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Wind power predictions from nowcasts to 4-hour forecasts: a learning
approach with variable selection

Dimitri Bouche® * , Rémi Flamary? , Florence d’Alché-Buc? , Riwal Plougonven® ,

Marianne Clausel®, Jordi Badosa” , Philippe Drobinski®

Abstract

We study short-term prediction of wind speed and wind power (every 10 minutes up to 4
hours ahead). Accurate forecasts for these quantities are crucial to mitigate the negative effects of
wind farms’ intermittent production on energy systems and markets. We use machine learning to
combine outputs from numerical weather prediction models with local observations. The former
provide valuable information on higher scales dynamics while the latter gives the model fresher and
location-specific data. So as to make the results usable for practitioners, we focus on well-known
methods which can handle a high volume of data. We study first variable selection using both a
linear technique and a nonlinear one. Then we exploit these results to forecast wind speed and
wind power still with an emphasis on linear models versus nonlinear ones. For the wind power
prediction, we also compare the indirect approach (wind speed predictions passed through a power
curve) and the indirect one (directly predict wind power).

Keywords—Wind speed forecasting, Wind energy forecasting, Machine learning, Numerical weather
prediction, Downscaling

Abbreviations—Numerical weather prediction (NWP); machine learning (ML); European Cen-
tre for Medium-Range Weather Forecasts (ECMWF); parc de Bonneval (BO); parc de Moulin de
Pierre (MP); parc de Beaumont (BM); parc de la Renardiere (RE); parc de la Vénerie (VE); ker-
nel ridge regression (KRR); neural network (NN); ordinary least squares (OLS); forward stepwise
ordinary least square (OLS f-stepwise); reproducing kernel Hilbert space (RKHS); Hilbert-Schmidt
independence criterion (HSIC); Backward selection with HSIC (BAHSIC); normalized root mean
squared error (NRMSE)

1 Introduction

The fast development of renewable energies is a necessity to mitigate climate changes [22]. Wind
energy has developed rapidly over the past three decades, with an average annual growth rate of
23.6% between 1990 and 2016 [17], and is now considered as a mature technology. The share of
renewable energies in global electricity generation reached 29% in 2020, and is expected to keep
growing fast in coming years [18] which raises a number of challenges, stemming from the variability
and spatial distribution of the resource. Then, in order to facilitate the dynamic management of
electricity networks, forecasts of wind energy require continual improvement. Short timescales,
from a few minutes to a few hours, are of particular importance for operations.

To produce forecasts, one can rely on several distinct sources of information. On timescales of
half a day to about a week, deterministic weather forecasts provide a representation on a grid of
the atmospheric state, including wind speed near the surface. The skill of such numerical weather
forecasts (NWP) models has continually increased over the past decades [2], while their spatial
resolution has also grown finer (down to few km). However, to predict at a given geographical
location for time horizons shorter than a day, the use NWP models is impeded by two main

& LTCI, Télécom Paris, Institut Polytechnique de Paris

b LMD-IPSL, Ecole polytechnique - IP Paris, ENS - PSL Université, Sorbonne Université, CNRS, France
¢ Université de Lorraine, CNRS, IECL

4 CMAP, Ecole Polytechnique, Institut Polytechnique de Paris

* Corresponding author: dimi.bouche@gmail.com



difficulties being (i) the errors in the modeled wind and (ii) the relatively infrequent initiation
of forecasts. The former result from both limited resolution and the impossibility to model local
processes. For instance, for wind speed at an altitude of 100m is strongly affected by local small-
scale features and turbulent motions, both of which remain beyond the spatial resolution that
is achievable for NWP models. Regarding the second point, operational centers typically launch
forecasts twice or four times per day, however the computation of the forecast itself as well as
the preparation of its initial state require time and computational resources—see e.g. [19]. As a
result, many methodologies for forecasting short-term wind speed or wind power use only past
local observations and focus on statistical methods—see e.g. the reviews from Tascikaraoglu and
Uzunoglu [29], Okumus and Dinler [23], Liu et al. [21] and references therein. Nevertheless, we
know that NWP models can provide valuable information for the evolution of the atmosphere on
larger scales—i.e. on the formation or passage of a low-pressure system and on the associated fronts.

It is therefore a natural idea to use both sources of information to train machine learning (ML)
models: local deficiencies in NWP models can partly be overcome by downscaling; i.e. better es-
timating local variables from the knowledge from a model’s outputs and past observations. Such
efforts have been carried out for decades in meteorology and climatology, under different names. In
a pioneering early study, [9] applied multilinear regressions trained on past observations to correct
NWP errors. More recently, model output statistics has become common practice in operational
weather forecast centers (see e.g. [32, 1]). In recent years, ML methods have enhanced the perfor-
mance of these post-processing steps (see e.g. [34, 10]).

Specifically for wind speed or wind power forecasting, several hybrid models combining suc-
cessfully NWP outputs with local observations have been proposed. In terms of time horizons,
the focus is mostly on forecasts beyond 1 hour with low resolution (generally one prediction per
hour)-see e.g. Hoolohan et al. [16, Table 1] and references therein. While for the shorter term, most
existing hybrid methods rely on complex and deep architectures—see e.g. Han et al. [14, Table 1]
and references therein. Moreover, for all these methods only a very low number of local and NWP
variables are used (most of the times, only the past observed wind speeds and the ones predicted
by the NWP model).

In this paper, we study hybrid prediction of both wind speed and wind power. Our contributions
are five-fold.

e We study the problem for time horizons ranging from 10 minutes to 4 hours at a high resolution
(every 10 minutes). This allows us to study with precision when and how the transition from
one source of information (past local observations) to the other (NWP forecasts) occurs. This
setting has been introduced in Dupré et al. [6] yet we extend it and use it to address the
following new problems.

e We include many different outputs from a NWP model as they could provide broader infor-
mation on the overall predicted dynamics to the ML model. We also include several local
variables. We then focus on variable selection and study the evolution of the importance of
the selected variables through time. This allows us to better understand the nature of the
studied statistical relationship and to extract a usable set of relevant variables.

e We study five distinct wind farms which enables us to expose many similarities but also some
site specificities and increases the statistical significance of our results.

e We investigate which type of ML methods are the most suited for hybrid prediction of wind
speed and wind power.

e Many existing contribution focus either on wind power or wind speed prediction but not on
the relation between them, whereas at all steps of the paper, we compare the direct (predict
wind power) and indirect (wind speed predictions passed through a power curve) approaches.

In terms of methodology, we have two key focuses.

e We want this study to be usable by practitioners. To that end we concentrate on a reduced
choice of well-known and efficient ML methods which scale well with the number of samples,
and moreover provide all the needed elements for a straightforward implementation. We also
put a particular emphasis on how we select our models.

e We want to ensure our results are statistically significant. To that end, we employ a thorough
evaluation process. We study several sites over several periods of time (the number of samples
is quite high per site) and for each location, we average the results over several data splits.

In Section 2, we introduce the data set from Zéphyr ENR and detail our processing of the data.
Section 3 is dedicated to the presentation of our methodology as well as to the introduction of the
statistical learning tools. Then in Section 4 investigates variable selection. Finally in Section 5,



Figure 1: Cartography of the studied farms, BM (A), BO (B), MP (C), RE (D), VE (E)

exploiting all the previous results, we compare different well-known ML models as well as direct
and indirect prediction for wind power.

Notation We introduce the following notation: for two integers ng,n; € N*, the set of strictly
positive integers, we denote by [ng] the set {1,...,n0} and by [ng,n1] the set {ng,...,n1}.

2 Data and context

In this Section, we introduce the dataset that we use (Section 2.1) as well as the pre-processing
steps that we apply to it and the general evaluation methodology (Section 2.2).

2.1 Zéphyr ENR’s dataset

Variable type  Altitude or pressure level  Variable Unit
Surface 10m/100m Zonal wind speed ms™*
Meridional wind speed ms~?
2m Temperature K
Dew point temperature K
Surface Skin temperature K
Mean sea level pressure Pa
Surface pressure Pa
Surface latent heat flux Jm™2
Surface sensible heat flux Jm 2

Boundary layer dissipation Jm

Boundary layer height m
Altitude 1000/925,/850/700/500 Zonal wind speed ms~*
Meridional wind speed ms™ !
Geopotential height m?s™2
Divergence 51
Vorticity st
Temperature K
Computed 10m/100m Norm of wind speed ms~?
10m to 925 hPa Wind shear ms ™!
Temperature gradient K

Table 1: ECMWF variables



Availability =~ Variable Unit

All Wind speed ms
All Power output kW
All Wind direction Degree

BO and BM  Temperature Celsius degree

Table 2: In situ variables

Variable (source) Abbreviation
Wind speed (in situ) WS

Power output (in situ) PW

Norm of wind speed at 100m (ECMWF) F10

Norm of wind speed at 100m (ECMWF) F100

Wind shear between 10m and 925 hPa (ECMWF) DF
Boundary layer dissipation (ECMWF) bld
Boundary layer height (ECMWF) blh

Surface latent heat flux (ECMWF) slhf

Table 3: Abbreviations for the variables used in the paper

Our first source of information consists of measurements made by sensors in the wind turbines
(we call these in situ variables) whereas the second one consists of forecasts from the European
Centre for Medium-Range Weather Forecasts (ECMWF'). We study five wind farms in the northern
half of France: Parc de Bonneval (BO), Moulin de Pierre (MP), Parc de Beaumont (BM), Parc de
la Renardiére (RE), and Parc de la Vénerie (VE). These wind farms are operated by the private
company Zéphyr ENR and are described in details in [7]. We display their location on a map in
Figure 1. Some are geographically close by—we can form the pairs (BO, MP) and (BM, RE)—while
VE is isolated. Note that we left another available farm out of the study because it displayed signs of
sensors deficiencies. On the one hand, the geographical topology of the surroundings for (BO, MP)
and (BM, RE) are quite similar, they correspond to open fields with very few elevation variations.
On the other hand, VE is surrounded by wooded countryside with slightly more elevation variations,
which may explain the differences that we observe between this farm and the others in Sections 4
and 5.

For BO and VE we have three years of data (from 2015 to 2017) which amounts to a total
of n = 157680 observations for BO. However, for VE we do not use the year 2016 because it
encompasses sensor deficiencies, so we use n = 105120 observations. For BM and RE we have
access to two years of data (from 2017 to 2018 for BM and from 2015 to 2016 for RE) which results
in a total of n = 105120 observations, and finally for MP we have only one year (2017), which gives
us of total of n = 52560 observations.

Several variables are available, we summarize the in situ ones in Table 2-note the temperature
is available only for BO and BM. In order to encode the circular nature of the in situ wind direction
we encode it using two trigonometric variables.

The ECMWF provides global forecasts issued by their NWP models. We followed [6]: we
extracted the day ahead forecast twice a day (at 0000UTC and 1200UTC) and included the same
47 variables as they do. These variables are either selected or computed so as to describe as well as
possible the boundary layer, the wind parameters and the temperature in the lower troposphere.
Table 1 presents the ECMWF variables we use. They can be either surface variables, altitude ones,
or computed from other ECMWF variables. The spatial resolution of ECMWF forecasts is about
16 km (0.125 ° in latitude and longitude) and their temporal resolution is 1h, then to match that
of the in situ variables (10 min), we linearly interpolate the ECMWF forecasts. To finish with we
sum up the abbreviations for the variables mostly used in the paper in Table 3.

2.2 Preprocessing and evaluation methodology

In order to increase the statistical significance of our results, we average the outcomes of the
experiments over different data splits. A split consists of 3 subsets from the dataset, a train subset
(of size Npain), & validation one (size ny,1) and a test one (of size nyest ). In order to avoid overfitting,
given a ML method and a set of possible parameter values, we first train the resulting models on the
train set. Then we choose the model yielding the best score on the validation set. To finish with,
we re-train this model on the concatenation of the train and validation set and report its score on



the test set. So as to preserve time coherence, we build our splits in a rolling fashion. For instance
for the first split we take the period [nirain] for training, the period [nirain + 1, Ntrain + nval] for
validation and we test the models on the period [Ntrain + Tval + 1, Ntrain + Mval + Ntest]. Then for
the second split, the train period is [ntrain + Tval + Mtest + 1, 2Mtrain + Mval + Ntest]], the validation
one i [2ntrain + Mval + Ntest + 1, 2Ntrain + 2Nval + Ntest] and so on. For the sizes of the windows,
we set Ngrain = 10000, nya = 10000 and ngest = 10000 (however, the last split generally contains
around 5000 < nest < 10000 observations). Since the length of available data vary from farm to
farm, we do not have the same number of splits for all the farms.

We pre-process the data in the following way. As the number of wind turbines per farm is quite
low (6 for BM, 6 for BO, 3 for HC, 6 for MP, 6 for RE and 4 for VE) , we average the in situ
data over the turbines for each farm. In all our experiments, we standardize both the input and
the output variables (subtract the mean and divide by the standard deviation) using the training
data. We do so both for in situ variables and ECMWF ones. Such operation is crucial for instance

to avoid favoring some variables which are structurally bigger over others when using regularized
ML models.

3 Methodology and machine learning tools

In this Section, we introduce our general methodology as well as the ML tools that we use for
variable selection and forecasting.

3.1 Methodology
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Figure 2: Summary of the time windows used for each source of data for wind speed
prediction

Dataset building. Let m € N be the prediction length (the number of future wind speed or
wind power values we want to forecast). For the ECMWF variables, we include the corresponding
forecasts. However, in practice we found that including a bit more than that improved performances.
To that end, we denote respectively by 79 € N the number of past ECMWF predictions that we
include, and by r; € N the number of ECMWF predictions that we consider after m. For the in
situ variables, we include a length [ € N of past observations. These different time windows are
illustrated in Figure 3.1 for a reduced set of variables. For the all the variables and time windows,
we concatenate the relevant observations x; (these within the orange zones in Figure 3.1). From
these, we want to produce a prediction for y;11.,, € R™ (the m observations within the green zone
in Figure 3.1). In practice, we use the following parameters which work well experimentally:

e we predict up to 4 hours, with a time sampling rate of 10 min, it means that m = 4?30 =24,

3X60 _ 18,

e for the in situ variables, we consider 3h of past observations, thus I = =33



o for the ECMWF variables we additionnally use the predictions between 1.5h before and 1.5h

after the time horizon of interest so rg = r; = 1'51660.

ML models. We stick to ML models which are well-known and can scale well to a higher volume
of data. Good results were obtained for one location (BO) from the studied dataset in Dupré et al.
[6] using linear regression with greedy forward stepwise variable selection [15]. Nevertheless, since
we are interested in the importance of variables, we study also an alternative which select variables
directly in the least square problem. The LASSO [30] exploits the L1 penalty to induce sparsity in
the regression coefficients, thus shrinking to zero the ones which are associated to the less relevant
variables. Such methods can however be limited in that they can learn only linear dependencies
between the input and output variables. Consequently, we study a nonlinear alternative: kernel
ridge regression (KRR)-see for instance [26, 27]. Finally, in order to include most families of ML
models, we consider two other nonlinear methods: a tree-based boosting algorithm [8] (we use
XG-Boost Chen and Guestrin [4]) as well as a feed-forward neural network (NN). In Section 3.2 we
give more mathematical details on the general ML problem as well as on the methods that perform
the best in the experimental section.

Variable selection. We have many in situ and ECMWF variables available (see Tables 1 and 2).
So as to improve the computational efficiency and and understand better what the models do, it
is preferable to use only the most important variables. Ideally, we want to find a subset which is
sufficient for a model to predict a statistically relevant target value from the input variables. In
that sense a variable selection tool is necessarily model specific. Linear techniques will focus only on
linear dependencies, whereas nonlinear ones will incorporate a much wider range of dependencies.
Then we propose to use and interpret the results of one variable selection for each type. For the
linear one we study the LASSO. For the nonlinear one, we use backward elimination using the
Hilbert Schmidt Independence Criterion [28]. As opposed to the LASSO, it performs variable
selection as an independent first step. The selected variables can then be used downstream to
train any model. Then, for the nonlinear models (KRR, XG-Boost, feed-forward NN), we use the
variables selected through this method. We give more detailed insights into the different techniques
in Section 3.3.

3.2 Details on machine learning models

The input observations are the concatenation of the different variables on the time windows de-
scribed in the previous section. We denote by & = RY the resulting input space, for some ¢ € N.
Our training data then consist of ((X¢,yet+1:m))ie; € (X x R™)™ for some n € N, where we recall
that yii1:m = (Ye414mo)my=1- Given a prediction function from a ML model class fy : X — )
parameterized by a vector w € W, we want to minimize the average error on the training data:

1L
Iin — ; | fo (%X¢) = Yis1ml3 + AQ(W). (1)

However, depending on the model, a penalty function 2 : W — R can be added in order to
prevent overfitting or promote variable selection; its intensity is controlled by a parameter A > 0.

In practice, instead of predicting all time horizons in one go as in Problem (1), we rather
use separate models for each horizon in [t + 1, + 1 + m]. That way we can tailor the different
parameters for each horizon, which we found improved performances. Then in what follows, we
consider a generic time horizon m and predict y¢414m.

Ordinary least squares (OLS). In forward stepwise variable selection [15], at each step an OLS
regression is solved for which the optimization problem reads:

n

: 1 § : T t 2
W m 2
welxr/lvl,%eR n (wx Yrtitm) (2)

A well-known and simple closed form exist, which we use in practice.

LASSO. The optimization problem for the LASSO is the following:

n

1 T 2
min — wox;+b— Allw |1,
weW,beRn;( t b= Yepr4m)” + Allwlly
where ||w||; is the sum of the absolute values of the coefficients w. Many efficient algorithms exist
to solve this convex yet non differentiable problem-see for instance [3]. In practice we use the
scikit-learn [24] implementation with coordinate descent solver.



Kernel ridge regression (KRR). In KRR, we consider a class of models defined by a positive
definite reproducing kernel k : X x X — R which results in a unique associated reproducing kernel
Hilbert space (RKHS). A most typical choice for k is the Gaussian kernel:

ky (x, ') = exp (= ([lx = x'[|3) -

We then seek our modeling function in this RKHS which we denote Hj, each h € Hj being a
function from X to R. For many kernels, this space constitutes a very rich class of modeling
functions which can model nonlinear dependencies. The optimization problem reads:

n

1

in —» (h(x) — 2+ AR 3
hnel}an n ;( (Xt) = Yes14m) 17213, (3)
where || - H%k is the RKHS norm on #j, which measure in a sense the smoothness of functions in

Hj.. Thanks to the Representer theorem, any solution to Problem (3) can be parameterized by a
vector & € R™:

he = Zajk(xja ),
j=1

which makes optimization in the RKHS amenable. For KRR the optimal coefficients @ can be
found in close form:

a = (K +n\)"ty™),

with y(™ = (ysr14m)fq, I € R™ ™ the identity matrix and K € R"™ " with entries K;; =
k(xe,Xxj).

In practice, to handle the large volume of training data, we use an approximated version of
KRR. Nystrom approximation [31, 5] exploits a random subset of points from the training data.
Concretely, we sample randomly and uniformly without replacement p € N indices {i1, ..., %, } among
the integers in [n], and replace hz—see e.g. [25]-with:

P
hg = Z&jk(xiw ),
j=1
where a € RP? is given by the following close form:

&= (K} Knp + MKy, Ky, (4)

Where A denotes the Moore-Penrose pseudo-inverse of a matrix A, and Kyp € R"*P is defined by
the entries (K,p)e; := k(x¢,%;;) and K, € RP*P by the entries (Kpp)p; = k(xq,, Xi;)-

3.3 Details on variable selection

OLS with forward stepwise selection (OLS f-stepwise). When performing linear regression,
variable selection can be performed in a greedy manner. First an intercept is fit to the data and
then at each step we solve OLS problems—Problem (2)-adding in turns each one of the remaining
variables. We then keep the one which best improve the model according to some criterion. In
[6], the Bayesian information criterion is used. However, in our experiments we rather used the
improvement of the score on half of the validation set, as it led to better experimental performances.

LASSO. Provided the regularization intensity A is well chosen, the L1 penalty of the LASSO
shrinks the coefficients associated the variables which are less important towards zero. Then the
model uses mostly the relevant variables and the magnitude of the coefficients can be looked at to
deduce what these variables are. This is the type of analysis that we perform in Section 4.1.

Hilbert-Schmidt independence criterion (HSIC). The HSIC [12] is an independence measure.
Similarly to the KRR, it makes use of RKHSs to embed implicitly a set of observations into a high-
dimensional space and consider a notion of independence in this space which allows for detection
of nonlinear dependencies. More precisely, let us consider a positive-definite kernel k : X2 — R
for the input observations and a one g : (R™)? — R for the output observations. For this variable
selection technique, we consider all time horizons in [t + 1,¢ + 1 4+ m] together as the kernelized
framework allows for this. In practice, we estimate HSIC from the data as [13]:



ASIC := %Trace(HKHG),
n

where H € R™™"™ is the centering matrix H := %(I —117) with 1 € R™ a vector full of ones and
I € R™*™ the identity matrix. The matrices K € R"*™ and G € R™*" are the kernel matrices:

(K)tj = k(Xt,Xj),
(G)j = 9(Ytt1:m> Yjtiim)-

HSIC takes its values between 0 and 1, a value of 0 meaning independence and a value of 1 means
full dependence.

However, to be able to compute the estimator for the large number of data points, we recourse to
Nystrom approximation as well [35]. We then sample randomly and uniformly without replacement
p € N indices {i1,...,3,} from the integers in [n] for the input observations and p’ € N ones
{1, ..., 15, } for the output observations. We then define the Nystrém features maps [33] (centered
in the feature space using H):

&= HEK,, K,
U= HG,yG,>

p'p
where the matrices K,,, and K, are defined as for Equation (4) and the matrices Gy and Gpp
are defined similarly for the kernel g however based on the set of indices {i}, ..., ,}. The Nystrom
HSIC estimator is then [35]:

!
p

— 1 s
HSIC := ||-2T¥|%,
n
where for a matrix A, the Frobenius norm is defined as || A[|% := Trace(AT A).

Backward selection with HSIC (BAHSIC). To perform variable selection, we start with all
the available variables and then at each round, we compute the HSICs between the input variables
and the target variable removing one input variable at a time. A given percentage of the input
variables for which these HSICs are the highest are removed. We keep iterating in this way to
rank the variables. Then, the ones removed the latest are the most important ones. The detailed
algorithm corresponds to Algorithm 1 in [28]. A forward version exists as well, however, the authors
advocate the use of backward selection to avoid missing important variables. Finally as a side note,
in practice we use as Gaussian kernels setting bandwidth following the recommendations from [28].

4 Importance of variables and their evolution through time

In this section, we study variable selection using the LASSO in Section 4.1 and BAHSIC in Section
4.2 to determine which variables are the most important and how their importance evolves through
time.

4.1 Linear variable selection with LASSO

LASSO scores. We now describe the computations carried out to extract a subset of relevant
variables suitable for interpretation from fitted LASSO models. In practice for each data split,
we validated the regularization parameter A on the validation set and obtained estimated LASSO
coefficients. Now to reduce the number of variables we must rank them according to an importance
metric based on these coefficients; we do so for each time horizon separately. So as to to avoid
assigning more weight to models for which A\ was selected small, for each farm and each data split
we normalize the coefficients by the absolute value of the biggest one. As opposed to the grouped
variable selection performed in Section 4.2, the observations through time for a given variable can
be separated by the LASSO shrinking (a variable can be selected for instance at time tg but not
at t1). Consequently, we sum the normalized coefficients corresponding to different time instants
for the same variable and in doing so, we obtain a single quantity per variable. Then we average
these quantities over the data splits and call the resulting quantities LASSO scores. To sum up, at
this point we have for each prediction horizon and each farm a set of such scores for each variable.
Then, to select variables, we average these LASSO scores over farms. Finally, based on these
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Figure 3: Linear variable selection with the LASSO (Wind speed as target)
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Figure 4: Linear variable selection with the LASSO (Wind power as target)

average scores, for each prediction horizon, we keep the top 6 variables.

Interpretation. For these selected variables, we plot the evolution through time of the LASSO
scores in Figure 3 for wind speed and in Figure 4 for wind power. We make the following key
observations:

e At all locations, two variables are much more important than the rest. The in situ observed
wind speeds (WS) and the ECMWF predicted wind speed at altitude 100m (F100) stand
out for wind speed prediction. For wind power prediction, the in situ power production
(PW) along with F100 are of particular importance. We can relate these results to the good
performances of the LASSO for wind speed prediction in Section 5. Then if we look at the
relative magnitudes of the coefficients, we can deduce that only using a linear combination of
past local wind speeds (WS) and predicted wind speeds (F100), we can get an already good
description of the future local wind speed.

e The location VE can be singled out from the others. Indeed the predicted wind speed at
altitude 10m (F10) appears, and the forecasted wind speeds (F100 and F10) take longer to
take over the in situ variables, especially when predicting wind power. This may be explained
by a lesser representativity of the ECMWTF forecasts for this location which may be linked to
the elevation variations in the surroundings of the farm that we mentioned in Section 2.1.

As a concluding note, the dynamics of the local wind speed seem to be very well approximated
by a simple linear model combining very few in situ variables and ECMWF ones. For predicting
directly wind power however, we see in Section 5 the results are a bit less convincing, possibly due
to the nonlinear aspect of the power curve.



4.2 Nonlinear variable selection with HSIC
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Figure 5: Nonlinear variable selection using HSIC (Wind speed as variable)
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Figure 6: Nonlinear variable selection using HSIC (Wind power as target)

HSIC-score. For each farm and each split of the data we run BASHSIC on the training set until
we have 5 variables left. Then for each variable we estimate the HSIC with that variable removed
and normalize this value using the maximum HSIC value among these quantities. The normalized
HSIC score appearing in the figures corresponds to 1 minus this score averaged over the training
sets; the higher it is, the more important the variable is. We display the results in Figure 5 for
wind speed and in Figure 6 for wind power.

Global interpretation. We make the following key observations:

e As expected, the in situ variables are most relevant for the shortest time horizon and the
ECMWEF variables take progressively the lead for longer horizons. However, compared to
linear feature selection, ECMWF variables take the lead faster here-between 10-50 minutes
as opposed to 70-100 minutes for linear selection. The retained variables are mostly the same
as the one selected by the LASSO (WS or WS and PW depending on the target) and F100.
However, F10 and DF are now more systemically retained with a significant importance.

As for the LASSO selection, probably due to the lesser accuracy of ECMWEF forecasts for
this location, we can single out VE where the importance of the in situ variable(s) decreases
much less fast than at the other farms.

Presence of DF and F10. In comparison with linear selection, we have two more variables of
interest (DF and F10). F10 describes the wind speed at lower levels and DF the wind shear near the
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Figure 7: Average NRMSE at all time horizons for the three methods performing best
overall according to Table 5.2 as well as for Persistence and ECMWF (wind speed as
target)

surface. They thus bring useful information about the wind and its vertical shear, and likely help
to correct deficiencies of the NWP model’s description of wind at 100m. The fact that they appear
here and not in the linear framework indicates a nonlinear relation, which is not surprising as the
shear relates to the level of turbulence in the boundary layer. Additionally, the above results bring
a fairly sharp answer to another question underlying this study. As the calculation of near-surface
winds in NWP models involves parameterizations, they are not the most reliable output of NWP
models. Consequently, one could expect that, informed about other aspects of the boundary layer
and local wind realizations, a nonlinear method could capture better the relationship between the
boundary layer and the near-surface winds. This is not the case: BAHSIC clearly select rather
the wind variables as the best source of information. Over variable terrain (VE), wind speed at
different heights (F10) are more used, suggesting that the NWP model indeed fails to accurately
describe the wind shear. And yet variables describing the boundary layer (e.g. stratification) still
remain unused or marginal. Over flat terrain, the wind speed at 100m height (F100) is the major
source of information, which is positive and encouraging regarding the accuracy of NWP models.

5 Wind speed and wind power forecasting

In this Section we compare several ML models for predicting both wind speed and wind power,
exploiting the variable selection techniques from the previous section. We include the two main
baselines, namely persistence which predicts the last in situ observation and ECMWF which uses
the F100 forecasts from the ECMWFEF.

5.1 Experimental setup

Metrics. We evaluate our results using the normalized root mean squared error (NRMSE) as in
[6]. Let (2¢)7_; denote the realizations of a (scalar-valued) target variable. We define its global
mean as z = "1 z. Given a set of predicted values (Z;)};, it is defined as:

VAT (B - =)
NRMSE := — .
z

n £Lat=1

However, in order to compare the methods over the full time span, we need to introduce a new
metric. If we were to simply average NRMSEs over time, then the resulting average would not
make much sense because of the difference of magnitude between the errors at the different time
horizons. Therefore, we propose to compare the NRMSE at each time horizon to a specific anchor
reflecting what is achievable: the NRMSE of the best predictor for this time horizon. Let F be
a given set of predictors—for instance when predicting wind speed we have F := {Nystrom KRR,
LASSO, OLS f-stepwise, XG-Boost, Feedforward NN, Persistence, ECMWF}. Given a predictor
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Figure 8: Average NRMSE at all time horizons for the three methods performing best
overall according to Table 5.2 as well as for Persistence and ECMWF (wind power as
target)

f € F, a prediction horizon mg € [m] and a data split s (among a total of S € N data splits),
let NRMSE(S{?,IO denote the NRMSE of predictor f for the prediction horizon mg on the data split
s. We then define the average NRMSE degradation of a predictor fo (with respect to the best
predictor):

ER) $,mo
s=1

S m
1
f - !
%Z Zl (NRMSE() —?ggNRMSE( ) (5)
mo=

The best possible value is zero as it means that over all splits and over all horizons, the predictor
was the best one.

Direct/indirect prediction. When we predict wind power, we consider two prediction tech-
niques. Either we predict directly the wind power (direct approach) or we predict the wind speed
which we transform using an estimated power curve in the same fashion as in [6] (indirect ap-
proach). A theoretical power curve could be used as well, however, in this work we estimate it from
the training WS and PW observations using median of nearest neighbors interpolation using 250
neighbors.

Model selection. We follow the methodology introduced in Section 3.1 and refer the reader to
Section 3.2 for details on the ML methods. In practice, for each data split, the key parameters
of the different methods are chosen using the validation set (the regularization parameters A, the
Gaussian kernel’s v for KRR, the number of variables for OLS f-stepwise, the architecture for the
feedforward NN etc.). We provide the details of the considered parameters in the supplementary
material.

5.2 Comparisons over the 10 minutes - 4 hours range

Method (average rank) | BM BO MP RE VE
LASSO (1.8) 112 0.13 0.6 0.14 0.16
Nystrom KRR (2.0) 1.05 036 0.06 0.19 0.21
OLS f-stepwise (2.8) 1.1 0.16 047 0.18 0.34
Feedforward NN (3.4) 1.08 046 037 045 0.66
XG Boost (5.0) 1.81 125 163 074 097
ECMWF (6.4) 781 363 3.7 6.66 11.37
Persistence (6.6) 559 6.71 7.02 6.7 4.5

Table 4: Average NRMSE degradation w.r.t. best predictor for wind speed prediction
(x1072)
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Type | Method (average rank) | BM BO MP RE VE
Direct | Nystréom KRR (2.4) | 401 12 063 0.46 0.7
Indirect Nystrom KRR (3.0) 3.54 119 0.55 297 1.2
Indirect LASSO (3.4) 4.04 0.8 1.08 2.72 0.87
Direct Feedforward NN (4.0) 3.56 1.71 2.29 1.08 1.67
Indirect OLS f-stepwise (4.4) 3.7 0.87 1.53  3.42 1.61
Direct XG Boost (direct) (5.2) 462 239 1.5 1.8 1.8
Direct OLS f-stepwise (6.6) 415 3.01 3,56 242 3.0
Direct LASSO (direct) (7.0) 491 315 346 254  2.46
Direct Persistence (9.4) 12.08 1548 1491 14.25 9.88
Indirect ECMWF (10.2) 1893  8.66 8.02 19.74 28.53
Indirect Persistence (10.4) 13.21 15.89 15.22 16.39 10.86

Table 5: Average NRMSE degradation w.r.t. best predictor for wind power prediction
(x1072)

Overall efficiency of ML models. From a general perspective, our experiments show that
combining a NWP model’s outputs with local observations is very beneficial for predicting both
wind speed and wind power at all the time horizons considered. To that end, Figure 5 displays
the evolution of the NRSME for the two baselines (persistence and ECMWF) as well as for the
three ML methods which performed best for wind speed prediction in Table 5.2 while Figure 5
displays the same for wind power prediction; the displayed ML methods being the top three ones
from Table 5.2. For three farms (VE and to a lesser extend, BM and RE), even after four hours the
improvement over ECMWF is still quite large. For BO and MP it becomes less important, yet still
present. The improvement can be quite dramatic for very short horizons (first 100 minutes or so),
and a bit less important for longer time horizons. This is probably linked to the representativity
of the NWP model’s outputs which depends on the location.

Quantitative comparison. We now use the NRMSE degradation w.r.t. the best predictor
(Equation 5) to compare the methods. The results are displayed in Table 5.2 (WS as target) and
in Table 5.2 (PW as target). On the one hand, for wind speed prediction, the LASSO is the
best ranked method. Relating this to the results from Section 4.1, it shows that the dynamics
of the wind speed can be very well described by a linear combination of few ECMWF and local
variables (essentially past local wind speeds and forecasted wind speeds). It suggests that the
important nonlinear dynamics are overall well captured in the ECMWF variables. On the other
hand, it seems better to predict directly wind power and do so using the Nystrom KRR. This is
not surprising, as the power curve is a nonlinear function and so we expected the linear methods
to struggle in direct prediction. Moreover, in direct prediction, we implicitly include the power
curve into the learning problem. This is advantageous since for instance a model trained to predict
wind speed first will be very eager to forecast well high values (failing to do so would incur a high
error term). However to predict wind power, producing accurate forecasts for higher wind speeds
is less critical, since in the power curve, the actual wind power as a function of the wind speed is
thresholded.

We note that the feedforward NN does not beat indirect prediction with the LASSO. This
suggests that the higher expressiveness of NNs beyond the ability to infer the nonlinearity of the
power curve is not needed. The difference of performance with direct Nystrom KRR is imputable
to the optimization error and variability implied by non-convexity of NNs whereas for Nystrom
KRR the optimization error is close to non-existent thanks to the closed-form solution. XG-Boost
also does not perform well, this can be explained by the use of time series as features: these are
very correlated and high dimensional which can make tree-based models unstable [11]. Doing some
more work on feature pre-processing should improve the results.

5.3 Zoom on 10 minutes and 1 hour ahead forecasting

We now propose to zoom in on on two time horizons of particular interest: 10 minutes and 1 hour
ahead. We display the raw NRSMEs in Table 5.3 for WS and in Table 5.3 for PW.

For 10 minutes ahead prediction, persistence is unsurprisingly very efficient even though small
yet significant improvements are already obtained by exploiting also ECMWF information with ML.
For both the prediction of WS and PW, all three methods which beat persistence reach similar
scores. For WS, these are the same as those performing best overall in Table 5.2: Nystrom KRR,
LASSO and OLS f-stepwise. However, for PW, these are Nystrom KRR (direct), OLS f-stepwise
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Horizon | Method (average rank) | BM BO MP RE VE
10 min Nystrom KRR (1.8) 8.0 7.25 8.15 7.08 6.44
LASSO (2.0) 7.91 7.25 8.15 7.12 6.43
OLS f-stepwise (2.2) 7.92 7.25 8.14 7.09 6.44
Persistence (4.4) 8.11 7.55 8.43 7.39 6.56
Feedforward NN (4.8) 8.26 7.55 8.33 7.37 6.8
XG Boost (5.8) 872 826 957 761  6.77
ECMWF (7.0) 25.61 20.78  22.06 22.57 26.3
1 hour Nystrom KRR (1.6) 17.01 16.03 17.11 14.94 1348
LASSO (1.8) 16.94 16.04 17.13 1495 134
OLS f-stepwise (2.6) 16.92 16.06 17.3 15.02  13.52
Feedforward NN (4.0) 17.27 16.27 17.32 15.17  13.72
XG Boost (5.0) 17.69 17.19 18.77 15.66  14.16
Persistence (6.0) 18.68 1881 20.09 17.73 15.0
ECMWF (7.0) 25.61 20.78  22.06 22.58 26.3

Table 6: Average NRMSE for 10 minutes and 1 hour ahead wind speed prediction
(x1072)

(direct), LASSO (direct). The first is the leading method in Table 5.2, but the other two are not.
We explained their poor performance by the nonlinearity of the power curve which they cannot
capture. Nevertheless for the very short-term, this is not an issue. This confirms our findings
from Section 4: for 10 minutes ahead prediction, the last observed wind power is the most crucial
information.

For 1 hour ahead prediction, the rankings of ML methods for both wind speed (Table 5.3) and
wind power (Table 5.3) almost perfectly match the rankings of methods on the whole time span
(Table 5.2 for WS and Table 5.2 for PW).

Overall, this analysis confirms that for both the very short term and the longer term Nystrém
KRR is a safe choice for wind speed and wind power prediction. For the latter the direct approach
with this method should be preferred.

5.4 Computational times

We now address the practical concern of computational times. To that end, we measure the
time on a laptop to fit the different procedures and to produce the corresponding forecasts. We do
so only for one wind farm (BO). We draw randomly 50 pairs containing a split from the dataset (see
Section 2.2) and a parameter configuration among the ones we used. Then we time the procedures
using these pairs. We display the median as well as the 10% and 90% quantiles of the obtained
computational times in Table 5.4. To put these computational times into perspective, on the one
hand the regression models have extra parameters to tune, and therefore many configurations must
be tested. On the other hand Nystrom BAHSIC seems expensive but no such tuning must be
performed (it eliminates the variables gradually, therefore the ranking can be used to include more
or less features afterwards).

6 Conclusion

We showed through experiments on several wind farms that we can improve very significantly short-
term local forecasts of both wind speed and wind power by combining statistically a NWP model’s
outputs with local observations. To better understand how, we studied in details the evolution of the
variables’ importance using two metrics, a linear one based on LASSO coefficients and a nonlinear
one using HSIC. Our global conclusion is that NWP wind variables are a very relevant source of
information to complement local observations, even for the very short-term. To forecast wind speed,
a parsimonious linear combination of NWP and local variables (with the LASSO) yielded the best
result. While to forecast wind power, direct prediction (no power curve involved) with a nonlinear
method (Nystrém KRR) using a few variables (selected with BAHSIC) is preferable. Beyond the
ability to capture the nonlinearity of the power curve, it seems unnecessary to use more complex
models which hints that NWP model’s outputs describe sufficiently the other nonlinear dynamics
involved. For future work, assessing the variability of the predictions, for instance by predicting
conditional quantiles [20] which would inform us on the expected distribution of the predictions.
This could help mitigate the intermittent effects of wind power production further.
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Horizon Type Method (average rank) BM BO MP RE VE
10 min Direct Nystrom KRR(1.4) 19.36 18.16 18.94 18.49 15.7
Direct OLS f-stepwise (2.0) 19.04 18.2 18.96 18.53 15.8
Direct LASSO (2.6) 19.06 18.22 19.01 18.56  15.78
Direct Persistence (4.4) 19.44 18.92 19.63 19.13 16.09
Direct Feedforward NN (4.6) 19.73  18.81  19.56 19.3 16.3
Direct XG Boost (6.0) 19.9 19.41 19.77 19.38 16.59
Indirect LASSO (7.6) 20.73 19.48 19.91 26.84 18.34
Indirect Nystrom KRR (8.0) 20.86 19.51  19.87  26.8 18.36
Indirect OLS f-stepwise (8.4) 20.73 19.48 19.89 26.87  18.39
Indirect Persistence (10.0) 21.67 2041  20.77  27.32 18.8
Indirect ECMWF (11.0) 60.15  49.09 4834 6091 61.66
1 hour Indirect Nystrom KRR (2.8) 40.02 39.04 38.74 41.53 31.15
Direct Nystrom KRR (3.0) 41.26  39.36 38.85 38.59 30.46
Indirect LASSO (3.4) 40.11 39.07 39.1 41.72 30.8
Indirect OLS f-stepwise (4.6) 39.97 39.16 39.37 42.2 31.36
Direct Feedforward NN (4.8) 40.51  39.64 39.58 39.44  31.16
Direct LASSO (5.2) 40.39  39.93  40.06 39.83  31.07
Direct OLS f-stepwise (5.6) 40.37  39.82 40.26  39.67  31.53
Direct XG Boost (6.6) 41.89 4043 39.22 39.99  31.81
Direct Persistence (9.0) 43.58 4552 4544 4484  33.88
Indirect Persistence (10.0) 44.68 46.01 4599 4736  35.08
Indirect ECMWF (11.0) 60.15  49.1 48.34  60.91  61.67

Table 7: Average NRMSE for 10 minutes and 1 hour ahead wind power prediction
(x1072)

Task Method Fit time (s) Predict time (s)
Selection Nystrom BAHSIC | 74.61 (73.38, 89.00) -
Selection & regression LASSO 1.39 (0.01, 5.03) 0.039 (0.036, 0.044)
Selection & regression OLS f-stepwise 3.58 (2.92, 4.30) 0.037 (0.037, 0.043)
Regression Nystrom KRR 0.451 (0.414, 0.563)  0.332 (0.300, 0.433)
Regression XgBoost 0.450 (0.405, 0.548)  0.058 (0.053, 0.070)
Regression Feedforward NN | 75.84 (72.70, 77.27)  0.029 (0.028, 0.031)

Table 8: Median (10 % quantile, 90 % quantile) of fit and predict computational times
on laptop for direct wind power prediction on BO farm.
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Experimental details

This short appendix is dedicated to the full description of the parameters that we use in the
experiments.

A Importance of variables and their evolution through time

A.1 LASSO

The main parameter of the LASSO is the regularization intensity A. For each data split, we select
it based on the NRMSE achieved on the validation set. We consider values in a geometric grid of
size 30 ranging from 10~° to 1.

A.2 BAHSIC

We use a Gaussian kernel for both for the input kernel and the output one:

ky(2,2") == exp (—(||z — 2']3) -

We follow [28] in the choice of the parameter v. We standardized both our input and output data
so we can apply their heuristic: set this parameter to 2—1(1 where d is the dimension of the inputs of
the kernel. Then for the input kernel we have d = ¢ and for the output one d = m.

For the Nystrom approximation, we use fewer points than for the KRR since as highlighted in
[35], for detection of dependency, a fewer number of anchor points are generally sufficient. We then
use 100 points for both the input and output approximation.

B Wind speed and wind power forecasting
As a first general note, since we standardized all the variables, we consider the same parameter
ranges for prediction of wind speed and wind power.

LASSO The fitted models used for interpretation in the variable selection section are the same
that we use here (so the considered parameters are the same).

OLS f-stagewise We selected on the validation set the number of included variables. We consider
the following number of variables: {5,6,7,8,9,10,11,12,13,14,15,20}.

Nystrom KRR We select both the input Gaussian kernel’s v parameter and the regularization
parameter A\. We consider the following values:

e 7 in a geometric space of length 30 ranging from 107 to 1073,
e )\ in a geometric space of length 30 ranging from 10~ to 5.
For the Nystrom approximation, we use 300 sampled points.

Xg-Boost For Xg-Boost, we validate the trees’” maximum depth considering values in {3,4,5,6}
as well as the minimum loss reduction parameter for values in a geometric space of size 50 ranging
from 10~7 to 50.

Feedforward NN We consider a NN with 3 hidden layers and validate the number of neurons per
layer choosing among the possible values {(35, 20, 5), (50, 25, 10), (50, 35, 20), (75, 50, 25)}.

18



	1 Introduction
	2 Data and context
	2.1 Zéphyr ENR's dataset
	2.2 Preprocessing and evaluation methodology

	3 Methodology and machine learning tools
	3.1 Methodology
	3.2 Details on machine learning models
	3.3 Details on variable selection

	4 Importance of variables and their evolution through time
	4.1 Linear variable selection with LASSO
	4.2 Nonlinear variable selection with HSIC

	5 Wind speed and wind power forecasting
	5.1 Experimental setup
	5.2 Comparisons over the 10 minutes - 4 hours range
	5.3 Zoom on 10 minutes and 1 hour ahead forecasting
	5.4 Computational times

	6 Conclusion
	A Importance of variables and their evolution through time
	A.1 LASSO
	A.2 BAHSIC

	B Wind speed and wind power forecasting

