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Abstract: The global coverage of Chlorophyll-a concentration (Chl-a) has been continuously available
from ocean color satellite sensors since September 1997 and the Chl-a data (1997–2019) were used
to produce a climatological dataset by averaging Chl-a values at same locations and same day of
year. The constructed climatology can remarkably reduce the variability of satellite data and clearly
exhibit the seasonal cycles, demonstrating that the growth and decay of phytoplankton recurs with
similarly seasonal cycles year after year. As the shapes of time series of the climatology exhibit strong
periodical change, we wonder whether the seasonality of Chl-a can be expressed by a mathematic
equation. Our results show that sinusoid functions are suitable to describe cyclical variations of data
in time series and patterns of the daily climatology can be matched by sine equations with parameters
of mean, amplitude, phase, and frequency. Three types of sine equations were used to match the
climatological Chl-a with Mean Relative Differences (MRD) of 7.1%, 4.5%, and 3.3%, respectively.
The sine equation with four sinusoids can modulate the shapes of the fitted values to match various
patterns of climatology with small MRD values (less than 5%) in about 90% of global oceans. The fitted
values can reflect an overall pattern of seasonal cycles of Chl-a which can be taken as a time series of
biomass baseline for describing the state of seasonal variations of phytoplankton. The amplitude
images, the spatial patterns of seasonal variations of phytoplankton, can be used to identify the
transition zone chlorophyll fronts. The timing of phytoplankton blooms is identified by the biggest
peak of the fitted values and used to classify oceans as different bloom seasons, indicating that blooms
occur in all four seasons with regional features. In global oceans within latitude domains (48◦N–48◦S),
blooms occupy approximately half of the ocean (50.6%) during boreal winter (December–February)
in the northern hemisphere and more than half (58.0%) during austral winter (June–August) in the
southern hemisphere. Therefore, the sine equation can be used to match the daily Chl-a climatology
and the fitted values can reflect the seasonal cycles of phytoplankton, which can be used to investigate
the underlying phenological characteristics.
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1. Introduction

The seasonal change of plants repeats with similar cycles at fixed sites year after year. The ancient
Chinese recorded these rhythms and formulated 24 “solar terms” in the lunar calendar that described the
seasonality and other natural phenomena. In the ocean, the seasonal cycles of phytoplankton biomass,
supporting the elemental cycle of the marine food web and regulating the global carbon cycle, have been
monitored by satellite-retrieved Chlorophyll-a concentration (Chl-a) [1–6]. Platt et al. [7] used a suite
of 10-year time series of Chl-a to explore the qualitative features of blooms for the Northwest Atlantic
Ocean. Cushing [8] mathematically modelled phytoplankton seasonality using in-situ measurements
and conceptually designed several types of cycles for different latitudes. Behrenfeld et al. [9] concluded
that the seasonal cycles of phytoplankton dominate over the inter-annual changes of biomass. Therefore,
the seasonal cycles of Chl-a provide a way for understanding the life cycle of phytoplankton and its
related ecosystem.

In the ocean, the phytoplankton seasonality is determined by a wide variety of controlling
factors including processes such as the incident solar irradiance, nutrient supply, grazing pressure,
ocean circulation, upwelling, water stratification, sea surface temperature, sea ice cover, cloud cover,
wind regime, atmospheric dust deposition, precipitation, long-term climate changes, and other
conditions [10–18]. These processes themselves vary in a complicated manner in different seasons and
regions, obviously leading to complexity of the spatio-temporal seasonal variability. Satellite ocean
color data have continuously offered a synoptic view of the global coverage of the phytoplankton
biomass for more than two decades, which is long enough to study the seasonal characteristics.

Several methods have been developed to investigate seasonal cycles of phytoplankton.
The Gaussian distribution was used to fit the time series Chl-a data [7,19,20], and to analyze the timing,
size and duration of phytoplankton blooms in the Gulf of Cádiz [14]. The Generalized Linear Model was
used to extract phenological metrics [21,22]. Huang et al. [23] developed the Hilbert–Huang transform,
an adaptive data analysis method, for examining temporal and spatial variations of geophysical data.
Palacz et al. [24] used the Hilbert–Huang transform to analyze satellite products and found an overall
increasing trend of Chl-a in the South China Sea. Zhang et al. [25] used the Holo–Hilbert Spectral
Analysis to examine the timing and magnitude trends of phytoplankton blooms. Wernand et al. [26]
used the Mann–Kendall test, a non-parametric method in trend analysis of ocean data and found
global chlorophyll concentration did not exhibit a statistically significant increase or decrease during
the past century. Vantrepotte and Melin [4] used an iterative band-pass filter algorithm to analyze
the inter-annual variations of Chl-a. Winder and Cloern [27] used wavelet analysis on the time series
of phytoplankton biomass to extract their dominant periods of variability. Wang et al. [28] used
empirical orthogonal function decompositions to identify the dominant patterns of frontal activity.
Zhang et al. [29] used the Multidimensional Ensemble Empirical Mode Decomposition to analyze
the spatial–temporal evolution of the Chl-a trend. Boyce et al. [30] used standardized multi-model
inference to estimate the seasonal cycle. Friedland et al. [31] used change-point statistics to analyze the
seasonal phytoplankton bloom. These methods are useful in extracting the seasonal characteristics
from the time series of satellite data, but new methods still need to be developed for describing the
seasonal patterns of life cycles of phytoplankton.

When we examine the shapes of the time series of Chl-a, they exhibit strong periodical
change. Sine functions were used for describing cyclical phenomenon such as tidal motions [32],
and corresponding tidal forcing [33]. Sapiano et al. [22] designed eight models based on the sinusoids
to fit the time series of global mean Chl-a. Jackson et al. [34] described the annual cycles of British
Columbia using three sinusoids derived from Fourier Transform Analysis. Here, we apply the nonlinear
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fit function based on sinusoids to match the patterns of the time series of the climatological Chl-a data
to examine if the seasonal cycles of phytoplankton biomass can be expressed by an equation in the
global ocean.

2. Methodology and Data

As we focus on the seasonal cycles of phytoplankton, the use of the sinusoid functions can identify
the cyclical characteristics of the time series of satellite data. The sinusoids have been used to analyze
the time series of Chl-a [22,34], but in our work we want to study their relevance to fit the shape of Chl-a
climatology which is averaged from satellite data (1997–2019) and to describe the seasonal variations of
phytoplankton. To do that, we used the nonlinear fit function using iterative least squares estimation
with equal weights for different days. The fit function is based on three types of sine equations to
match the patterns of the time series of the daily climatology of global Chl-a.

2.1. The Sine Equation for Annual Cycle

Assuming the patterns of the daily climatological imagery follow the annual cycle of seasonal
variability, the sine equation is used to fit the time series of Chl-a values as following:

y1(t) = A sin(ωt +ϕ) + m (1)

where y1(t) is the fitted values of the sine equation and t is the day of year. The term A is the amplitude
of the seasonal cycle of Chl-a, ϕ is the phase, and m is the mean value. As the range of t is 1–365,
the termω is defined as 2π/365. The range of ϕ is 0–2π and the value of ϕ can be changed to the day
of year using ϕ/(2π) × 365. The values of A and ϕ need to be adjusted when they show values out of
the designated range. When the value of amplitude is negative, it is converted to be positive and the
value of phase becomes ϕ+ π. When the values of phase are negative, it is converted to be ϕ+ 2π.
When the phase is larger than 2π, it becomes ϕ − 2π. Therefore, these adjustments keep the same
values of y1(t).

2.2. The Sine Equation for the Semiannual Cycle

The following equation is used for seasonal variability of Chl-a including the semiannual cycle
over the year:

y2(t) = A sin(ωt +ϕ1) + B sin(2ωt +ϕ2) + m (2)

where y2(t) is the fitted value. The terms A andϕ1 are the amplitude and phase of one-cycle, B andϕ2
are those of two-cycle. The values of A and ϕ1 need to be adjusted as explained previously. Similarly,
the values of B and ϕ2 are adjusted according to same rules.

2.3. The Sine Equation for Multiple Cycles

The following equation is used to match the shape of the time series of Chl-a including
multiple cycles.

y3(t) = A sin(ωt +ϕ1) + B sin(2ωt +ϕ2) + C sin(3ωt +ϕ3) + D sin(4ωt + ϕ4) + m (3)

where y3(t) is the fitted value. The terms A, B, C, and D are the amplitudes of one-cycle, two-cycle,
three-cycle, and four-cycle, respectively. The terms ϕ1, ϕ2, ϕ3, ϕ4 are their corresponding phases.
The values of these terms are also adjusted following the rules of the above descriptions.

We defined the following terms to represent the fitted values of different cycles:

S1 = A sin(ωt +ϕ1), S2 = B sin(2ωt +ϕ2), S3 = C sin(3ωt +ϕ3), and S4 = D sin(4ωt + ϕ4),
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where the terms S1, S2, S3, and S4 are the sinusoids of one-cycle, two-cycle, three-cycle, and four-cycle,
respectively. Actually, these terms together with the mean value are identical to the first five lowest
frequency components from the Fourier transform analysis. Therefore, the time series of climatology
can be decomposed by Equation (3) into four cyclical components with periods of one year, half year,
four months and three months, respectively.

2.4. The Mean Relative Difference

To verify the relevance of using sine functions to approximate the Chl-a, we calculated the Mean
Relative Difference (MRD) between the fitted value and the Chl-a climatology as:

MRD = 100×mean(|
y(t) − x(t)

x(t)
|), (4)

where y(t) is the fitted value, x(t) is the satellite Chl-a on the same day and same location.

2.5. Data

The phytoplankton biomass is commonly indexed by Chl-a, estimated from ocean color remote
sensing data [35]. In this study, we used satellite-retrieved Chl-a data including Sea-Viewing Wide
Field-of-View sensor (SeaWiFS, 1997–2010), Moderate Resolution Imaging Spectroradiometer on Terra
(MODIST, 1999–present) and Aqua (MODISA, 2002–present), Medium Resolution Imaging Spectrometer
(MERIS, 2002–2012), and Visible Infrared Imaging Radiometer Suite (VIIRS, 2011–present). These data
were downloaded from the website (http://oceancolor.gsfc.nasa.gov), as listed in Table 1. The data
quality has been evaluated by lots of regional and global in-situ measurements [6,22,36]. The data are
the global daily Chl-a of level-3 products and binned into the same pixel resolution of approximately
9 km × 9 km.

Table 1. Overall information of Chlorophyll-a concentration (Chl-a) dataset from five satellites.

Satellite Date Number of Days

SeaWiFS 4 September 1997–11 December 2010 4488
MODIST 24 February 2000–3 June 2019 6953
MERIS 9 April 2002–8 April 2012 3502

MODISA 4 July 2002–9 July 2019 6465
VIIRS 2 January 2012–8 June 2019 2681

From Table 1, the length of satellite observation varies from eight years for VIIRS to almost twenty
years for MODIST. The MODISA, MODIST, and VIIRS satellites are still operating. The end dates for
these satellites in Table 1 are the periods of data downloaded from the web. There is a total of 24,089 files
which are merged into 7956 daily files. These five satellites together provide continuous measurements
of Chl-a from September 1997 to June 2019. As they cannot measure Chl-a in the presence of clouds
and other factors, there are many empty values in the daily images of Chl-a. The percentages of valid
pixels are relatively low, as shown in Figure 1, where the percentages are computed from the ratio of
the number of valid pixels to the number of the global ocean pixels.

From Figure 1, the daily percentages of valid pixels of each satellite exhibit seasonal changes
which are mainly due to seasonal variability of the coverage of the incident solar irradiance on the sea
surface. The numbers of valid satellite-retrieved Chl-a are also affected by the satellite swath, data
processing algorithms, the cloud coverage, thick aerosols, sun glint, and other factors. The percentage
of valid pixels of each satellite ranges from 10% to 20% with the average of 14.5% (SeaWiFS), 15.4%
(MODISA), 13.8% (MODIST), 13.8% (MERIS), and 14.0% (VIIRS), respectively. The valid pixel coverage
of Chl-a images of Level 3 products between MERIS and MODIS are similar, even though there is a
large difference of satellite swath between about 1000 km of MERIS and about 2000 km of MODIS.

http://oceancolor.gsfc.nasa.gov
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Figure 1 shows that more than two satellites simultaneously have measured the ocean since 2000
and four satellites together between 2002 and 2010. The percentage of merged data shows that the
numbers of valid pixels increase with the increasing numbers of satellites. It is about 22.5% for two
satellites together, 27.9% for three, and 33.6% for four satellites. The average of valid pixels of the
merged files is 28.3%, indicating most areas filled by empty values. The low coverage of valid pixels
may produce remarkable errors in timing of phenological metrics [5].

To increase the percentage of valid pixels, the composite images of 8-day and monthly are usually
produced but some regions are still covered by invalid pixels. To solve this issue, the climatological
imagery offers another way to significantly increase the percentage of valid data. Yoder et al. [1] used
the monthly climatological mean of the Coastal Zone Color Scanner data to analyze the seasonality.
Westberry et al. [37] constructed climatology from 8-day composites of MODIS data over a 10-year period
averaged over 5◦ × 10◦ boxes. Sapiano et al. [22] established a global climatology of phytoplankton to
better understand the timing of phytoplankton. Friedland et al. [31] used GSM merged data product to
examine the dominant phytoplankton blooms. A daily climatology was produced from the merged
files by averaging Chl-a values on the same day of years between 1997 and 2019. For the leap years,
the files of Day 366 are merged into the image of Day 365. This climatology is composed of a time
series of 365 images with the pixel resolution of approximately 9 km × 9 km.Remote Sens. 2020, 05, x FOR PEER REVIEW 5 of 22 
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Figure 1. The percentage of valid pixels of daily Chl-a imagery for each satellite (a–e) and the data
merged from five satellites (f).

3. Results and Discussion

3.1. The Parameters of the Nonlinear Fit Function

The nonlinear fit function is used to obtain the parameters of mean, amplitude, and phase from
the time series of daily climatological Chl-a. The frequency is implied in different numbers of cycles,
representing seasonal characteristics with corresponding time periods.
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3.1.1. Mean Chl-a

When Equation (1) is used to fit the time series of climatological Chl-a, we obtain the overall
average of all Chl-a data (1997–2019), as shown in Figure 2a. The latitude range is limited within 48◦N
to 48◦S because satellite Chl-a data of higher latitudes are not available in some seasons.
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Figure 2. (a) The average of Chl-a in the unit of mg/m3. (b) Regions classified by the averaged Chl-a
values with Class 1 (<0.07 mg/m3), Class 2 (≥0.07 and <0.2 mg/m3), Class 3 (≥0.2 and <0.5 mg/m3), and
Class 4 (≥0.5 mg/m3). The five sites G1–G5 are the centers of the oligotrophic gyres with the lowest
values of Chl-a.

As can be seen in Figure 2a, the average of Chl-a exhibits remarkable spatial difference and can
be used to separate several different regions. A striking feature is the five subtropical gyres with
the lowest primary productivity that have been referred to as “ocean deserts” [38]. They did not
change greatly across the seasons [39], but they are strongly influenced by vertical mixing and nutrient
delivery [30]. The centers of the gyres are easily located and displayed in Figure 2b with Chl-a of
0.033 mg/m3 (G1), 0.043 mg/m3 (G2), 0.044 mg/m3 (G3), 0.022 mg/m3 (G4), and 0.036 mg/m3 (G5),
respectively. When Chl-a is less than the threshold of 0.07 mg/m3 (which is used to detect oligotrophic
gyres, Polovina et al. [10]), the regions are identified as Class 1 in Figure 2b and the areas of the gyres
are 20.94 × 106 km2 (North Pacific Ocean), 5.97 × 106 km2 (North Atlantic Ocean), 6.10 × 106 km2

(South Indian Ocean), 19.75 × 106 km2 (South Pacific Ocean), and 6.49 × 106 km2 (South Atlantic
Ocean), respectively. The total area of the gyres is 59.26 × 106 km2, comprising ∼16.5% of the ocean.

Due to large terrestrial nutrient input and strong coastal mixing, the marginal seas have higher
growth rate of phytoplankton leading to larger values of Chl-a [18,40]. Some large values are produced
because Chl-a is often challenging to extract in coastal regions given the spatio-temporal optical
complexity of these waters [41]. If Chl-a > 0.5 mg/m3, these regions can be identified as Class 4 in
Figure 2b. The other oceans are classified as Class 2 and 3 using the threshold of 0.2 mg/m3 which
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was used to identify the chlorophyll isopleth for the Transition Zone Chlorophyll Front (TZCF) [10].
The TZCF is the interface between the low-surface chlorophyll subtropical gyre and the high surface
chlorophyll subarctic gyre with features driven by the dynamics of very specialized oceanic habitats [10].

3.1.2. Amplitudes of Different Cycles

When Equation (2) is used to fit the daily climatology of Chl-a images, the amplitudes of S1 and
S2 are obtained, as shown in Figure 3. The amplitude image of S1 in Figure 3a is the spatial patterns
of the parameter A for all three equations and the image of Figure 3b is that of the parameter B for
Equations (2) and (3). These two amplitude images can also be obtained from the FFT (Fast Fourier
Transformation) analysis.
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of mg/m3.

Large amplitudes indicate strong seasonal variability of Chl-a that is mostly distributed in coastal
and oceanic frontal regions. Some remarkable patterns of high values are consistent with the TZCF
regions. The estimated horizontal transport of nitrate in the regions of TZCF supports up to 40% of new
primary productivity annually and nearly 100% in the winter [42]. The TZCF regions seasonally migrate
between the two pelagic ecosystems on temporal scales which can be reflected by the amplitudes.
For example, the patterns of amplitude images in the North Pacific Ocean are spatially consistent with
the range of TZCF that seasonally migrates over 1000 km from its southernmost position during the
first quarter of the year at about 30–35◦N to its northernmost position during the third quarter of the
year at about 40–45◦N [10].

Comparing Figure 3 to Figure 2, the patterns of amplitudes are different from that of the mean
image. The regional patterns of the five subtropical gyres become complicated in the images of the
amplitudes, indicating that the seasonality of Chl-a is different among these gyres and varies in a
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relatively complicated way. Combining Figures 2 and 3, the images of amplitudes offer a way to
distinguish the seasonal variations from the background of Chl-a in different regions. When Equation (3)
is used to fit the daily climatology, the amplitudes of S3 and S4 are obtained, as shown in Figure 4.
S3 and S4 represent seasonal variations of components with a period of four and three months.
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Figure 4. The amplitude images of three-cycle (a) and four-cycle (b) fitted from Equation (3) in the unit
of mg/m3.

The amplitudes of the different cycles actually represent the temporal variations of Chl-a with
respective time periods. The magnitudes of S1 are the largest, indicating that the annual cycle of
phytoplankton dominates the seasonal variability [9]. The patterns become more regionally scattered
from S1 to S4, indicating that amplitudes become more regional with shorter time periods (inter-annual),
especially in the equator regions. The regions with low values (<0.01 mg/m3) of S1 amplitude are
spatially consistent with those marked as Models 1 and 2 of Sapiano et al. [22], where the two models
imply no statistically significant cycles. In fact, the patterns of S1 in these regions are still very
complicated and some remarkable patterns can also be identified from the amplitude images of S2 and
S3. It implies that the seasonal cycles of phytoplankton can still be identified from these amplitude
images in these regions.

3.1.3. Phases of Different Cycles

Similar to the amplitude, two phases are obtained from Equation (2), as shown in Figure 5.
The unit of phase is converted to the day of year. These phase images can also be obtained from the
FFT analysis.
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From Figure 5a, values of S1 in the Northern Hemisphere (NH) are essentially 180◦ transitions
of that in the Southern Hemisphere (SH), indicating that blooms of the NH occur seasonally inverse
with those of the SH, similar to the results of Sapiano et al. [22]. It implies that the annual cycle of
phytoplankton may be mainly controlled by the seasonal light intensity coverages of incident solar
irradiance on the sea surface during the period of the year. The underlying dynamics influencing the
timing of the blooms is highly complex, which also depends on nutrient availability, temperature among
others [9]. Conversely, intensified light and warm temperature stimulate the growth of phytoplankton,
while the shallow mixed layer limits the supply of nutrients from subsurface, which in return limits
the growth of phytoplankton [14]. There are some exceptions, for example, values of S1 in latitudes
(40◦N–48◦N) are significantly different from that in temperate domains. In Figure 5b, the most spatially
contrasted values of the image pattern are the difference between low latitudes (<30◦) and high
latitudes, indicating the timing of bloom onset increases with higher latitudes. Similarly, the phases of
S3 and S4 can be obtained from Equation (3), as shown in Figure 6.

Comparing the images of four phases, the pattern of S1 exhibits regional homogeneity and that of
S4 becomes scattered. The patterns of S3 mainly correspond to the seasonal variations of the TZCF
regions and the S4 exhibits much more local/regional variability. Therefore, the patterns of phases
reveal the seasonal cycles with different time periods, which are varying in space.

Comparing images between phase and amplitude, values of amplitudes in the coastal regions are
higher than other regions, while spatial patterns of four phases are seldom affected by the coastal waters.
The image patterns of S1 phase are similar to the results of phenological timing of Racault et al. [43].
As the phase values are determined on the zero S1 values when the sinusoid crosses from negative to
positive, indicating the phases can be used to determine the timing of bloom onset.



Remote Sens. 2020, 12, 2662 10 of 21
Remote Sens. 2020, 05, x FOR PEER REVIEW 10 of 22 

 

 

Figure 6. The phases of (a) and (b) fitted from Equation (3) in the unit of day of year. 

Comparing the images of four phases, the pattern of S1 exhibits regional homogeneity and that 
of S4 becomes scattered. The patterns of S3 mainly correspond to the seasonal variations of the TZCF 
regions and the S4 exhibits much more local/regional variability. Therefore, the patterns of phases 
reveal the seasonal cycles with different time periods, which are varying in space. 

Comparing images between phase and amplitude, values of amplitudes in the coastal regions 
are higher than other regions, while spatial patterns of four phases are seldom affected by the coastal 
waters. The image patterns of S1 phase are similar to the results of phenological timing of Racault et 
al. [43]. As the phase values are determined on the zero S1 values when the sinusoid crosses from 
negative to positive, indicating the phases can be used to determine the timing of bloom onset.  

3.2. Comparison of Different Sine Equations 

Equations (1)–(3) can produce fitted values of Chl-a and be compared to satellite climatology 
data. The MRD (Equation (4)) is used to compute the difference between the fitted values and satellite 
data for assessing the performance of the equations. The MRD values of Equations (1) and (2) are 
computed and shown in Figure 7. 

Figure 6. The phases of (a,b) fitted from Equation (3) in the unit of day of year.

3.2. Comparison of Different Sine Equations

Equations (1)–(3) can produce fitted values of Chl-a and be compared to satellite climatology data.
The MRD (Equation (4)) is used to compute the difference between the fitted values and satellite data
for assessing the performance of the equations. The MRD values of Equations (1) and (2) are computed
and shown in Figure 7.

The patterns of MRD images show regional distribution with large values in coastal and frontal
regions. Large values in the north of the Arabian Sea are due to the low coverage of valid data. For
other coastal regions with large values, the most possible reason is that phytoplankton growth in
these regions is affected by the multitude of regional factors and has no obvious periodic variations.
However, the values of Equation (1) in the most areas are less than 10%, indicating that the fitted values
of the sine equation match the satellite data with a global average of 7.1%. Comparing Figure 7b with
Figure 7a, the MRD values of Equation (2) become smaller with a mean of 4.5%. The MRD image of
Equation (3) is shown in Figure 8a. To compare the MRD values of the three equations, a classified
image based on the different ranges of MRD values is shown in Figure 8b, where the difference of MRD
of the three equations is classified as four classes using the threshold of 5%.

Comparing Figure 8a to Figure 7, the MRD values of Equation (3) become much smaller than
the other two equations. The average of MRD is 3.3%, indicating that Equation (3) can significantly
reduce the difference between the fitted values and the climatology, but there are only about 3.6%
areas with MRD values >10% in some coastal regions. Some tests have been carried out by the use
of more sinusoids, indicating that MRD values are reduced in very small ranges (not shown here).
From Figure 8b, the areas with small MRD values (defined as less than 5%) significantly increase
from Equations (1)–(3), which are 44.3% (Equation (1)), 76.5% (Equation (2)), and 87.3% (Equation (3)),
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respectively. Therefore, Equation (3) can match the patterns of daily climatology with small MRD
values over approximately 90% of oceans.

To examine the matching situations of the different equations in detail, the fitted values of three
equations (y1–y3) with the satellite data against the day of year for one example of each class (E1–E4,
please refer to Figure 8b for their locations) are shown in Figure 9. The shapes of the seasonal cycles of
Chl-a at the four sites in the North Pacific Ocean are different from each other. It is easy to see that the
seasonal variations at E1 and E2 have an annual cycle, while E3 and E4 have a semiannual cycle.

For annual cycle at site E1 (Figure 9a), the three fitted values can match the satellite climatology
(Sat) with MRD values of 2.3%, 1.8%, and 1.1%, respectively. The matching situations are similar
in other sites of Class 1, indicating that all three equations can be used to fit the time series of
climatology over about half areas of oceans. For annual cycle at site E2 (Figure 9b), the two MRD
values (Equations (2) and (3)) are still small with values of 3.2% and 1.9%, but that of Equation (1)
becomes large (10.1%). The large MRD value is due to some discrepancies between Equation (1) and
the shape of Chl-a when the width of the peak of satellite data is much shorter or longer than that of
valley. For semiannual cycle at site E3 (Figure 9c), Equation (1) obviously produces large differences
with the MRD of 10.5%, and the differences of Equation (2) are also large (8.1%), but the matching
situation has been significantly improved by Equation (3) (3.8%). It demonstrates that Equation (3)
can adjust the shape of sines to match the pattern of the climatology. For coastal regions at site E4
(Figure 9d), the differences of all three fitted values are relatively large with MRD values of 24.7%
(Equation (1)), 23.4% (Equation (2)), and 10.3% (Equation (3)), respectively.Remote Sens. 2020, 05, x FOR PEER REVIEW 11 of 22 
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Figure 7. MRD values of Chl-a fitted by Equation (1) (a) and Equation (2) (b) in the unit of percentage.
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Figure 8. (a) MRD values of Chl-a fitted by Equation (3) in the unit of percentage. (b) The classification
based on MRD of the three equations with Class 1 (<5% for Equation (1)), Class 2 (≥5% for Equation
(1) and <5% for Equation (2)), Class 3 (≥5% for Equation (2) and <5% for Equation (3)), and Class 4
(≥5% for Equation (3)), respectively. Four sites (marked as E1–E4) are selected from each class for the
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Figure 9. Comparison of satellite Chl-a (marked as Sat) with the fitted values of three sine equations
(marked as y1, y2, and y3) at the four sites (E1–E4, positions shown in Figure 8b). (a) The site of E1
(22.0◦N/159.0◦W) is selected for Class 1, (b) E2 (32.6◦N/169.0◦W) for Class 2, (c) E3 (34.8◦N/165.2◦E) for
Class 3, and (d) E4 (38.2◦N/135.6◦E) for Class 4.
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3.3. The Effects of Climatology on Seasonal Cycles

We have established a climatological dataset from the five satellite-retrieved Chl-a and used sine
equations to fit the seasonal variability. To examine the relationship between the climatology and
satellite-retrieved Chl-a, the climatological values are compared to all satellite-retrieved data at four
sites (E1–E4 marked in Figure 8b) against the day of year, as shown in Figure 10.

1 
 

 
Figure 10. Comparison of Chl-a from five satellites against the day of year with the climatology at site
E1 (a), E2 (b), E3 (c), and E4 (d).

In Figure 10a, there are 611, 734, 463, 772, and 300 dots for SeaWiFS, MODIST, MERIS, MODISA,
and VIIRS, respectively. The mean numbers of dots on one day of year are very small with the average
of 1.7, 2.0, 1.3, 2.1, and 0.8 for these five satellites. The numbers become smaller for site E3 (Figure 10c)
with the average of 0.5, 1.1, 0.7, 1.1, and 0.4, respectively. The different numbers among different
satellites are mainly due to different period of satellite data. The differences between E1 and E3 are
mainly due to the different coverage of clouds and other factors such as the effects of the sun glint.
As these satellites have run more than ten years, it indicates that one satellite measures Chl-a only
about one time during a period of ten years at a fixed pixel. This result is consistent with the spatial
coverage of valid pixels for one satellite (about 14%). However, the daily climatology offers a gap-free
coverage of the Chl-a dataset.

Comparing the patterns of climatology to satellite data in Figure 10, the climatology is around
the centers of dots of satellite-retrieved Chl-a according to the day of year. The dot patterns of the
satellite-retrieved are much more scattered than that of the climatology. For site E1 in Figure 10a,
the MRD values are 15.9%, 15.4%, 19.8%, 17.3%, and 16.8%, for SeaWiFS, MODIST, MERIS, MODISA,
and VIIRS, respectively, much larger than that of the climatology (1.1%). The MRD values at site E2 are
16.2%, 18.3%, 22.5%, 16.8%, and 17.6%, respectively, also much larger than that of the climatology (1.9%).
It demonstrates that the MRD values of the satellite-retrieved Chl-a images will be large when they are
directly used to obtain the fitted values instead of the daily climatology. Values of the climatology are
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actually the means of satellite data on the same day of year and can remarkably reduce the variability
of the satellite-retrieved Chl-a, clearly exhibiting the seasonal patterns of phytoplankton. Notably,
the use of climatology will lose the capability to capture some natural phenomena such as detecting
red tides. However, the red tides may be easily identified if climatology is taken as a reference, which is
also beneficial for comparing the seasonal variations of blooms between different years.

In Figure 10b, the annual cycle can be identified directly from the dot pattern of satellite-retrieved
Chl-a. The difference between maximum and minimum of climatology reaches up to 0.2 mg/m3,
much larger than the average of the standard deviations (STD) of satellite-retrieved Chl-a on the same
day of year which is 0.05 mg/m3. It demonstrates that a larger seasonal change at a specific location
makes it easy to identify the seasonal cycles from the dot patterns of satellite-retrieved Chl-a. From
Figure 10a, the difference between maximum and minimum of fitted values is 0.03 mg/m3 while the
STD average of satellite-retrieved Chl-a reaches up to 0.15 mg/m3. It causes the difficulty to identify
the seasonality directly from the dot patterns of satellite-retrieved values. However, the seasonal cycles
can still be easily identified from the shape of time series of climatology. Therefore, the climatology can
exhibit the seasonal patterns much more clearly than that of the satellite-retrieved Chl-a.

As the specifications of the satellite sensors and data processing systems differ with each other,
the data quality of each satellite-retrieved Chl-a is also different. To understand the performance of
each satellite, the fitted values of Equation (3) are used to compute the MRD values of satellite-retrieved
Chl-a based on the same pixel and same day of year, as shown in Figure 11. The merged image is
computed from the composite imagery which are the average of five satellites on the same day.
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Figure 11 shows that the patterns of MRD images are similar to each other except for MERIS.
These patterns are also similar to that of amplitude image of S2 in Figure 3a. It demonstrates that large
MRD values are caused by the temporal variability of satellite-retrieved Chl-a of different years over
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the coastal and frontal zones. The mean MRD values of the images are 16.6%, 15.9%, 20.8%, 16.8%,
17.0%, and 17.4% for SeaWiFS, MODIST, MERIS, MODISA, VIIRS, and merged data, respectively. The
value of MERIS is the largest due to its spatial/temporal characteristics of images being substantially
different from the other four satellites. However, these results cannot be used to evaluate the actual
accuracy of each satellite because we take the fitted values of Equation (3) as the “truth value”, which
is actually the average of satellite data. As MERIS takes only a small part (about 15%) of the dataset
and other satellites are similar, it may cause the patterns of MERIS in Figure 11 to differ from the others.
It also causes the MRD of merged data less than that of MERIS but larger than the others. We also use
Equation (2) to compute MRD values with similar image patterns of Figure 11. The mean MRD values
are 16.8% (SeaWiFS), 16.0% (MODIST), 20.9% (MERIS), 16.9% (MODISA), 17.2% (VIIRS), and 17.5%
(Merged), respectively. Compared to the MRD value of the daily climatology (3.3%), the climatology
can significantly reduce the MRD values of satellite data.

3.4. The Timing of Phytoplankton Blooms

Phytoplankton blooms are a recurrent feature each year and play an important role in oceanic
uptake of atmospheric carbon dioxide and fishery stocks [37,44]. The phytoplankton bloom can be
identified by the maxima of Chl-a [45]. In fact, there are many abnormal values in satellite Chl-a, easily
obtaining a wrong bloom time identification. When the climatology is fitted by the sine equations,
the bloom period can be exactly identified by the biggest peak of the fitted values, as shown in
Figure 12a.
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Figure 12. (a) The bloom period identified as the peak of the largest bloom using the fitted values of
Equation (3) in the unit of day of year. (b) The regions of bloom timing classified into four seasons of
boreal winter (December–February, marked as Class 1), boreal spring (March–May, Class 2), boreal
summer (June–August, Class 3), and boreal autumn (September–November, Class 4) for the Northern
Hemisphere, and austral winter (June–August, Class 1), austral spring (September–November, Class 2),
austral summer (December–February, Class 3), and austral autumn (March–May, Class 4) for the
Southern Hemisphere. Four sites (P1–P4) in Figure 12b are selected from corresponding seasons
of bloom.
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The patterns of bloom timing (Figure 12a) are similar to that of S1 phase in Figure 4a, indicating
that the global bloom is mainly controlled by the rhythm of S1. The spatial distributions are similar
to the patterns of bloom time of Sapiano et al. [22], but our results exhibit the patterns in more
details. The image shows that the bloom timing exhibits a smooth shift in some regions, for example,
the date of bloom shifts from Day 37 to Day 105 in the Mediterranean Sea, similar to that of
Salgado-Hernanz et al. [6]. The bloom timing shifts from Day 1 to Day 180 with increasing latitudes
in the North Atlantic Ocean, similar to that of Land et al. [46]. Values in the Japan Sea are smoothly
distributed, similar to that of Yamada et al. [44]. The image also shows that the bloom time varies with
latitude, which is consistent with Boyce et al. [30] and Friedland et al. [31]. It should be pointed out
that the result for the timing of blooms (Figure 12) in this work is applied to the daily climatology,
not any particular year of data record. Thus, variations of timing of blooms from year to year cannot
be inferred from these results.

Figure 12a also shows spatial discontinuity in some regions, which indicates the timing transitions
mainly caused by the switch of magnitudes of two peaks. For example, blooms occur during spring
and autumn in the North Pacific Ocean with latitudes higher than 40◦ and magnitudes of two peaks
often switched in a small region. The discontinuity patterns also occur in Chl-a frontal regions such as
the equatorial regions, the TZCF, southeast of Vietnam coast, and Boundary Current Systems [28,47,48].

To understand the bloom period distributions more clearly, the regions are classified into four
seasons which are adjusted to be boreal seasons for the NH and austral seasons for the SH, as shown
in Figure 12b. The results show strong regional distributions and the areas of different seasons vary
greatly. The underlying dynamics influencing the timing of the blooms is highly complex, which
largely depends on nutrients, light and temperature and the inter-relationship among them. Firstly,
the growth of phytoplankton is directly related with the availability of nutrients, which usually limits
the growth the phytoplankton. Secondly, suitable light and temperature are fundamental for the growth
of phytoplankton and they are tightly connected to each other. During winter for each hemisphere,
both the light intensity and temperature are low and less suitable for the growth of phytoplankton.
As spring approaches, light intensifies and temperature increases, which stimulates the growth of
phytoplankton. The process continues into summer when the strong heat flux leads to shallow mixed
layer, thus the supply of nutrients from subsurface is largely reduced, which in return limits the growth
of phytoplankton. During fall, when the temperature and light relax, the phytoplankton reduces again.
Thus, the initiation and termination times of blooms are related to the light and temperature when
nutrients are abundant or deplete. It causes the timing of blooms to strongly depend on geophysical
locations and blooms occur in all four seasons. Blooms dominate during boreal winter in about half of
the areas (50.6%) in the NH and austral winter in the SH (58.0%). Spring blooms distribute around
many regions in the NH (25.5%) and in the SH (22.2%). Summer blooms occur in some areas in the NH
(15.8%) and in high latitudes in the SH (13.9%). Autumn blooms seldom occur in the NH (8.1%) and
in the SH (5.9%). The above percentage is computed independently on the separation of the ocean
between the NH and SH.

3.5. The Effects of Equation (3) on Four Sinusoids

When we check the shapes of the time series of climatology, they exhibit complicated and various
kinds of patterns. As the shapes of sinusoids exhibit strictly cyclicity, we wonder whether the sine
equations can match the various patterns. To demonstrate it, the climatology and the fitted values
of Equation (3) together with four components at four typical sites (P1–P4 with locations marked in
Figure 12b) are shown in Figure 13. The four sites, located in the low latitude domains of the Northern
Atlantic Ocean, are selected from four different seasons of phytoplankton blooms in order to check the
timing of blooms in detail.
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Figure 13. Comparisons of the daily climatology of satellite Chl-a (a) with the sinusoids of y3 (b), S1
(c), S2 (d), S3 (e), and S4 (f) among four sites of P1 (30.2◦N/77.4◦W) for Class 1, P2 (33.0◦N/68.0◦W) for
Class 2, P3 (19.2◦N/59.4◦W) for Class 3, and P4 (6.2◦N/38.4◦W) for Class 4 with their locations marked
in Figure 12b.

To examine the results of Figure 12, the climatology and the fitted values of Equation (3) at
four typical sites (P1–P4) are shown in Figure 13. It is easy to identify the bloom time from the
biggest peak of both the climatology and the fitted values, but it may be wrongly determined when
unexpected noise arises in the climatology, for example, the shape of P4 in Figure 13a. As the fitted
values take over the overall shape of the time series of climatology, the results of bloom timing of
Equation (3) are very robust and immune from noise. From the time of the biggest peak of the patterns
in Figure 13b, the bloom timings of the four sites are Day 32 (1 February), 85 (26 March), 216 (4 August),
and 256 (13 September), corresponding to the boreal seasons of winter, spring, summer, and autumn,
respectively. Therefore, the fitted values of Equation (3) are suitable to determine the bloom timing of
the normal biomass seasonality.

Comparing the shapes of the four components (Figure 13c–f) with that of Equation (3), the patterns
are completely changed and become simple. The shape of S1 at P1 is similar to that of P2, but the shapes
of P1 and P2 are remarkably different. The shape of S2 at P1 and P2 is close, but it is difficult to be
identified from the shapes of climatology. It similarly occurs for that of P3 and P4. The four components
(S1–S4) may exhibit some implications of seasonal characteristics of climatological Chl-a with different
time periods. For example, the site P4 reflects the offshore region of the Amazon River and the
chlorophyll can be impacted by nutrient, light and also river discharge. As more sinusoid is being used,
the timing of blooms can be more exactly identified, and the greater number of peaks of Chl-a within a
year can be reflected by the fitted values. Therefore, Equation (3) can be used to derive the images of
four sinusoids, which are ecologically important to determine some phenological characteristics.
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In Figure 13b, the patterns of Equation (3) at the four sites are significantly different and they are
all beyond the shape of sinusoids, but they can match the patterns of climatology (Figure 13a) very
well with relatively small MRD values. The combinations of four sinusoids can adjust the shapes of
the fitted values to match the patterns of the climatology. Therefore, Equation (3) can be used to match
the various patterns of the time series of daily Chl-a climatology.

4. Conclusions

The seasonal variability of Chl-a is complex, and the low coverage of satellite-retrieved data have
limited the understanding of seasonality of phytoplankton. Some noises in satellite data will lead to
wrong determinations of phenological characteristics. When satellite data are used to produce the
daily climatological imagery, which are the average of satellite Chl-a on the same pixel and the same
day of years during the period of 1997–2019, the climatology can significantly reduce the variability of
satellite values and clearly exhibit the seasonal cycles. The fitted values of sine equations can reflect the
overall shapes of seasonality of phytoplankton and offer a time series of Chl-a baseline as a standard
reference describing the normal state of seasonal cycles of phytoplankton.

Three types of sine equations were used to examine their relevance to approximate the daily
climatology and our results show that Equation (3) with four sinusoids can match various patterns of
the time series of climatological imagery with MRD of 3.3%. The functions can derive the parameters
of mean, amplitude, phase and frequency for describing the phenological characteristics. The mean
image offers an overview background of Chl-a patterns during the period of 1997–2019 and is used
to classify the global ocean into four different regions. The four amplitude images of Equation (3)
reflect spatial magnitudes of seasonal variations with different periods and high values exhibit the
spatial distribution of the coastal and frontal zones. The four phase images reflect the initiation time of
biomass with different periods and the values can be used for the study of the phonological metrics.

Equation (3) can significantly improve the matching situations of both because the addition of
other sinusoids (T3 and T4) can adjust the shapes of the fitted values to match various patterns of
daily Chl-a climatology (and to take inter-annual variability into account). The three equations have
limitations in matching strong blooms with a short period and MRD values cannot be significantly
reduced with more sinusoid functions due to the repeated cycles of the sinusoids in the whole year.
However, the timing of the blooms can still be exactly captured by Equation (3) and its derived
parameters can be used to determine the phonological metrics. A combination of sinusoids and other
functional forms such as Gaussian function can be used to describe the patterns with sudden blooms
such as red tides.

The timing of the main blooms can be located by positions of the maxima of the fitted values
of Equation (3). Our results show that blooms occur in all four seasons over the global ocean with
the seasonality of geophysical features. Blooms dominate during austral winter (June–August) in
most regions in the SH (58.0%) and about half of the oceans in the NH (50.8%) during boreal winter
(December–February) in the latitude domains (48◦N–48◦S), as winter blooms generally occur at
subtropics with the extensive oligotrophic gyres when the water stratification is weak and the nutrients
can be transported to the surface waters easily. Blooms occur in many regions during boreal spring in
the NH (25.5%) and austral spring in the SH (22.2%), as spring blooms generally occur at subpolar and
higher latitudes which can be explained by the critical depth hypothesis. Blooms seldom occur during
austral autumn in the SH (5.9%) and boreal autumn in the NH (8.1%). In fact, both spring and autumn
blooms may occur at temperate latitudes, as can be observed with the Japan Sea. The autumn bloom is
typically less intense than the spring bloom. It is mainly induced by the intensification of wind before
light becomes a limiting factor. The detailed mechanism should be further studied in the future.
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