presently known, but the formation of
microvesicles observed in newly invaded reticulocytes may provide
some indications. In this context, the recent demonstration that
extracellular vesicles generated byP falciparum IRBCs have a role in
the cellular communication49,50 is of interest, as are the observations of
circulating microparticles in clinical isolates from malaria patients.51,52

By 6 to 8 hours postinvasion, the clathrin pits andmicrovesicles are no
longer present on the surface of the IRBCand are replaced by caveolae
of parasitic origin. These caveolae, first described in the 1970s in
P vivax IRBCs, are usually associatedwith numerous vesicles, and the
combined structure are referred to as the CVCs.32,53-55 It is thought
that CVCs are involved in the endocytosis ofmacromolecules vital for
the development of P vivax,32 and the rapid appearance of caveolae at
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the ring stage and their maintenance to the end of the asexual cycle
would seem to support this assertion. Although Barnwell et al and
Akinyi et al53,56 have characterized parasitic proteins associated with
the vesicle complexes, little is known about the proteins associated
with the actual caveolae opening. Aikawa suggests that, unlike the
positively charged vesicles, the negatively charged caveolae opening
are largely host-derived.32 However, we consider it unlikely that host
or parasitic caveolins are involved in the formation of these
“caveolae,” because we could not detect caveolein-1 in reticulocytes
or in the P vivax IRBCs (supplemental Figure 2A-B). Although this
contradicts the findings of Bracho et al,57 we could not find genes
encoding caveolins or flotillins in the P vivax genome,58 nor records
of caveolin in human red cells.

Of all the changes occurring during the early development of
P vivax in immature reticulocytes, the most notable is the rapid
switch from a ridged immature reticulocyte to a deformable infected

RBC. The increased deformability of P vivax IRBCs is generally
thought to be an adaption that would enable the parasitized red cell
to escape splenic clearance.33,34 We would like to suggest that
increased deformability might additionally augment the delivery of
mature parasites into the compartments of the bone marrow and the
egress of infected reticulocytes into the peripheral blood system.We
also noted that P vivax gametocytes were equally highly deformable
(results not shown).

Conclusion

The observed marked preference of P vivax to invade immature
reticulocytes provides an appropriate baseline to seek the identity of
the molecules involved in invasion specificity and to elucidate the

Figure 4. Evolution of cell deformability during the maturation of P vivax. (A) Representative micropipette aspiration images of CD711 and CD712 reticulocytes and of

P vivax IRBCs at the different maturation stages (based on the size of the parasitophorous vacuole and arrangement of hemozoin). (B) Key examples of single-cell

measurements of cell length aspirated with different pressure intensities. Also provided is a diagram (upper left corner) and the equation (lower left corner) to show how the

shear flow modulus for each cell was calculated. DL, aspirated length; DP, aspirating pressure; D, micropipette inner diameter; dL/dP, slope of the linear region of the

aspiration graph as shown in this figure. (C) The median shear flow modulus (6 interquartile range) of each population. Note that the uninfected CD711 reticulocytes and tiny ring

forms have the highest shear modulus (ie, the most rigid cells), which was significantly higher than any of the other normocytes and other infected red cells. n.s., not significant.
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nature of the mechanisms that lead to the biomechanical, nano-
structural, and biomolecular characteristics of the invaded RBC.
It also cautions researchers to take into account that the CD711

immature reticulocytes targeted by P vivax are significantly different
from the CD712 reticulocytes and normocytes, making it important
to select appropriate controls for any experiments. From a clinical
point of view, the narrow tropism of P vivax for immature reticu-
locytes normally only found in the bone marrow places events at
this compartment of the body at the center of investigations on the
pathological processes in vivax malaria. In addition to the patho-
logical consequences of the accumulation of P vivax IRBCs in bone
marrow, the potential existence of cryptic P vivax populations away
from the peripheral circulation has far-reaching implications for the
treatment of vivax malaria and for the prospects of its elimination
from current endemic areas.
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