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We report experimental and theoretical investigations on photon diffusion in a second-order non-
linear disordered medium under conditions of strong nonlinearity. Experimentally, photons at the
fundamental wavelength (λ = 1064 nm) are launched into the structure in the form of a cylindrical
pellet, and the second-harmonic (λ = 532 nm) photons are temporally analyzed in transmission.
For comparison, separate experiments are carried out with incident green light at λ = 532 nm. We
observe that the second harmonic light peaks earlier compared to the incident green photons. Next,
the sideways spatial scattering of the fundamental as well as second-harmonic photons is recorded.
The spatial diffusion profiles of second-harmonic photons are seen to peak deeper inside the medium
in comparison to both the fundamental and incident green photons. In order to give more phys-
ical insights into the experimental results, a theoretical model is derived from first principles. It
is based on the coupling of transport equations. Solved numerically using a Monte Carlo algo-
rithm and experimentally estimated transport parameters at both wavelengths, it gives excellent
semi-quantitative agreement with the experiments for both fundamental and second-harmonic light.

I. INTRODUCTION

Electromagnetic wave propagation and scattering are
ubiquitous in diverse fields such as optics, condensed
matter physics, biology, atmospheric optics, etc [1].
Among the various related phenomena, diffusion of light
has attracted maximum attention in the last decades [2].
Two factors have primarily motivated these studies,
namely, the occurrence of diffusion of light in tissues [3],
and the parallels of light diffusion with electron propa-
gation in disordered conductors [4]. The first sub-field,
namely, diffusion in tissues, has led to significant signs
of progress in imaging of inclusions in living media [5],
with an aim to replace hazardous high-energy radiation.
The second domain overlaps with condensed matter stud-
ies and is intended to understand mesoscopic effects in
light transport in disordered media. Indeed, studies on
mesoscopic optics have led to better insights on elec-
tronic transport, such as the transition from the diffu-
sion regime to localization regime [6] upon a sufficient
increase in disorder.

A primary reason for the success of these studies in
the optical domain has been the inherent noninteracting
nature of the photons, as well as the possibility to di-
rectly image the intensity distribution, which makes the
analyses easier than for electrons. Interestingly, photon
propagation allows for additional aspects of transport,
such as amplification or nonlinearity. On the one hand,
coherent amplification accompanied by diffusion or lo-
calization has led to the creation of novel optical sources
named random lasers [7–12]. On the other hand, stud-
ies coupling nonlinearity with the disorder have attracted

∗ romain.pierrat@espci.psl.eu
† mujumdar@tifr.res.in

growing attention [13–26]. For instance, a large effort has
been focused on the effects of χ(3) nonlinearity on Ander-
son localization [16–18], wherein the question of whether
nonlinearity subjugates localization is still an open ques-
tion [19]. Experimental attempts to address this prob-
lem in one-dimensional systems showed that the local-
ized mode continues to exist under introduced nonlin-
earity [20]. Theoretically, the effects of χ(3) nonlinearity
on coherent backscattering (or weak localization) have
also been documented [21, 22]. Likewise, χ(2) materi-
als, in particular relevance to second harmonic generation
(SHG) [27], have been studied in the regimes of diffusion
and weak localization [23–26]. Specifically, several con-
sequences of random quasi-phase-matching in disordered
χ(2) materials have been discussed in recent years [28–
30]. Furthermore, speckle dynamics in these materi-
als have been recently quantified and theoretically mod-
eled [31, 32]. Interestingly, second harmonic generation
in a diffusive material creates a unique paradoxical situ-
ation of incoherent transport, i.e. diffusion, coupled with
an inherently coherent phenomenon of second harmonic
generation, and hence is of fundamental research inter-
est. Over the years, a few theoretical [33, 34] and experi-
mental reports [35] have addressed this peculiar scenario.
In one of the earliest reports, Kravtsov et al. [33] theo-
retically studied two models of disorder, namely point
scatterers in a nonlinear medium and grainy nonlinear
scatterers, and observed sharp peaks in the angular dis-
tribution of backward diffuse second harmonic light. In
another approach, Makeev et al. theoretically studied
the diffusion of second-harmonic (SH) light in a colloidal
suspension of spherical nonlinear particles, wherein they
found that the average SH intensity was independent of
the linear scattering properties of the medium [34]. In the
experimental effort on GaP powders, a consistent picture
that described the second-harmonic intensity distribution
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in the sample was obtained via the diffusion equation,
which invoked nonlinearity as a conversion rate [35].

The various models described above successfully in-
voked the scenario of weak nonlinearity, wherein the non-
linearity did not affect the distribution of fundamental
photons. However, these works focused on the spatial be-
havior of fundamental and second-harmonic light, while
no attention was paid to the temporal behavior, under
ultrashort pulse illumination. In this work, we address
this question, and others, in the light of experiments and
of a theoretical model. We carry out spatial and tempo-
ral investigations of light propagating through a strongly
disordered KDP (potassium dihydrogen phosphate) pel-
let. We diagnose pulse propagation through the system
and measure the transport mean free paths for the fun-
damental and second harmonic light using the transmit-
ted pulses. Subsequently, we measure the longitudinal
spatial distribution of both components. To give more
physical insights into the processes at play, we build from
first principles a theoretical model involving the coupling
of two Radiative Transfer Equations (RTE). Solved nu-
merically using a Monte Carlo scheme, the model gives
reliable results compared to the experiment. In Sec. II,
we introduce the samples and the experiments and we
present all experimental results. In Sec. III, we present
the theoretical model as well as the associated numerical
simulations in the same geometry as in the experiments.
The discussion and conclusion are given in Sec. IV.

II. SAMPLES AND EXPERIMENTS

We exploited commercially available KDP (@ EM-
SURE ACS) as our nonlinear material. It has a large
second-order optical nonlinearity (∼ 0.43 pm/V). A fine
powder of KDP was realized after 10 minutes of ball
milling. Figure 1(a) depicts the scanning electron mi-
crograph image of KDP grains while the inset shows the
size distribution of the KDP grains, with grain sizes in
the range of 2 µm to 8 µm. The size distribution (bar
graph, red) is approximately log-normal (yellow line),
peaking at 3.11 µm. A pellet of length L = 5 mm and
radius a = 0.5 cm was created under a hydraulic press.
The pellet was baked to remove remnant moisture at a
temperature of 80 °C, which was far below the transition
temperature (190 °C, [36]) of KDP. Before going to the
main experiment, we evaluated the effective refractive in-
dices and internal reflection coefficients to be used later
as input parameters in our theoretical model. Using the
Maxwell-Garnett formula [37] (see App. A regarding the
use of the Marxell-Garnett formula), the real parts of
the effective refractive indices of the pellet were found
to be nr(2ω) = 1.45 and nr(ω) = 1.43 at λ = 532 nm
and λ = 1064 nm respectively. The internal power re-
flection coefficients at λ = 532 nm and λ = 1064 nm are
estimated to be R(2ω) = 0.53 and R(ω) = 0.52 respec-
tively [38] (see App. A for the detailed derivation of the
internal reflection coefficient).

FIG. 1. (a) SEM image of particles. The scale bar is 10 µm.
Inset: Distribution of particle size. (b) Schematic for tempo-
ral measurements. Notations: NC, Nonlinear Crystal; HBS,
Harmonic Beam Splitter; M, Mirror; L, Lens; F1, Filter (for
λ = 532 nm); OF, Optical Fiber; SC, Streak Camera. (c)
Schematic of the experiment on spatial diffusion. Notations:
L, Lens; F1; F2, Filters; SWIR, Short-wavelength Infra-Red;
EMCCD, Electron Multiplying Charge Coupled Device. In-
set images show the pellet with 1 cm diameter and length of
5 mm.

A schematic of the experimental setups is depicted
in Fig. 1 (b) and (c). Two different experiments were
performed. For the temporal measurements [Fig. 1 (b)],
Nd:YAG ps laser pulses (EKSPLA, PL2143B), with pulse
width ∼ 30 ps at the fundamental wavelength of λ =
1064 nm (hereafter referred to as IR) and beam waist
∼ 5 mm, were made incident on the front face of the
pellet. The second harmonic generated light (hereafter
referred to as SHG) that was transmitted from the back
face was directed into the Streak Camera (Optronics SC-
10). The streak camera possesses a temporal resolution of
less than 3 ps and its specified spectral sensitivity ranges
from 200 to 950 nm. The spectral range of the Streak
Camera did not allow for measuring the IR pulse. A small
part of the second harmonic light generated by a clear
nonlinear crystal was directed toward the marker pulse
input of the Streak Camera to calibrate the zero of the
time axis. For the spatial measurements [Fig. 1(c)], the
pellet was pumped with the fundamental of the Nd: YAG
ns laser (pulse width ∼ 5 ns, repetition rate 10 Hz). The
pulsed IR beam was launched normally onto the front
face of the pellet. The scattered IR photons were imaged
from one side of the pellet by a combination of lens and
InGaAs CCD, as shown in Fig. 1. Simultaneously, a
Silicon CCD along with a lens was employed to measure
the internally generated and scattered second harmonic
photons (SHG). For comparison to be used later, in both
the temporal and spatial experiments, we also externally
launched frequency-doubled green light from the source
laser (λ = 532 nm, hereafter referred to as incident green
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or IG), whose temporal transmitted profile and spatial
scattering profile were measured separately by the same
Streak Camera and Silicon CCD respectively. The CCD
images provided the spatial variation of light intensity
along the length of the pellet.

Our sample consists of a large number of KDP micro-
crystals with random orientations. The incident photons
experience multiple scattering due to the refractive index
mismatch between the microcrystals and the background
medium. SHG photons are generated at random posi-
tions within the medium by the crossing of two IR pho-
tons and also undergo multiple scattering. At large opti-
cal thickness and long times, we can expect the transmit-
ted multiply scattered IR and SHG intensities to follow
a diffusion process, as confirmed by the spatial intensity
profiles shown below.
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FIG. 2. Experimental temporal diffusion profiles of SHG
(green squares) and IG (blue dots) in a pellet with L = 5 mm.
The SHG signal peaks earlier in time. The orange dashed and
red solid lines fit the exponential decays for SHG and IG re-
spectively. Inset: diffusion profiles on the semilog scale show
comparable decay lengths.

The experimental temporal profiles of SHG (green
squares) and IG (blue dots) in the pellet, plotted in
Fig. 2, exhibit a classic diffusive behavior. We observe
an interesting trend in the transmission where SHG pho-
tons have shorter residence times than IG photons, given
that the SHG profile peaks earlier. The temporal profiles
of SHG and IG show clear exponentially decaying tails,
as evidenced in the inset on a logarithmic scale. Inter-
estingly, the decay rates for the two curves are also very
similar, a fact which we will return to in our theoretical
work. The tails were fit by the expression A exp(−Γt),
with Γ as the decay rate. The estimated decay rates fit-
ted to numerous temporal profiles of the same sample
amount to 3.17 ± 0.13 ns−1 and 3.25 ± 0.11 ns−1 for the
SHG and IG, respectively. These values are as close as a
fitting routine can provide. The apparent deviation may
therefore be probably due to the strong noise level. The
orange dashed and red solid lines in Fig. 2 correspond

to the fits for SHG and IG respectively. Nonetheless, we
emphasize here that, only the IG data can be fit a priori

using diffusion theory. Although we use the same anal-
ysis for the SHG light, the fact that it follows a similar
diffusion equation cannot be justified based on an exist-
ing theory. The theory developed in the next section will
elaborate on this part and also justify the comparable
decays seen in the experiments. In the presence of ab-
sorption and side loss, the decay rate Γ in a cylindrical
system can be written as [39]

Γ(2ω) = D(2ω)

[
α2

1

ae(2ω)2
+

π2

Le(2ω)2
+

3

ℓt(2ω)ℓa(2ω)

]

(1)
where the diffusion coefficient is given by

D(2ω) =
vE(2ω)ℓt(2ω)

3
. (2)

For non-resonant scatterers, the energy velocity can be
well approximated by vE(2ω) = c/nr(2ω) where c is the
light velocity in vacuum. ℓt and ℓa are the transport
and absorption mean free paths respectively. ae and Le

are the effective radius and thickness of the pellet re-
spectively and are given by ae(2ω) = a + ze(2ω) and
Le(2ω) = L+2ze(2ω) where ze is the extrapolation length
given by

ze(2ω) =
2

3
ℓt(2ω)

[
1 + R(2ω)

1 −R(2ω)

]
. (3)

α1 in Eq.1 is the first zero of the zero-order Bessel func-
tion J0. By fitting the experimentally measured decay
rates at λ = 532 nm for different sample lengths with
Eq. (1), we extract ℓt(2ω) ≈ 32 µm and ℓa(2ω) ≈ 11 mm
(side loss). Due to the limitation of spectral sensitiv-
ity, the streak camera could not be used for the temporal
profile of the IR light and the determination of the trans-
port mean free path. We derived the value of ℓt(ω) from a
coherent backscattering experiment [40]. The estimated
value of ℓt(ω) is ∼ 216 µm. Note that for both the har-
monics, {L, a} ≫ ℓt and t ≫ vEℓt. This signifies that
our sample is clearly in the diffusive regime [41].

Next, we examine the spatial diffusion profiles in the
pellet. Figure 3 displays the experimentally measured
spatial profiles for the IG (blue solid line), IR (orange
dotted line), and SHG (green dashed line) photons. Each
profile shows a characteristic diffusive peak inside the in-
put edge. The first peak to appear is the IG one fol-
lowed by the IR one. This behavior is expected since
ℓt(2ω) < ℓt(ω). The SHG peak may be expected to ap-
pear at a location where the fundamental intensity is
maximum. However, this is not the case, and the max-
imum intensity of the SHG is observed deeper in the
sample where the IR is about 80 % of its peak intensity.
This comes from the fact that the SHG beam is gener-
ated in the medium by the IR beam and then propagates
with the same transport characteristics as the IG beam.
This behavior will be well reproduced by the theoretical
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model. Regarding the wings deep inside the sample, an
exponential decay is observed. This arises from the loss
mechanisms at play in the sample coming from the finite
transverse extent of the pellet, the linear absorption, and
the nonlinearity in the case of the IR light.
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FIG. 3. Experimental spatial intensity profiles of incident
green (IG, blue solid line), fundamental infrared (IR, orange
dotted line), and second-harmonic generated green (SHG,
green dashed line) light for the L = 5 mm pellet. The SHG
signal peaks much deeper in the sample, and IG peaks closest
to the entry face inside the pellet, followed by IR.

III. THEORETICAL MODEL

A. Disorder model

In order to give more physical insights, we develop a
theoretical model taking into account multiple scattering
and second harmonic generation. To this end, we gen-
eralize the standard multiple scattering theory to derive
transport equations for the fundamental and second har-
monic intensities averaged over the configurations of the
disorder. This derivation is similar to that of Ref. 32.
However, there are three major differences: (1) we ex-
plicitly consider the time-dependent regime, (2) we drop
the intensity decorrelation due to scatterer displacements
and (3) we take absorption into account. This is impor-
tant to note that this does not change the way the deriva-
tion is performed since these differences do not enter
directly the computation of the second harmonic phase
function. The interested reader can refer to App. B where
the derivation is given. We present in the following only
the assumptions and the main results. We first define a
model of the disorder. The real material is made of a fine
KDP powder containing particles of different shapes and
sizes. Therefore, the most simple and natural disorder
model consists of a continuous and complex fluctuating
permittivity ǫ(r). The disorder microstructure is then
characterized by a spatial correlation function chosen to

be Gaussian, in the form

Cǫ(r − r′, ω) = 〈δǫ(r, ω)δǫ∗(r′, ω)〉 = |∆ǫ(ω)|2C(r − r′)
(4)

with

C(r − r′) = exp

[
−
|r − r′|2

2ℓ2

]
. (5)

In the equations above, 〈. . .〉 represents an average
over all disorder configurations (statistical average).
δǫ(r, ω) = ǫ(r, ω)−〈ǫ(r, ω)〉 is the fluctuating part of the
permittivity, |∆ǫ(ω)|2 is the amplitude of the correlation
and ℓ is the correlation length. |∆ǫ(ω)|2 depends on fre-
quency since the permittivity ǫ is dispersive. However,
ℓ involves only the geometrical structure of the disorder
and thus does not depend on frequency. This also implies
that the χ(2) nonlinearity is supposed to be correlated in
a similar way (i.e., with the same correlation length). We
thus have

Cχ(r−r′, ω) =
〈
χ(2)(r, ω)χ(2)∗(r′, ω)

〉
= |∆χ(ω)|2C(r−r′).

(6)

B. Transport equations

We first consider the case of the fundamental beam
at frequency ω corresponding to λ = 1064 nm and also
denoted by IR. The application of the standard multiple
scattering theory leads to the no less standard Radiative
Transfer Equation (RTE) given by [42]

[
1

vE(ω)

∂

∂t
+ u ·∇r +

1

ℓe(ω)

]
I(r,u, t, ω)

=
1

ℓs(ω)

∫
p(u · u′, ω)I(r,u′, t, ω)du′. (7)

Although the pellet is large enough, a diffusion-type
equation is not adequate enough to describe the exper-
imental results. Indeed, this kind of equation does not
allow an accurate reconstruction of the fluxes at short
times and/or at small depths. A transport type equation
such as Eq. (7) is required. In this equation, I(r,u, t, ω)
is the specific intensity, that can be seen as the radiative
flux at position r, in direction u, at time t and at fre-
quency ω. More precisely, the derivation from the first
principles shows that it is given by the Wigner transform
of the field. It reads

δ(k − kr)I(r,u, t, ω) =

∫ 〈
E

(
r +

s

2
, ω +

Ω

2

)

× E∗

(
r −

s

2
, ω −

Ω

2

)〉
e−iku·s−iΩtds

dω

2π
(8)

where E is the electric field, E∗ being its complex con-
jugate counterpart. In this definition, the electric field
is a scalar quantity. Indeed, we choose here to neglect
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the effect of the polarization which is a very good ap-
proximation in the multiple scattering regimes where
the field can be considered to be fully depolarized [43].
kr(ω) = nr(ω)k0 is the real part of the effective wavevec-
tor where k0 = ω/c is the wavenumber in vacuum. We
recall that nr is the real part of the effective refractive
index. It describes the phase velocity of the average field
〈E〉 (i.e., the field averaged over all possible configura-
tions of the disorder). ℓe(ω) and ℓs(ω) are the extinction
and scattering mean-free paths respectively. They are
connected by the relation ℓe(ω)−1 = ℓs(ω)−1 + ℓa(ω)−1

with ℓa(ω) the absorption mean free path. p(u,u′, ω)
is the phase function representing the fraction of power
scattered from direction u′ to direction u during a single
scattering event. For the Gaussian disorder considered
here, it is given by

p(u,u′, ω) ∝ p(|kr(ω)u − kr(ω)u′|)

where p(q) = exp

[
−
q2ℓ2

2

]
(9)

and normalized such that
∫
p(u,u′, ω)du′ = 1. As pre-

viously mentioned, vE(ω) is the energy velocity, well ap-
proximated by the phase velocity for non-resonant scat-
terers. Equation (7) can be easily interpreted using a
random walk picture. In this picture, light undergoes a
random walk whose average step is given by the scat-
tering mean free path ℓs(ω) and whose angular distribu-
tion at each scattering event is given by the phase func-
tion p(u,u′, ω). The absorption is taken into account
along a path of length s through an exponential decay
exp[−s/ℓa(ω)].

Let us focus now on the second harmonic light at fre-
quency 2ω corresponding to λ = 532 nm and also denoted
by SHG. By generalizing the standard multiple scattering
theory taking into account second harmonic generation,
we obtain a RTE given by (see App. B for details)

[
1

vE(2ω)

∂

∂t
+ u ·∇r +

1

ℓe(2ω)

]
I(r,u, t, 2ω)

=
1

ℓs(2ω)

∫
p(u · u′, 2ω)I(r,u′, t, 2ω)du′

+ α

∫∫
pSHG(u,u′,u′′, ω)I(r,u′, t, ω)

× I(r,u′′, t, ω)du′du′′. (10)

This equation is very similar to Eq. (7) except for the
presence of a non-linear source term. Because of the sta-
tistical average over disorder configurations, it can be
shown that the dominant contribution in terms of paths
for the second harmonic beam involves two SHG pro-
cesses (one to generate the field at 2ω and the second
to generate its complex conjugate) at the same loca-
tion and time [32]. This implies that there is no phase
shift to take into account between two fields, one at fre-
quency ω and the second at frequency 2ω and there is
no phase-matching condition as in standard SHG experi-
ments without scattering. Thus the SHG process reduces

to the product of two specific intensities at ω coming from
two different directions u′ and u′′. α is a factor contain-
ing all constants involved in the SHG process such as χ(2).
pSHG(u,u′,u′′, ω) is the SHG phase function describing
the distribution of the SHG source term in direction u

arising from two linear specific intensities coming from
directions u′ and u′′. In the case of the correlated disor-
der we consider here, it is given by

pSHG(u,u′,u′′, ω) ∝ p(|kr(2ω)u − kr(ω)u′ − kr(ω)u′′|)
(11)

where the p function is given in Eq. (9), and normalized
such that

∫
pSHG(u,u′,u′′, ω)du′u′′ = 1. Thus, the SHG

phase function is directly related to the disorder corre-
lation function in the same way as the standard phase
function since the SHG and scattering processes both
take place in the scatterers. We note that these equa-
tions are obtained in the perturbative approach meaning
that the beam at ω is a source term for the beam at 2ω
but the beam at 2ω has a negligible impact on the beam
at ω.

C. Numerical simulations

Equations (7) and (10) are solved using a Monte Carlo
scheme in geometries as close as possible to that in the
real experiments (see Fig. 4 for details). In particular,
the crystal grains have sizes ranging from 2 µm to 8 µm,
which is large compared to the wavelength. The correla-
tion length is taken such that k0ℓ = 3 for all simulations.
Using this value and the experimental estimate of the real
part nr of the effective refractive index, we get estimates
for the anisotropy factors g(ω) = 0.95 and g(2ω) = 0.99.
Then the values of the scattering mean-free paths are de-
duced from the experimental estimates of the transport
mean-free paths using the relation ℓs = ℓt(1 − g). Ex-
perimental estimates are directly used for the absorption
mean-free paths ℓa. This shows that the disorder cor-
relation length ℓ impacts only ℓs. Recalling that ℓt are
small compared to the dimensions of the pellet, the dif-
fusive regime applies. Thus ℓt is much more important
than ℓs at large depth and time and the real value of
k0ℓ weakly impacts the numerical results except at small
depth and time where slight variations can be visible. In
practice, three simulations are performed. The first is
done to compute a 6D map (3 positional, 2 directional,
and 1 temporal coordinates) of the specific intensity at
ω. It gives also access to the linear detected flux at ω
denoted by FIR(t). The second is done to evaluate the
SHG detected flux at 2ω [i.e., FSHG(t)] using the previ-
ous map as a source term. And the last is performed to
estimate the linear detected flux at 2ω [i.e., FIG(t)].

The results are shown in Figs. 5 and 6 for the tem-
poral and spatial profiles respectively. The specific pa-
rameters for each experiment are detailed in the captions
and are chosen to mimic the experiments. Both figures
show very good agreement with the experiment. Let us
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(a) (b)
n = 1

nr

L

a
z

FIG. 4. Geometry considered in the Monte Carlo simulations.
The illumination is a Gaussian beam with waist wi impacting
the front face of the pellet under normal incidence. The de-
tection is performed through the back face of the pellet [(a),
temporal simulation] or along the side face [(b), spatial sim-
ulation]. The cylinder contains the powder (pellet) and has a
radius a and a height L. The refractive index mismatch be-
tween the cylinder (real part of the effective refractive index
nr) and the external medium assumed to be air is also taken
into account in the simulation.

first consider the temporal results of Fig. 5. We clearly
recover the correct exponential time decay of the flux at
long times which is a feature of the diffusive regime. In
particular, the long time-dependence of the flux at the
fundamental frequency FIR(t) is given by exp(−Γ(ω)t).
In the diffusive regime, since all radiative quantities have
the same time dependence, the specific intensity itself is
also decaying according to the same law. This implies
that the source term of the non-linear RTE has a long
time dependence given by exp(−2Γ(ω)t). By convolving
this source term with the time response of a short pulse,
we simply deduce the long time behavior of the SHG flux
at 2ω which is given by

FSHG(t) ∝

∫ t

0

e−2Γ(ω)t′e−Γ(2ω)(t−t′)dt′

∝





e−Γ(2ω)t − e−2Γ(ω)t

2Γ(ω) − Γ(2ω)
if Γ(2ω) 6= 2Γ(ω),

te−Γ(2ω)t otherwise.

(12)

For the powder considered here, 2Γ(ω) > Γ(2ω), which
means that the long time behavior of the SHG flux is
given by e−Γ(2ω)t. In other words, the IG and SHG beams
have the same time decay at long times. This is clearly
seen in Fig. 5. However, we note that a different behavior
could have been observed depending on the order relation
between 2Γ(ω) and Γ(2ω). We also note that Eq. (12) has
been obtained under the assumption of exponential decay
at all times for all quantities included in this calculation.
Since this is valid only at long times, slight deviations
could be observed numerically when comparing the IG
and SHG beams. However, Fig. 5 shows that this is not
the case. A quick comparison with Figure 2 reveals very
good qualitative agreement with the experiments.

Regarding the spatial distribution of intensity dis-
played in Fig. 6, we clearly see that the green light in
the linear domain shows a maximum right at the input
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FIG. 5. Numerically simulated temporal transmitted flux
profiles of incident green (IG, blue solid line), fundamental
infrared (IR, orange dotted line), and second-harmonic gen-
erated green (SHG, green dashed line) light for the L = 5 mm
pellet. Inset: flux profiles on a semilog scale. We also ob-
serve a poorer SNR on the SHG curve. This is due to slow
numerical convergence (only a fraction of the SHG light is
collected on the detector, since the source term for the SHG
beam is dispersed throughout the pellet and a large part of
the SHG beam emerges from the other sides of the pellet). All
parameters are chosen to mimic the experiment. The pellet is
illuminated from the front face with an ultrashort Gaussian
pulse of normalized waist k0wi = 2.95 × 104 (at frequency ω)
and k0wi = 1.77 × 104 (at frequency 2ω) and under normal
incidence. The detection is performed through the back face
of the pellet [see Fig. 4 (a)]. The other parameters are given
by k0a = 2.96 × 104, k0L = 2.96 × 104, k0ℓs(ω) = 1.28 × 103,
k0ℓs(2ω) = 1.89 × 102, k0ℓa(ω) = 1 × 1010, k0ℓa(2ω) =
5.9 × 105, nr(ω) = 1.43, nr(2ω) = 1.45 and k0ℓ = 3.

interface of the sample. The fundamental IR light, sim-
ilarly, shows a maximum slightly deeper in the sample,
obviously owing to the larger value of ℓt, which is the
consequence of the larger wavelength. The generated
second-harmonic light peaks much deeper into the sam-
ple, reflecting the process of local generation and subse-
quent diffusion of the emitted light. These trends accu-
rately reproduce the experimental observations in Fig. 3
in a quantitative manner, certifying the completeness
of the numerical model. Overall, for the total spatio-
temporal behavior, we can claim the agreement to be
semi-quantitative.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have experimentally and numerically
investigated the diffusion of light in a second-order non-
linear disordered material with a strong nonlinear coef-
ficient. In the experiments, a cylindrical pellet of KDP
microcrystals, packed in a random orientation, was em-
ployed. The spatial and temporal diffusion profiles of
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FIG. 6. Numerically simulated spatial flux profiles of inci-
dent green (IG, blue solid line), fundamental infrared (IR,
orange dotted line), and second-harmonic generated green
(SHG, green dashed line) light for the L = 5 mm pellet. Nu-
merical diffusion profiles show excellent agreement with the
experimental results in Fig. 3. All parameters are chosen
to mimic the experiment. The pellet is illuminated from
the front face with a Gaussian beam of normalized waist
k0wi = 2.95 × 104 (at frequency ω) and k0wi = 1.77 × 104

(at a frequency 2ω) and under normal incidence. The de-
tection is performed along the side face of the pellet at dif-
ferent normalized depths k0d [see Fig. 4 (b)]. The other pa-
rameters are given by k0a = 2.96 × 104, k0L = 2.96 × 104,
k0ℓs(ω) = 1.28 × 103, k0ℓs(2ω) = 1.89 × 102, k0ℓa(ω) =
1 × 1010, k0ℓa(2ω) = 5.9 × 105, nr(ω) = 1.43, nr(2ω) = 1.45
and k0ℓ = 3.

fundamental and second harmonic light have been mea-
sured, along with incident light at the second harmonic
wavelength. The experimental data were used to esti-
mate the transport parameters to the best possible ac-
curacy. Next, the experimental results were supported
by a theoretical model derived from first principles and
led to the coupling of transport equations for the lin-
ear and non-linear beams. A Monte Carlo scheme has
been used to solve this model numerically in the same
geometry as in the experiment. Excellent agreement has
been obtained in the spatial behavior seen in the experi-
ments, along with very good qualitative agreement in the
temporal behavior. Moreover, this model allowed a clear
interpretation of the experimental results.

We note that this work addresses spatial and tem-
poral diffusion separately for both fundamental and
second-harmonic light. In the domain of linear disor-
der, researchers have investigated spatio-temporal diffu-
sion [44, 45], which has very interesting implications in
light transport. Naturally, spatio-temporal diffusion of
second-harmonic light, simultaneously with the funda-
mental, will form an exciting frontier in nonlinear dis-
order physics. Indeed, the streak camera used for this
work has the capability to simultaneously capture spa-
tial and temporal diffusion. Besides, in our cylindrical
geometry, there is a scope for exploration of transverse
diffusion of second harmonic as well as fundamental light.
These topics will form the object of our future interest,

starting with the current numerical models. We expect
the present work to lay down the platform for further
modeling of light transport in nonlinear disorder.
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Appendix A: Determination of the effective

refractive indices and internal reflection coefficients

1. Determination of the real part of the effective

refractive index nr of the random medium

In the pellet, the volume fraction of the KDP is 0.88.
The Maxwell Garnett equation reads [37]

(
εr − εm
εr + 2εm

)
= δi

(
εi − εm
εi + 2εm

)
(A1)

where εr is the real part of the effective dielectric constant
of the medium, εi of the inclusions, and εm of the matrix;
δi is the volume fraction of the inclusions. In our case,
the air percentage is smaller than the KDP powder. We
can therefore assume that air is the inclusion and KDP
is the matrix. Putting δi = 0.12, εi = 1 and εm =
n2
m = (1.5124)2 we get nr(2ω) = 1.45 at λ = 532 nm. At

λ = 1064 nm, the refractive index of KDP is 1.4938 [46].
The calculated value of nr(ω) is 1.4336.

2. Determination of the internal reflection

coefficient R

We can obtain an estimate of the reflection coefficient
using Fresnel’s law. We assume that the direction and
polarization of diffusing light incident on the boundary
from inside the sample are completely random and the
sample surface is flat. For an angle of incidence θ, the
power reflection coefficient R(θ) averaged over polariza-
tion is

R(θ) =
R⊥(θ) + R‖(θ)

2
(A2)
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where

R⊥(θ) =

∣∣∣∣∣∣∣∣

n1 cos θ − n2

√
1 −

(
n1

n2

sin θ
)2

n1 cos θ + n2

√
1 −

(
n1

n2

sin θ
)2

∣∣∣∣∣∣∣∣

2

(A3)

and

R‖(θ) =

∣∣∣∣∣∣∣∣

n1

√
1 −

(
n1

n2

sin θ
)2

− n2 cos θ

n1

√
1 −

(
n1

n2

sin θ
)2

+ n2 cos θ

∣∣∣∣∣∣∣∣

2

(A4)

are the Fresnel power reflection coefficients for incident
light polarized perpendicular and parallel to the plane of
incidence, respectively. Then the power internal reflec-
tion coefficient R averaged over the incident angle θ is
given by [38]

R =
3C2 + 2C1

3C2 − 2C1 + 2
(A5)

where

C1 =

∫ π

2

0

R(θ) sin θ cos θdθ (A6)

and

C2 =

∫ π

2

0

R(θ) sin θ cos2 θdθ. (A7)

Putting n1 = nr and n2 = 1, we get R(ω) = 0.52 (i.e. for
λ = 1064 nm) and R(2ω) = 0.53 (i.e. for λ = 532 nm).

Appendix B: Derivations of the transport equations

This appendix is dedicated to the derivations of the
transport equations at ω and 2ω. We report here the
main steps and we detail the computation of the SHG
source term for the non-linear transport equation at 2ω.
The derivations rely mainly on the standard multiple
scattering theory, details of which can be found in various
books and reviews [2, 47–49].

1. Scattering potential and Green function

One of the main building blocks of the multiple scat-
tering theory is the scattering potential defined by

V (r, ω) = k2
0 [ǫ(r, ω) − ǫb(ω)] (B1)

where ǫb(ω) is the permittivity of the background homo-
geneous medium (reference medium). In order to ensure
that the perturbative method applied afterward is as ac-
curate as possible, it is advisable to choose for ǫb the sta-
tistical average of the permittivity (i.e., 〈ǫ(r, ω)〉) which
leads to

V (r, ω) = k2
0δǫ(r, ω). (B2)

This potential describes the scattering process by the het-
erogeneities of the medium. The second ingredient is the
background Green function that connects two consecu-
tive scattering events. It is given by

Gb(r − r′, ω) =
exp(ikb|r − r′|)

4π|r − r′|
(B3)

where kb = nbk0 is the wavevector in the background
medium. We note that this Green function is a scalar
quantity here since we choose to neglect the polariza-
tion. Indeed, it can be shown that the polarization is
completely washed out on average after a propagation
distance of the order of the transport mean-free path in-
side a disordered medium [43]. In particular, this expres-
sion given by Eq. (B3) corresponds to the Green function
of the scalar homogeneous wave equation given by

∆Gb(r − r′, ω) + k2
bGb(r − r′, ω) = −δ(r − r′). (B4)

2. Self-energy and intensity vertex

Two operators are used to describe the propagation of
the field in disordered media: the self-energy Σ(r, r′, ω)
entering the Dyson equation that governs the average
field propagation and the intensity vertex Γ(r, r′,ρ,ρ′, ω)
entering the Bethe-Salpeter equation that governs the
field-field correlation evolution. Both contain an infinite
series of scattering sequences that are statistically not
factorizable. Considering a dilute medium (quantified
further by the condition krℓe ≫ 1), these scattering se-
quences can be seen as Taylor expansions. Thus, we can
apply a perturbative approach and truncate the series to
the first non-zero order. In the following, we consider
only the frequency ω but the same result holds at 2ω (for
the linear beams only).

For the self-energy Σ, this gives

Σ(r, r′) = 〈V (r, ω)Gb(r − r′, ω)V (r′, ω)〉c (B5)

where 〈·〉c represents a statistical average restricted to
the connected part, i.e.〈V GbV 〉c = 〈V GbV 〉−〈V 〉Gb 〈V 〉.
Since the disorder correlation function C depends only on
|r − r′| (statistical homogeneity and isotropy), we have
in the Fourier domain

Σ(k,k′, ω) = 8π3δ(k − k
′)Σ̃(k, ω). (B6)

This allows us to define the real part of the effective op-
tical index by

nr(ω) = nb +
Re Σ̃(kr , ω)

2nrk2
0

(B7)

where we recall that kr(ω) = nr(ω)k0 and k0 = ω/c. This
is a closed equation and the computation of nr in practice
is not an easy task except in very dilute media. That
being known, the extinction mean-free path is defined by

1

ℓe(ω)
=

Im Σ̃(kr, ω)

kr
. (B8)
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For the intensity vertex Γ, we have

Γ(r, r′,ρ,ρ′, ω) = 〈V (r, ω)V ∗(ρ, ω)〉c δ(r′ − r′)δ(ρ− ρ
′).

(B9)
By invoking one again the statistical homogeneity and
isotropy, we get into the Fourier domain

Γ̃(k,k′,κ,κ′, ω) = 8π3δ(k − k
′ − κ + κ

′)Γ(k,k′,κ,κ′, ω)
(B10)

which leads to the following expressions of the phase func-
tion and of the scattering mean-free path:

1

ℓs(ω)
p(u,u′, ω) =

1

16π2
Γ̃(kru, k0u′, k0u, k0u′, ω)

(B11)
with the normalization

∫
p(u,u′, ω)du′ = 1. (B12)

This finally leads to

1

ℓs(ω)
=

k2
0 |∆ǫ|2

16π2

∫

4π

C(q)du′ (B13)

p(u,u′, ω) = C(q)

[∫

4π

C(q)du′

]−1

(B14)

=
k2
rℓ

2 exp[−q2ℓ2/2]

2π [1 − exp(−2k2
rℓ

2)]
(B15)

with q = kr(u − u′) and C(q) the Fourier transform
of the disroder correlation function C. In the case of a
non-absorbing medium where the imaginary part of the
permittivity vanishes, we have from Eqs. (B8) and (B13)

1

ℓe(ω)
=

1

ℓs(ω)
=

k2
0 |∆ǫ|2

16π2

∫

4π

C(kr(u − u′))du′ (B16)

which implies that ℓ−1
a (ω) = 0. In practice for the nu-

merical simulations performed in this study, the param-
eters nr, ℓe and ℓs are not computed using Σ and Γ
but are given by experimental measurements. However,
Eq. (B15) is used for the profile of the phase function.

3. Transport equation in the linear regime

Let us first consider the transport equation at ω in the
linear regime. Considering a dilute medium such that
krℓe(ω) ≫ 1, we can show that the dominant term in the
field-field correlation function is given by the well-known
ladder diagram:

E(r, ω)

E∗(r, ω)

E0

E∗
0
. (B17)

In this representation, the top line represents a path for
the electric field E and the bottom line is for a path of its

complex conjugate E∗. Solid and dashed thick lines cor-
respond to average Green functions (describing propaga-
tion between consecutive scattering events) and average
fields respectively. Circles denote scattering events and
vertical dashed lines represent statistical correlations be-
tween scattering events through Eq. (B9). This diagram
shows that the field-field correlation function evolution
essentially reduces to the propagation of an intensity.
This implies that the field-field correlation function is
governed by a transport equation, namely the Radiative
Transfer Equation (RTE) that reads

[
1

vE(ω)

∂

∂t
+ u ·∇r +

1

ℓe(ω)

]
I(r,u, t, ω)

=
1

ℓs(ω)

∫
p(u,u′, ω)I(r,u′, t, ω)du′ (B18)

which is Eq.(7).

4. Transport equation in the second harmonic

regime

Since we consider a perturbative approach for the
SHG, the main point to address in that case is the ex-
pression of the source term. We can show theoretically
and validate numerically [32] that the leading diagram is
given by

E(r, 2ω)

E∗(r, 2ω)

E0

E0

E∗
0

E∗
0

(B19)
where the squares denote the second harmonic processes.
This diagram confirms that a transport equation for the
SHG beam is still valid but with a source term given by
the product of two specific intensities at ω. In terms of
an equation, this source term is indeed given by

S(r,ρ, 2ω) =

∫
〈G(r − r′, 2ω)〉 〈G∗(ρ− ρ

′, 2ω)〉

× ΓSHG(r′, r′′, r′′′,ρ′,ρ′′,ρ′′′, 2ω)

× 〈E(r′′, ω)E∗(ρ′′, 2ω)〉 〈E(r′′′, ω)E∗(ρ′′′, 2ω)〉

× dr′dr′′dr′′′dρ′dρ′′dρ′′′ (B20)

where ΓSHG is the SHG vertex given by

ΓSHG(r, r′, r′′,ρ,ρ′,ρ′′, ω) =
〈
χ(2)(r, ω)χ(2)∗(ρ, ω)

〉

c

× δ(r − r′)δ(r − r′′)δ(ρ− ρ
′)δ(ρ− ρ

′′). (B21)

In this last expression, we keep the complex conjugate no-
tation for the second-order susceptibility χ(2) although it
is a real quantity in order to remind that it corresponds to
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the complex conjugate field. In the Fourier domain and
making use of the statistical homogeneity and isotropy
again, we get

Γ̃SHG(k,k′,k′′,κ,κ′,κ′′, ω) = 8π3δ(k−k
′−k

′′−κ+κ
′+κ

′′)

× ΓSHG(k,k′,k′′,κ,κ′,κ′′, ω). (B22)

From this, we can define a SHG phase function given by

αpSHG(u,u′,u′′, ω) =
1

125π5
Γ̃SHG(kr(2ω)u, kr(ω)u′,

kr(ω)u′′, kr(2ω)u, kr(ω)u′, kr(ω)u′′, ω). (B23)

α is a coefficient that takes into account all constants
involved in the second harmonic generation and is such
that the second harmonic phase function is normalized
as

∫
pSHG(u,u′,u′′, ω)du′du′′ = 1. (B24)

Plugging the expression of the correlation function Cχ

leads to

pSHG(u,u′,u′′, ω) ∝ exp

[
−
q2ℓ2

2

]
(B25)

where q = kr(2ω)u−kr(ω)u′−kr(ω)u′′ is the SHG scat-
tering vector. We finally end up with the non-linear RTE
given by

[
1

vE(2ω)

∂

∂t
+ u ·∇r +

1

ℓe(2ω)

]
I(r,u, t, 2ω)

=
1

ℓs(2ω)

∫
p(u · u′, 2ω)I(r,u′, t, 2ω)du′

+α

∫∫
pSHG(u,u′,u′′, ω)I(r,u′, t, ω)I(r,u′′, t, ω)du′du′′

(B26)

which is Eq. (10).
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