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Abstract: The Sentinel-2A and Sentinel-2B satellites, with on-board Multi-Spectral Instrument (MSI),
and launched on 23 June 2015 and 7 March 2017, respectively, are very useful tools for studying
ocean color, even if they were designed for land and vegetation applications. However, the use
of these satellites requires a process called “atmospheric correction”. This process aims to remove
the contribution of the atmosphere from the total top of atmosphere reflectance measured by the
remote sensors. For the purpose of assessing this processing, seven atmospheric correction algorithms
have been compared over two French coastal regions (English Channel and French Guiana): Image
correction for atmospheric effects (iCOR), Atmospheric correction for OLI ‘lite’ (ACOLITE), Case
2 Regional Coast Colour (C2RCC), Sentinel 2 Correction (Sen2Cor), Polynomial-based algorithm
applied to MERIS (Polymer), the standard NASA atmospheric correction (NASA-AC) and the Ocean
Color Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART). The satellite-estimated remote-
sensing reflectances were spatially and temporally matched with in situ measurements collected
by an ASD FieldSpec4 spectrophotometer. Results, based on 28 potential individual match-ups,
showed that the best performance processor is OC-SMART with the highest values for the total score
Stot (16.89) and for the coefficient of correlation R2 (ranging from 0.69 at 443 nm to 0.92 at 665 nm).
iCOR and Sen2Cor show the less accurate performances with total score Stot values of 2.01 and 7.70,
respectively. Since the size of the in situ observation platform can be significant compared to the pixel
resolution of MSI onboard Sentinel-2, it can create bias in the pixel extraction process. Thus, to study
this impact, we used different methods of pixel extraction. However, there are no significant changes
in results; some future research may be necessary.

Keywords: atmospheric correction; Sentinel-2 MSI; validation; sensitivity study; remote sensing
reflectance; coastal water; extraction methods

1. Introduction

In recent decades, remote sensing has been incorporated into various important
research studies on the ocean such as ecological investigation or water quality monitor-
ing [1–3]. Satellite data play an important role in providing both spatial and temporal
information necessary to monitor the change in water quality parameters [4]. Earth ob-
servation (EO) provides several key ocean parameters [5]. One of these parameters is the
ocean color: ocean color studies the interaction of the sunlight with the marine particles
that are optically-active. It can provide information on the concentration and the bio-optical
properties of these particles, such as the chlorophyll-a, the total suspended matter, or the
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colored dissolved organic matter [6]. However, deriving reliable information on the ocean
color from remote sensing data is very challenging because of atmospheric influences.
The contribution from absorption and scattering of haze, aerosol, water vapor, and other
atmospheric components directly affect the estimation of the signal of interest for the ocean
color: The Remote Sensing Reflectance (Rrs) [7,8]. Therefore, the step of atmospheric correc-
tion (AC) is a prerequisite to then access the bio-optical or biogeochemical properties of
seawaters. This accounts for why, in recent decades, many different atmospheric correction
algorithms have been developed to remove the impact of the atmosphere (mainly the
aerosols) over optically-complex waters such as the coastal environments [9,10].

ESA’s Sentinel-2 mission includes two polar-orbiting satellites, Sentinel-2A and Sentinel-
2B, which were launched on 23 June 2015, and on 7 March 2017, respectively. These two
satellites provide regular high-spatial-resolution information from the Multi-Spectral In-
strument (MSI), which has 13 channels across the visible and short-wave-infra-red spectrum
with different spatial resolutions (Table 1). Combining both sensors provides a temporal
resolution of 5 days at the equator and ~2 days at mid-latitude [11,12].

Table 1. The spatial resolution of MSI on-board SENTINEL-2 satellite.

Wavelength Spatial Resolution

443 nm 60 m

490 nm 10 m

560 nm 10 m

665 nm 10 m

705 nm 20 m

740 nm 20 m

783 nm 20 m

842 nm 10 m

865 nm 20 m

940 nm 60 m

1375 nm 60 m

1610 nm 20 m

2190 nm 20 m

For deriving the aerosol contribution to the signal measured by a space-borne sensor,
the black pixel assumption (i.e., the ocean is totally absorbent in the near-infrared bands
(NIR)) is used in the open ocean waters [8]. However, in optically-complex waters such as
turbid coastal waters (the areas observed by MSI, up to 20 km offshore), this hypothesis
is not valid anymore [13,14] and this leads to large errors when retrieving the output
products [9,15,16]. To deal with this issue, many different algorithms have been developed
for the ocean color remote sensors, which can handle the non-zero Rrs in turbid coastal
water areas [14,17–28]. As shown in published studies [10,15,16,22], these algorithms show
strong discrepancies in terms of performance, but did not cover the entire variability of the
coastal waters and there is still a need in assessing these algorithms.

Although, as mentioned, there are currently many algorithms that have been devel-
oped with high processing efficiency, not all algorithms are open-source, easy to use and
well-supported for Sentinel-2 products. Some examples can be mentioned such as Fast
Line-of-sight Atmospheric Analysis of Hy-percubes (FLAASH) and Maccs-Atcor Joint
Algorithm (MAJA). FLAASH is an algorithm used for cloud detection and atmospheric
correction [29]. However, this processor is a proprietary commercial software and it only
accepts radiance images in band-interleaved-by-line (BIL) or band-interleaved-by-pixel
(BIP) format as the input, which means it is not well-supported for Sentinel-2 images [30].
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MAJA is an open-source processor, however, this method is a bit complicated to use, and
requires memory, disk space and computer power [31]. Therefore, in order to make it easy
for readers to apply the results, access and use the processors, the criterion for choosing
AC algorithms applied in this study are free to use and easy to operate.

In this paper, a comparison of seven different atmospheric correction algorithms
is presented for MSI images. The retrievals with the seven AC are compared to in situ
measurements from sea campaigns in the French coasts of the English Channel and French
Guiana using a match-up exercise. By using a set of statistical parameters and scheming
score, the validation of these seven processors are evaluated based on their accuracy and
performances over these coastal areas. We also studied the impact of the pixel extraction
in the match-up exercise on the retrievals as we deal with high-spatial-resolution sensors
(and the structure used to collect the in situ measurements can be the same size as one or
several pixels).

The in situ and satellite datasets and the match-up exercise are fully detailed in
Section 2. The associated statistical parameters used in this study are described in Section 3.
Section 4 presents the background on atmospheric correction and the principles of seven
AC processors used in our study. Section 5 introduces the performances and statistical
results of the AC on the match-up dataset. Then the results are discussed in Section 6.
Finally, the conclusion of the ranking score and performances and recommendations for
future researches are provided in Section 6.

2. Data
2.1. In Situ Measurements

The radiometric dataset included in this study has been collected from two French
coastal areas: French Guiana and the English Channel as shown in Figure 1. The data in
French Guiana are primarily collected from the coastal area near the Maury and Cayenne
rivers, while for the English Channel, between Calais to Brest, with most of the sampling
collected in the coastal areas of Wimereux and Boulogne-sur-Mer, in the Eastern part of the
English Channel.

Figure 1. Maps of measurement locations for two coastal areas: French Guiana (top); English
Channel (bottom).
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The English Channel is an area with strong tidal currents and low bathymetry with
two strong freshwater inputs from two rivers, the Seine and the Escaut. Under water
mixing from natural factors such as water inputs and strong tidal currents, the formation
of suspended matter in the water in this area increases. Besides, this area also has the
appearance of bloom events of phytoplankton in spring, making the density of planktons
increase rapidly during this time. Combining all these factors has made the English
Channel an area of relatively high turbidity with a mean near-surface suspended sediments
concentration of 10–35 mg l−1 [32,33].

Similar to the English Channel, the French Guiana area has low bathymetry and two
strong water inputs from two rivers, the Amazon and the Maury. In addition, the French
Guiana area also receives a large amount of suspended sediment from North Brazilian and
Guiana currents. All these factors have made French Guiana a highly turbid area [34,35].

The radiometric in situ data were collected using the Analytical Spectral Devices (ASD)
FieldSpec4 spectro-photometer in the Visible/Near Infrared (VNIR, 350–1050 nm) and the
Shortwave Infrared (SWIR, 900–2500 nm) parts of the spectrum. The sampling principle for
the ASD spectra is the one described in [36].

The downwelling irradiance above the surface (Ed) was measured using an almost
100% reflecting Spectralon reference panel. Then, the total upwelling radiance from the
water (Lt) (i.e., from the water surface) was measured by pointing the sensor at the water
surface at 40◦ from nadir, maintaining an azimuth of 90◦ or 135◦ from the solar plane,
depending on the pontoon orientation with respect to the sun. Downwelling sky radiance
(Lsky) was measured at a zenith angle of 40◦ to account for the skylight reflection [36]. The
water-leaving reflectance is then calculated using the following equation:

ρw =
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2.2. Satellite

In this study, MSI images are downloaded from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/, accessed on 25 August 2020) for both Sentinel-2A and
Sentinel-2B images, corresponding to the field trip measurements of 28 days, as shown in
Table 2. The temporal window for selecting a match-up was ±2 h between the satellite
overpass and the in situ measurements.

Table 2. Date (dd/mm/yyyy) and time (UTC) of Sentinel-2 satellite observations selected from 2016
to 2018 in 2 regions, English Channel and French Guiana.

Order
In Situ Satellite

Date Time S2A S2B

1 21 September 2016 10:12:00 10:57:32

2 21 September 2016 09:20:00 10:57:32

3 21 September 2016 09:50:00 10:57:32

4 21 September 2016 10:12:00 10:57:32

5 21 September 2016 11:20:00 10:57:32

6 11 October 2016 09:50:00 10:59:52

7 11 October 2016 09:00:00 10:59:52

https://scihub.copernicus.eu/
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Table 2. Cont.

Order
In Situ Satellite

Date Time S2A S2B

8 11 October 2016 09:50:00 10:59:52

9 28 November 2016 13:20:00 14:00:52

10 28 November 2016 13:53:00 14:00:52

11 28 November 2016 14:29:00 14:00:52

12 28 November 2016 15:09:00 14:00:52

13 19 January 2017 11:15:00 11:03:51

14 19 January 2017 10:16:00 11:03:51

15 19 January 2017 10:45:00 11:03:51

16 19 January 2017 10:55:00 11:03:51

17 19 January 2017 11:15:00 11:03:51

18 29 April 2017 11:40:00 10:56:51

19 29 April 2017 12:25:00 10:56:51

20 6 July 2017 13:30:00 14:00:51

21 6 July 2017 14:13:00 14:00:51

22 6 July 2017 15:24:00 14:00:51

23 1 July 2017 15:30:00 14:00:49

24 19 April 2018 11:38:00 10:56:19

25 30 April 2018 10:33:00 11:21:21

26 18 July 2018 9:53:00 11:00:39

27 23 July 2018 10:30:00 10:56:21

28 26 July 2018 12:54:00 11:06:21

2.3. Match-Ups Selection

The match-up selection process is performed to compare satellite estimates and in situ
data. The location of the in situ measurements is co-located with the satellite image pixels.
A match-up is obtained following several consecutive steps. First, satellite estimates are
extracted over a 3 × 3 pixels box, with the central pixel corresponding to the location of the
field station. Second, to guarantee data uniformity between field and satellite data, a time
variation of±2 h is set [37]. Third, a pixel is considered as “valid” when it is not a pixel with
values Rrs < 0 or flags. The flags pixels include instrument data missing or invalid, water
mask, land mask, cloud, possible sea-ice or snow contamination, whitecap, and saturation
(within any band from 400 to 754 nm) [16]. Fourth, a match-up is considered “valid” when
in the 3× 3 pixels box at least 6 pixels are considered valid. Finally, a coefficient of variation
(CV; standard deviation over mean) is calculated for each wavelength, and the final value
of the match-up is “valid” only if the CV is < 0.2 at each wavelength [15,16].

2.4. Extraction Method

For the match-up exercise, we first used the protocol described above from Bailey
and Werdell [37] and Jamet et al. [16]. However, while the resolution of MSI used for
validation in this article is 60 m for all MSI bands, the size of structures used to collect the
in situ measurements can be considerable to the pixel (for instance, research vessels, towers,
lighthouse). It means that the structures can impact the value of one or more pixels in the
extraction box, leading to inaccurate valid pixels (or no valid pixels at all). This has been
shown by Concha et al. [38]. In this latter study, different match-up validation protocols
have been tested for different ACs, and the results showed that the number of available
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match-ups was in a direct influence with the position of the measuring platforms. In our
study, we studied the impact of shifting the extraction box from a few pixels in order to
avoid these disturbances from the measurement structures. We evaluated extraction boxes
that are shifted from the centered pixel by 2 pixels to the left, right, up, or down to check the
effect on the match-ups analysis. We also look at removing only the central pixel with the
box still centered. Figure 2 illustrates the different extraction boxes used for this analysis.

Figure 2. The different configurations of the extraction box for the match-up exercise. The red
circles correspond to the location in situ stations and the brown squares are the extracting boxes for
retrieving data.

3. Atmospheric Correction
3.1. Basics of Atmospheric Correction

The signal measured by the satellite can be decomposed into several terms [7,8]:

ρt (λ) = ρr(λ) + ρa(λ) + ρra(λ) + T(λ)ρg + td(λ)ρwc(λ) + td(λ)ρw(λ) (3)

where ρt(λ) is the top of atmosphere reflectance measured by satellite; ρr(λ) is the Rayleigh
reflectance, ρa(λ) is the reflectance from multiple scattering by aerosols, ρra(λ) is the aerosol-
molecular scattering, ρwc(λ) is the reflectance from whitecaps, ρg is the sun-glint reflectance
and ρw(λ) is the water-leaving reflectance; td and T are diffuse and direct transmittance,
respectively. The sun-glint, whitecaps, and gas absorptions corrections are pre-processed
and then removed from ρtoa (λ). Then, the Rayleigh corrected reflectance (ρrc) is obtained:

ρrc(λ) = ρA(λ) + td(λ)ρw(λ) (4)

where ρA(λ) = ρa (λ) + ρra(λ). In addition to the mentioned parameters, there is another
factor that can influence the retrievals, which come from the proximity of land and scattering
of surface-reflected radiance, is adjacency effect. However, the impact of the adjacency
effect is low from around 10 km from the coasts [39–41]. Most of used in situ data were
collected around this distance; thus, the adjacency effect is quite negligible. Therefore,
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the main purpose of atmospheric correction is to remove the multiple scattering aerosol
contributions from the Rayleigh corrected reflectance. In our study, we considered that the
adjacency effect was negligible.

In this study, we applied seven atmospheric correction algorithms to MSI/S2 images:
Image correction for atmospheric effects (iCOR) [42,43]; Atmospheric correction for OLI
‘lite’, ACOLITE [12,27,44,45]; Case 2 Regional Coast Colour, C2RCC [19]; Sentinel 2 Cor-
rection, Sen2Cor [46]; Polynomial-based algorithm applied to MERIS, Polymer [26], the
standard NASA atmospheric correction, NASA-AC [17], and the Ocean Color Simultaneous
Marine and Aerosol Retrieval Tool, OC-SMART [20,47].

3.2. Description of the Algorithms

Image correction for atmospheric effects (iCOR) is a scene generic atmospheric correc-
tion that aims for land, coastal, inland, or transitional waters [42,43], and it has been tested
over different coastal waters [48–50]. Furthermore, iCOR atmospheric correction processing
can be divided into four steps [42]. First, all pixels with land and water values are identi-
fied and separated; then, the AOT values will be extracted from the soil pixels according
to an improved version of the method developed by Guanter [51]; then, SIMEC is used
to implement the adjacency correction approach for water pixels and fixed background
land [43]; finally, the radiative transfer equation is solved. Regarding the reference data,
iCOR uses the MODTRAN5 LUT to perform the atmospheric correction process mentioned
above [52]. In this work, S2 images were processed by using default parameters with iCOR
(v.0.3) through SNAP.

Atmospheric correction for OLI ‘lite’ (ACOLITE) is an atmospheric correction proces-
sor for coastal and inland waters, which was developed by the REMSEM group [12,27,44,45].
It operates atmospheric correction by using the “dark spectrum fitting” approach by default,
but it can also be configured to use the exponential extrapolation [44]. In this research, the
ACOLITE v.20211124 has been applied using the default approach without the negative
mask for rhow (l2w_mask_negative_rhow=False) to check its performance.

C2RCC is a development of Case 2 Regional processor, which relies on a large database
of ρw(λ) and related top-of-atmosphere radiances [19]. The inversion of the water leaving
signal and the satellite signal is performed by artificial neural networks. A characterization
of optically complex water through its inherent optical properties is used to parameterize
radiative transfer models for the atmosphere over the water body [53]. For this work,
the normal net version with typical ranges of IOPs has been used through the Sentinel
Application Platform (SNAP v.8.0). All the satellite images have been processed with
default parameters.

Sentinel 2 Correction (Sen2Cor) is an atmospheric correction algorithm developed by
ESA specifically for Sentinel-2 Level 2A land product [46]. In general, the atmospheric
correction algorithm assumes that the vegetation pixels in the satellite image have adequate
darkness and that the ratio of the bottom-atmospheric reflectance between the wavelengths
is constant, called dark dense vegetation (DDV) [46,54]. Accordingly, this algorithm will
require the presence of vegetation, corresponding to the dark areas in satellite images. In
case the input satellite image meets the above requirements, the algorithm will automati-
cally extract the AOT data from the dark pixels and correct the image [52]. In this study,
the satellite images were processed by Sen2Cor with default parameters.

Polynomial-based algorithm applied to MERIS (Polymer) is an atmospheric correction
for oceanic water, specially designed for the high sun-glint condition [26]. It is based
on spectral matching, which applies all the spectral bands to atmospheric and sun-glint
correction. In detail, the atmospheric component of this algorithm is a polynomial function
used to derive spectral reflectance of the atmosphere and sun glint. The satellite images
herein were processed following default parameters in Polymer v.4.13.

SeaDAS-integrated NASA atmospheric correction algorithm applied in this study is
based on the method presented by Bailey et al. [17] (NASA-AC). To calculate the value of
remote sensing reflectance (Rrs), this algorithm applies a bio-optical model in the red and
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NIR bands. First, to be able to apply this model, an initial atmospheric correction with the
black pixel assumption is needed for the calculation of chlorophyll-a concentration (Chl-a).
Then, Chl-a is used to calculate the spectral particulate backscattering, which is then used
to derive the remote sensing reflectance through an iterative scheme [17]. In this study,
indicators for performing atmospheric correction were set as default.

OC-SMART algorithm focuses on analyzing data from ocean color satellites such
as Landsat-8, Sentinel-2/3, SeaWiFS, MODIS-AQUA [20,47]. OC-SMART platform can
provide remote sensing reflectance (Rrs) and Chlorophyll-a (Chl-a) based on a multilayer
neural network (MLNN) method. A coupled ocean-atmospheric radiative transfer model
has been used to calculate simultaneously Rrs and the Rayleigh radiance corrected at the
top of the atmosphere and thereby being used to train a MLNN. The MLNN directly
estimates Rrs from ρrc [47]. In this study, the integrated atmospheric correction algorithm
in OC-SMART has been applied using default setting for assessment.

4. Statistical Parameters

Four statistical parameters have been calculated to assess the performance of each
atmospheric correction algorithm: the correlation coefficient (R2), the Bias, and the relative
error (RE):

Bias =
1
N
×∑N

i=1
Rrs

AC− Rrs
ASD

RrsASD × 100 (5)

RE =
1
N
×∑N

i=1

∣∣Rrs
AC− Rrs

ASD
∣∣

RrsASD × 100 (6)

where N is the number of match-ups, Rrs
AC is the remote sensing reflectance retrieved by

the atmospheric correction algorithms and Rrs
ASD is the remote sensing reflectance from

ASD in situ measurements.
Quality Assurance Score (QAS) [55], Chi-square mean (χ2) [56], and spectral angle

mean (SAM) [57] were also calculated to assess the full spectrum of the retrieved Rrs. QAS
gives quantification of the spectrum quality of Rrs retrievals with reference to a reference
in situ dataset [55]. For the best performance, QAS value has to be close to one. SAM
provides the difference between the in situ and the retrieved Rrs spectra, SAM value has to
go towards 0◦ [57]. χ2 indicates relative error values of the full spectrum of Rrs retrievals
and has to be null [56].

In this work, QAS, χ2, and SAM were calculated using 4 wavelengths: 443, 490, 560,
and 665 nm, which are the closest to the QAS reference Rrs wavelengths. However, in χ2

case, the wavelength at 560 nm is excluded due to its use for error normalization.

χ2 =
1
N
×∑N

i=1 ∑N
j=1

(
XAC

j (i) − XASD
j (i)

)2

XASD
j (i)

(7)

Xj =
Rrs

(
λj
)

Rrs(λ560nm)
(8)

SAM =
1
N
×∑N

i=1 arccos (

〈
Rrs

ASD(i), Rrs
AC(i)

〉
‖ RrsASD(i) ‖ × ‖ RrsAC(i) ‖

) (9)

where j and i are the indexes of λ and spectrum between 443 and 665 excluding 560 nm,
respectively. X is the normalized Rrs at 560 nm. 〈Rrs

ASD, Rrs
AC〉 is the dot product of

corresponding Rrs, and ‖ Rrs
ASD ‖ × ‖ Rrs

AC ‖ is the Euclidean norm of Rrs
ASD and Rrs

AC.

Scoring Scheme

Similar to QAS, χ2, and SAM, the total score (Stot) indicates AC performances over
the full spectrum of Rrs [36,56]. Stot is calculated based on the scoring of the slope α and
intercept β of the regression line, RE, Bias, and R2 for each algorithm. It is calculated on
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the variation between the minimum and maximum of those sixth statistical parameters, as
shown in the following equations:

Sα(λ j)Sα(λ j) =
|1− αAC(λ j )|−max(|1− α(λ j) |)

min(|1− α(λ j) |)−max(|1− α(λ j) |)
(10)

Sβ(λ j) =
|| βAC(λ j )|−max(|β(λ j) |)

min(|β(λ j) |)−max(|β(λ j) |)
(11)

SBias
(
λj
)
=

∣∣∣BiasAC(λj
)∣∣∣−max

(∣∣Bias
(
λj
)∣∣)

min
(∣∣Bias

(
λj
)∣∣)−max

(∣∣Bias
(
λj
)∣∣) (12)

SRE(λ j) =
REAC(λj

)
−max

(
RE

(
λj
))

min
(
RE

(
λj
))
−max

(
RE

(
λj
)) (13)

SR2(λj) =
R2

AC
(
λj
)
−min

(
R2(λj

))
max

(
R2(λj

))
−min

(
R2(λj

)) (14)

Stot= S.α+Sβ+SBias+SRE+SR2 (15)

Four wavelengths were considered for five statistical parameters, which lead to a
maximum Stot value of 20.

5. Results
5.1. Number of Potential Match-Ups

Table 3 shows the number of in situ measurements, days, and available match-ups.
A majority of the field measurements are from French Guiana. However, these data were
mainly for the aim of research for Sentinel-3 satellite [36], which led to a significant decrease
in the potential number of match-ups for Sentinel-2.

Table 3. Location, number of days, stations, and potential match-ups by areas.

Study Areas Days Stations Potential Match-Up

English Channel 16 43 22
French Guiana 14 60 8

Total 30 103 30

For the assessment, seven different ACs were applied to the Sentinel-2 satellite images
for the evaluation of their performances. Accordingly, the match-up dataset is divided
into two categories: individual match-ups and common match-ups. The common match-
up in this study aims to focus on evaluating the efficiencies of the correction algorithms
under the condition of the same number of output data. This condition helps to assess,
more uniformly, the ability to extract remote sensing reflectance from TOA signal between
ACs. Meanwhile, individual match-up provides a more comprehensive view. Besides the
performance of ACs, the individual match-up can also help to determine which ACs are
better at handling atmospheric influences and the overall performances of 7 ACs help to
evaluate their ability to remove invalid pixels. Thus, in this section, the match-up results
will be divided for these 2 cases.

5.2. All Match-Ups: Individual Performance

After selecting the appropriate match-ups based on the protocol mentioned in Section 2.3,
the total amount of valid data for each atmospheric correction algorithm is shown in Table 4.
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Table 4. Number of match-ups for four visible MSI bands of all ACs in all match-ups case.

iCOR ACOLITE C2RCC Sen2Cor Polymer NASA-AC OC-SMART

443 nm 22 16 21 22 21 15 21
490 nm 22 16 20 22 21 15 21
560 nm 22 16 21 22 22 17 22
665 nm 21 13 17 21 22 9 22

The number of valid match-ups varies between the ACs and between wavelengths
for a given ACs. NASA-AC is the AC that provided the least number of match-ups (9 at
665 nm) while Sen2Cor, Polymer, OC-SMART, and iCOR are the AC providing the highest
number of match-ups (between 21 and 22 depending on the wavelength).

Figure 3 shows the comparison between the estimated Rrs from atmospheric correction
algorithms and the Rrs from in situ measurements for MSI bands from 443 nm to 665 nm.
The accuracy of the AC is wavelength-dependent. For wavelengths at 443 nm and 490 nm,
the retrieved Rrs from all ACs are mostly under-estimated except for ACOLITE and iCOR.
For higher wavelengths the scattering around the 1:1 line decreases with increasing wave-
length, leading to better performances of the atmospheric correction algorithms. Those
results agree with the work of Pahlevan et al. [10].

Figure 3. Scatter plots of the estimated (y-axis) vs in situ (x-axis) Rrs for the seven atmospheric
correction algorithms at 443 nm, 490 nm, 560 nm, and 665 nm. The dotted line is the 1:1 line and solid
lines present the linear regression between the AC retrievals and the field measurements Rrs.

Figure 4 and Table 5 indicate the variation in the statistical parameters (RE, Bias, and
R2) for all ACs with MSI bands from 443 nm to 665 nm. Similar to the scatter plots, the
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value of R2 in the blue ranges from about 0.28 to 0.57 for all AC except for OC-SMART with
a value of 0.69 (Table 5). The value of R2 increases with wavelength and reaches 0.61 to
0.94 in the red region for all AC. Thus, the correlation between the in situ and estimated
Rrs is relatively high in the red band, showing better estimates compared to those in the
blue band. Regarding the error-related statistical parameters, in general, the output of the
algorithms has relatively high errors in the blue and red bands. The relative error forms
the standard U-shape [15,16] for most ACs. In contrast, the errors are significantly lower at
560 nm compared to the blue band and red band.

In general, the seven ACs can be categorized into two groups depending on their
performances: (1) NASA-AC, C2RCC, Polymer, ACOLITE, and OC-SMART with small
scattering at higher wavelengths and low biases (especially OC-SMART); (2) Sen2Cor and
iCOR showing lower performances compared to the first group, with higher scattering
around the 1:1 line and lower performances in term of statistical results (Figure 4 and
Tables 5 and 6).

Figure 4. Variation in the statistical parameters with the wavelength on the individual match-ups
dataset. From left to right, up to bottom: RE, Bias, R2.

Table 5. Value of RE, Bias, and R2 for different ACs and different bands. The bold number correspond
to the best statistical performance per wavelength and per statistical parameters.

RE (%) Bias (%)

443 nm 490 nm 560 nm 665 nm 443 nm 490 nm 560 nm 665 nm

iCOR 114.81 73.03 48.03 118.44 107.23 66.03 43.06 112.94

ACOLITE 58.24 39.78 38.00 88.04 52.93 22.17 19.50 42.47

C2RCC 36.61 34.45 28.44 52.50 −8.52 −3.11 17.05 13.67

Sen2Cor 119.69 73.08 51.72 89.48 118.57 61.80 47.22 81.54

Polymer 38.80 35.90 30.35 48.91 −13.39 −2.31 2.74 10.31



Remote Sens. 2022, 14, 1099 12 of 25

Table 5. Cont.

NASA-AC 31.60 36.37 28.90 56.30 −3.59 −11.25 1.93 31.30

OC-SMART 27.63 30.00 32.19 47.85 −2.41 −2.84 −6.41 5.88

R2

443 nm 490 nm 560 nm 665 nm

iCOR 0.44 0.56 0.77 0.86

ACOLITE 0.55 0.62 0.63 0.74

C2RCC 0.40 0.61 0.78 0.88

Sen2Cor 0.36 0.41 0.51 0.61

Polymer 0.57 0.72 0.80 0.92

NASA-AC 0.28 0.50 0.72 0.94

OC-SMART 0.69 0.74 0.80 0.92

The first group includes NASA-AC, C2RCC, Polymer, ACOLITE, and OC-SMART. In
this group, OC-SMART shows the best performances compared to the other algorithms.
For instance, R2 varies between 0.69 at band 443 nm and 0.92 at band 665 nm, and it shows
the lowest values in terms of RE. For the other ACs of this group, C2RCC, NASA-AC,
Polymer, and ACOLITE present acceptable values of R2 across all visible bands. R2 values
for Polymer vary between 0.57 at band 443 nm and 0.92 at band 665 nm. The values for
C2RCC, NASA-AC, and ACOLITE are a bit lower, from 0.4 at band 443 nm to nearly
0.88 at band 665 nm for C2RCC, from 0.28 at band 443 nm to 0.94 at band 665 nm for
NASA-AC and from 0.55 at band 443 nm to 0.74 at band 665 nm for ACOLITE. Regarding
the other statistical parameters, Polymer, C2RCC, and NASA-AC show quite similar values.
Meanwhile, ACOLITE shows relatively low performances in the red band. This can be seen
in the RE value of ACOLITE, which is 88.04%, almost 2 times higher compared to other
ACs in this group. Regarding the RE value, the statistical results have shown that the ACs
have superior performances with the smallest RE value in the 560 nm band, this applies
to all evaluated algorithms. For the Bias value, Polymer, NASA-AC, and OC-SMART
showed the highest value in the 665 nm band. Meanwhile, ACOLITE gives the largest Bias
value at 443 nm. This is similar to what was presented by Pahlevan et al. [10] for both RE
and Bias. Specifically, Pahlevan et al. showed that the value of retrieval errors showed a
limited performance of ACs in the blue band, and this performance reached the highest
at band 560 nm for the AERONET-OC match-ups. For the Bias value, Pahlevan et al. also
concluded that ACOLITE returns the minimum Bias value between 490 and 664 nm, in
contrast, NASA-AC shows the smallest Bias value between 443 and 560 nm, and overall,
there are no consistent positive and negative trends for Bias value across the ACs.

The second group includes iCOR and Sen2Cor. For this group, both Acs show lower
statistical results compared to the first group. All parameters values such as relative error,
and bias are substantially higher for this group. For the relative error, iCOR and Sen2Cor
showed significantly higher values than the algorithms in group 1. This difference in RE
value can be seen in blue bands with RE values 3 to 4 times higher than the Acs of group
1. The same trend can be seen for the Bias value. Accordingly, the Bias value of iCOR
and Sen2Cor ranges from 43.06% at 560 nm to 112.94% at 665 nm and 47.22% at 560 nm to
118.57% at 443 nm, respectively, while the Bias value of the algorithms of group 1 ranges
only from −10% to 30% except for ACOLITE. The difference in the values of the statistical
parameters between group 1 and group 2 was most evident in the Bias value of iCOR at
band 665 nm and Sen2Cor at band 443 nm, which are 112.94% and 118.57%, respectively.
This value is 5 to 6 times higher than Bias value of group 1. Besides, the lower performances
of ACs in group 2 are also clearly shown through the value of R2, which is only 0.36 for
Sen2Cor at 443 nm.
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Table 6. Value of QAS, χ2, SAM and Stot for different ACs (N is the number of match-ups). The bold
number correspond to the best statistical performance per statistical parameters.

Box QAS χ2 (%) SAM Stot

iCOR 0.65 0.38 9.35 7.70
ACOLITE 0.88 0.12 7.07 14.52

C2RCC 1.00 0.14 8.76 13.31
Sen2Cor 0.58 0.27 9.59 2.01
Polymer 0.87 0.07 5.99 14.90

NASA-AC 0.94 0.04 4.99 14.36
OC-SMART 0.87 0.04 4.44 16.89

Table 6 gives the values of QAS, χ2, SAM, and Stot for each atmospheric correction
algorithms. C2RCC and NASA-AC show the highest value of QAS (1.00 and 0.94, respec-
tively), while Sen2Cor has the lowest value (0.58). For χ2, NASA-AC and OC-SMART have
yielded the lowest value of 0.04, while iCOR shows the highest value (0.38). For SAM,
NASA-AC and OC-SMART show the lowest values which are 4.99 and 4.44, respectively.
On the opposite, Sen2Cor shows the highest value (9.66). The SAM value needs to be as
low as possible to get estimated spectra as similar as possible as in situ spectra. For Stot,
OC-SMART is the atmospheric correction with the highest value, 16.89 over 20, Polymer
has the second-highest value of Stot (14.90). The atmospheric correction with the lowest Stot
value (2.01) is Sen2Cor.

5.3. Common Match-Ups: Performance Inter-Comparison

In this section, we compare the ACs on the same match-ups dataset. The number of
common match-ups decreases considerably compared to the case of individual match-ups
with the number of match-ups varying between 7 at 665 nm and 16 at 560 nm, as shown
in Table 7. This is due to the number of overall match-ups from NASA-AC (Table 4).
Figures 5 and 6 are similar to Figures 3 and 4 but for the common match-ups. Figure 5
shows the comparison between the in situ Rrs value and the ACs estimated Rrs. As for the
case of individual match-ups, the accuracy of the ACs increases with increasing wavelength.
At 443 nm, most of the ACs provide under-estimation of Rrs (except ACOLITE), and this
under-estimation tends to decrease with increasing wavelength. The scattering around the
1:1 line is the smallest at 665 nm.

Table 7. Number of match-ups for 4 visible MSI bands of all ACs in common match-ups case.

iCOR ACOLITE C2RCC Sen2Cor Polymer NASA-AC OC-SMART

443 nm 14 14 14 14 14 14 14
490 nm 14 14 14 14 14 14 14
560 nm 16 16 16 16 16 16 16
665 nm 7 7 7 7 7 7 7

Figure 6 shows the variation in the statistical parameters (RE, Bias, R2) with the wave-
length on the common match-ups dataset. Overall, the values of the statistical parameters,
in this case, show lower performances for all ACs of the first group, and higher perfor-
mances for the second group compared to the all match-ups case. This can be seen through
the evaluation of the correlation between the in situ Rrs and AC estimates. For the first
group, R2 values increase from 443 to 665 nm, but are lower than the case of individual
match-ups dataset, especially at 443 nm and 490 nm, except for NASA-AC and C2RCC.
In detail, R2 value at the blue band (443 nm) for Polymer, ACOLITE, and OC-SMART
decreased from 0.57 to 0.41, 0.55 to 0.45, and 0.69 to 0.46, respectively. The other statistical
results show also lower performances. For instance, RE and Bias values of ACOLITE at
band 665 nm increase from 89.29% to 109.63% and from 41.2% to 104.82%, respectively. The
Bias values show the same trend, but its values significantly increase at band 560 nm and
665 nm for the ACs of the first group. In contrast, the RE and Bias values on the common
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match-ups dataset decrease substantially for the ACs of the second group, especially at
band 665 nm.

Figure 5. Scatter plots of the estimated (y-axis) vs in situ (x-axis) Rrs for the seven atmospheric
correction algorithms at 443 nm, 490 nm, 560 nm, and 665 nm. The dotted line is the 1:1 line and solid
lines present the linear regression between the AC retrieval and the in situ Rrs.

In terms of spectra shapes, QAS values increased considerably for all ACs, except for
OC-SMART. This is especially true for iCOR, which QAS increased from 0.65 to 0.89. The
same improvement in the shape can be observed for the other ACs, with a decrease in
SAM values from 9.59 to 6.7, 7.07 to 5.44, 9.35 to 4.95, 4.99 to 4.73 for Sen2Cor, ACOLITE,
iCOR, and NASA-AC, respectively. For χ2, the value decreases for all ACs of group 2
and ACOLITE. The most substantial change in χ2 is the case of iCOR, where the value
decreases from 0.375 to 0.046. Overall, with the exception of Polymer, iCOR, OC-SMART,
and ACOLITE, the performance of the ACs tend to improve with respect to Stot value.
iCOR shows the highest decrease in Stot from 7.7 to 3.37 and NASA-AC shows the highest
increase in Stot from 14.36 to 17.13 (Tables 6 and 8).
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Figure 6. Variation in the statistical parameters with the wavelength on the common match-ups
dataset. From left to right, up to bottom: RE, Bias; R2.

Table 8. Value of QAS, χ2, SAM and Stot for different ACs (N is the number of match-ups). The bold
number correspond to the best statistical performance per statistical parameters.

Box QAS χ2 (%) SAM Stot

iCOR 0.89 0.046 4.95 3.37
ACOLITE 1.00 0.056 5.44 13.26

C2RCC 1.00 0.149 9.77 14.11
Sen2Cor 0.79 0.068 6.70 4.19
Polymer 0.89 0.076 6.14 13.74

NASA-AC 1.00 0.038 4.73 17.13
OC-SMART 0.82 0.045 4.59 14.76

5.4. Sensitivity to the Position of 3-by-3 Pixels Box

As mentioned in Section 2.4, the existence of research vessels, towers, and lighthouses
at sea can cause interferences in the match-ups exercise, directly affecting the statistical
results of the AC processing. Therefore, to address this issue, we studied the impact of
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shifting the 3-by-3 pixels box from the in situ measurements. The results presented in
the previous sub-sections were estimated using a 3-by-3 pixel box centered on the in situ
measurements, which is the standard protocol for classic ocean color images [37]. Herein,
we shift the center from the location of the in situ measurements and we calculated the
statistics for five different positions for each AC.

Figure 7 illustrates the differences in the statistical parameters for two cases: (1) the
extraction box is shifted to the right of the in situ measurement by two pixels; (2) the
extraction box is shifted downward of the in situ measurements by two pixels. The
statistical results show that the location of the 3-by-3 pixels box does not change much the
statistical parameters, except for NASA-AC and Sen2Cor. For NASA-AC, in the case when
the box is shifted to the right by two pixels, the Bias value increases steadily at 443, 490, and
560 nm bands by about 2–4.7%, especially for the Bias value at 665 nm, which increased
by 10,3%. Meanwhile, in the case when the box is shifted downward by two pixels, the
Bias value increases steadily at 490, 560, and 665 nm bands by about 3.8–5%, and its value
increases the most at band 443 nm by 8%. Accordingly, the correlation between in situ
Rrs and NASA-AC estimates also substantially decreases—the strongest decrease being at
443 nm from 0.40 to 0.28 for the case when the box is shifted downward by two pixels, and
from 0.54 to 0.40 at band 490 nm for the case when the box is shifted downward by two
pixels. For Sen2Cor, the Bias value highly increases at 665 nm by around 40% for both cases.
However, unlike NASA-AC, the correlation between the in situ Rrs and the Sen2Cor AC
estimates increases considerably, with values of R2 increasing on average by 0.015 for the
right-shifted case and by 0.03 for the down-shifted case for wavelengths from 443 nm to
560 nm, and decreases by 0.075–0.088 at 665 nm band for both cases.

For other cases of pixel extraction, as shown in Figure 7, the statistical parameters
show no significant changes or stable trends.

Table A1 shows the statistical indicators on the shape of the estimated Rrs spectra
depending on the position of the 3-by-3 pixels box. Except for the right-shifted and down-
shifted cases, the statistics for the other positions of the box do not change much compared
to the standard position (centered of the in situ measurement). For the right-shifted
case, the combined results of nearly all algorithms are slightly improved: Stot of iCOR,
ACOLITE, C2RCC, Polymer, and OC-SMART increase from 7.70 to 8.25, 14.52 to 14.75,
13.31 to 13.89, 14.90 to 15.58 and 16.89 to 17.20, respectively. By contrast, Sen2Cor and
NASA-AC show a decreased performance and have lower Stot values, from 2.01 to 1.25 and
14.36 to 13.28, respectively. Similarly, the down-shifted case also shows an improvement in
the performances for iCOR, ACOLITE, C2RCC, Polymer, and OC-SMART with Stot value
increasing from 7.70 to 7.73, 14.52 to 15, 13.31 to 14.29, 14.9 to 15.30, and 16.89 to 17.06,
respectively. No improvements are observed for NASA-AC and Sen2Cor for this given
case. On our limited dataset, the shift of the 3-by-3 pixels box does not seem to impact
the accuracy of the AC retrievals. This might be due to the homogeneity of the seawaters
during the collection of the in situ Rrs measurements. For the case of the box with no
center pixel, the statistical parameters show no significant improvements for five AC out
of seven. For the other two cases, the left-shifted and down-shifted cases, the statistics
show improvements for only two AC out of seven. For the left-shifted case, only iCOR
and OC-SMART show improvement in performance with Stot value increasing from 7.7
to 7.8 and 16.89 to 17.03, respectively. The Stot value of ACOLITE, C2RCC, Polymer, and
NASA-AC slightly decreased from 14.52 to 14.10, 13.31 to 12.81, 14.90 to 14.74, and 14.36
to 13.83, respectively. For the up-shifted case, only iCOR and NASA-AC show a slight
increase in Stot value, from 7.7 to 7.83 and 14.36 to 15.42, respectively.
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Figure 7. Summary of statistics of normal extraction method (the middle), the tested down-shifted
box (the lower), and right-shifted box (the upper). (Left column): RE; (middle column): Bias;
(right column): R2.

6. Discussion
6.1. Comparison of the First Group of AC: OC-SMART, NASA-AC, Polymer, ACOLITE
and C2RCC

OC-SMART shows the overall best performances on our in situ dataset. For the case
of individual match-ups datasets, OC-SMART yields the lowest errors and bias at two
bands 443 nm and 665 nm. R2 also shows the higher values across all the bands with values
ranging between 0.69 at 433 nm and 0.92 at 665 nm for the case of individual match-ups,
and between 0.46 at 443 nm and 0.85 at 665 nm for the common match-ups case. The
scatterplots for OC-SMART also show a satisfactory adjustment to the 1:1 line with low
scattering for all wavelengths. These results show that the estimated Rrs from OC-SMART
is highly accurate compared to the in situ measurement data. For the scoring scheme,
OC-SMART provides the highest Stot result, which is 16.89/20 for the individual, and the
second-highest Stot value (14.76) for the common match-ups dataset.

NASA-AC shows good performances as demonstrated by the statistical parameters
and the scoring scheme on the common match-ups dataset. Accordingly, for the individual
match-up case, the estimated Rrs show a good correlation with the in situ data with R2

values ranging from 0.28 at 443 nm to more than 0.92 at 665 nm. The error and Bias values
are also relatively low, which ranges from 31.6% at 443 nm to 56.3% at 665 nm and −3.59%
at 443 nm to 31.30% at 665 nm, respectively. These values are 12% to 15% higher than



Remote Sens. 2022, 14, 1099 18 of 25

OC-SMART. Especially, NASA-AC yields the highest Stot value (17.13) for the common
match-up case. NASA-AC provides good estimations of the spectra of Rrs, as shown in the
values of SAM, QAS, and χ2. Overall, however, NASA-AC has a tradeoff that can be seen
in the individual case. Despite the high efficiency in atmospheric correction, the ability to
mask pixels with atmospheric noise components is still not good. This can be seen in the
number of match-ups shown in Table 4. Accordingly, the number of valid match-ups after
processing by NASA-AC is the lowest, and it is strongly reduced for high wavelengths
(band 665 nm only has 9 valid match-ups in the individual match-up case). This result
is similar to what was mentioned by Ilori et al. [58] and by Pahlevan et al. [10]. This low
number of match-ups can be caused by the inhomogeneity of the estimated remote sensing
reflectance (Rrs) in the 3-by-3 pixels box, as shown in Figure 8. Besides the low number of
match-ups, a part of the problem can be caused by the fact that the NASA-AC methodology
requires an initial correction process which assumes water-leaving radiances are null in
the NIR region [17]. Thus, it may not be good to apply to some typical types of nearshore
coastal water due to turbidity. NASA-AC can be considered as the second-best atmospheric
correction algorithm on our in situ dataset.

Figure 8. Example of an inhomogeneous pixel scene processed with NASA’s atmospheric correction
processor in the Eastern English Channel on 21 September 2016. In situ measurement is presented as
Pin 1.

Polymer has good statistical results and relatively high scores in the scoring scheme.
The correlation between the in situ and the estimated Rrs is relatively high. This is shown by
the value of R2, which gradually increases from 0.57 at 443 nm to 0.92 at 665 nm. This result
is similar to those obtained by Pereira-Sandoval et al. [49], who validated Polymer using in
situ data from field campaigns, obtaining R2 values equal to 0.3 for 443 nm, 0.4 for 490 nm,
0.8 for 560 nm, and 0.93 for 665 nm, which shows an increase for the coefficient of variation
value. Besides, those results are in the same trend of values as the ones observed here for
both match-ups cases. The algorithm shows quite low performances in the blue band and
the accuracy gradually increases in the green and red bands, as shown in Figures 3 and 4.
From the statistical results, Polymer retrieves accurate spectra of Rrs compared to a reference
in situ dataset [55] and low spectra differences between the in situ measurements and the
retrieved Rrs with values of QAS and SAM of 0.87 and 5.99, respectively (Table 6). Overall,
Polymer shows the value of Stot of 14.90 and 13.74 for individual and common match-ups
datasets, respectively.

Similar to Polymer, C2RCC is also an atmospheric correction algorithm with acceptable
and stable performances, not affected by wavelength as much as NASA-AC. C2RCC has a
relatively high correlation between the estimated Rrs and the in situ measurements with R2

ranging from 0.4 at 443 nm to nearly 0.88 at 665 nm. Similar to Polymer, C2RCC exhibits
relatively low accuracy in the blue bands, and this accuracy increases with increasing
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wavelength. One reason for this can be the strong Rayleigh scattering in the blue band by
atmospheric gases, which might not be properly corrected [49]. Therefore, to solve this
problem, as mentioned in the study by Pereira-Sandoval et al. [49], C2RCC is being devel-
oped and tested to create a new version capable of more accurate correction for sun-glint in
the blue wavelength range. Overall, C2RCC still shows an acceptable scoring scheme with
the value of Stot are 13.31 and 14.11 for individual and common match-ups cases.

Polymer and C2RCC have quite similar statistical values for some parameters, such as
relative error. However, for others, Polymer shows higher accuracies compared to C2RCC
such as lower values of SAM values, which are 5.99 for Polymer and 8.76 for C2RCC
(Table 6), and higher R2 ranging from 0.57 to 0.92, while R2 for C2RCC ranging only from
0.4 to 0.88. Compared to C2RCC, Polymer has a better ability to remove invalid pixels. This
is shown by the number of available match-ups after the match-up selection process, as
given in Table 4, wherein the available match-up number of Polymer is around 21 and 22,
while this value for C2RCC ranges from 17 to 21. Therefore, Polymer is a more accurate
atmospheric correction algorithm than C2RCC in our study.

This agrees with what was presented by Pahlevan et al. [10]. The study of Pahlevan
has assessed the performance of a total of six different ACs on Landsat-8 and Sentinel-2.
Over 1000 match-ups from seven different optical water types for both fresh and coastal
water have been applied. The results of this study show that OC-SMART and NASA-AC
are the two best atmospheric corrections for working in coastal waters. Polymer also
provides high-quality estimates of the remote-sensing reflectance. However, overall, it does
not surpass the performances of OC-SMART and NASA-AC [10].

Unlike other ACs in this group, ACOLITE shows lower performances. For the cor-
relation between estimated and in situ Rrs, R2 values vary between 0.55 at 443 nm and
0.74 at 665 nm. It can be seen from this result that the correlation of ACOLITE Rrs is low
in the blue band. This also can be seen from scatterplots in Figure 3, with the regressed
line for ACOLITE being distinguishable from the 1:1 line. SAM value of ACOLITE is the
second-highest value (7.07) compared to the other atmospheric correction algorithms in
this group. The Stot value of ACOLITE for the individual and common match case are 14.52
and 13.26, respectively. Although the Stot value of ACOLITE in the all match-up case is
relatively high compared to C2RCC and NASA-AC, the statistical parameters of ACOLITE
are lower than these 2 ACs. For instance, the RE values of ACOLITE at 443 and 655 nm
are 2 times higher than that of C2RCC and NASA-AC. The Bias values of C2RCC and
NASA-AC at 443 and 490 nm are negative and range from −11% to −2%, while the Bias
values of ACOLITE at these two bands range from 22% to 53%. This low performance
could be due to the ACOLITE’s mechanism, which masks pixels containing clouds, fog, or
cirrus. ACOLITE’s masking process allows the removal of areas with cirrus clouds using
cirrus detection from the 1375 nm band. These cirrus clouds pixels at 1375 nm are applied
to mask the remaining bands of MSI. Therefore, as shown in Figure 9 of French Guiana
scene on 28, November 2016, when some of the S2 satellite images at 1375 nm are almost
entirely covered by cloud or haze, the masking process of ACOLITE will remove the whole
scene. This will result in all extracted values being NaN. Overall, ACOLITE shows the
lowest performances in the first group.
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Figure 9. The example satellite image of Sentinel-2 at band 10 (1375 nm) over French Guiana on
28 November 2016. The cloud, cirrus, or haze covers all of the images.

6.2. Comparison of the Second Group of AC: Sen2Cor and ICOR

The second group of AC (Sen2Cor and iCOR), in general, shows lower performances
compared to the first group. This is understandable as both Sen2Cor and iCOR mechanisms
mostly depend on the presence of land, as those algorithms are land-based method [54]
and improved by Guanter [51] method for Sen2Cor and iCOR, respectively. These methods
generate scene parameters requiring a distribution of pixels containing land. In the absence
of land, these algorithms use default values of the aerosol optical thickness, which was the
case for three match-ups in the English Channel and one match-up in French Guiana in this
study. Therefore, it is suggested that the tested versions of these processors should better
be applied for inland scenes.

In detail, in the second group, Sen2Cor shows relatively low performances in the
visible bands, especially for the blue band. At 443 nm, R2 is nearly 0.36, which indicates a
low accuracy and correlation between estimated and in situ Rrs, as suggested by Figure 4.
The data points are highly scattered around the 1:1 line for bands between 443 and 560 nm.
Furthermore, the total scheming score (Stot) is very low (2.01 and 4.19 for individual and
common match-ups cases, respectively) on our dataset. This suggests that this algorithm
shows poor performances in reproducing the spectral shape of the in situ data. This poor
performance could partly come from the fact that the approach of this algorithm is based
on the “Dense Dark Vegetation”, which means that the AC will perform better in the high
presence of vegetation. One example is in Ruescas et al. [59] as the authors used Sen2Cor to
correct the atmosphere in Albufera lagoon. They showed good accuracies in the retrievals
and concluded that it was due to the high concentration of chlorophyll-a all year round in
the lagoon, especially in spring and summer when there is an additional resonance of crop
rice around the lagoon [59]. Therefore, in the condition of lesser vegetation, the accuracy of
Sen2Cor can significantly decrease.

Compared to Sen2Cor, iCOR has a relatively high correlation between the estimated
and in situ Rrs, as shown by the value of R2 which gradually increases from 0.44 at 443 nm
to 0.86 at 665 nm, while the R2 value of Sen2Cor varies from 0.36 at 443 nm to 0.61 at
665 nm. However, except for this statistical parameter, iCOR showed higher values in all
other indicators such as Bias and RE in 665 nm, which is 30% higher compared to Sen2Cor.
This leads to a low value of Stot (7.7 and 3.37 for individual and common dataset cases
respectively). Notably, iCOR is the only algorithm that does the adjacency correction,
which is SIMilarity Environmental Correction (SIMEC), before performing the atmospheric
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correction [43]. This means that in order to perform the correction process, iCOR needs
two conditions to be met. First, one condition is to have at least one spectral band in
the wavelength range between 680 nm and 730 nm, where strong reflections from land
plants and weak reflections from water can be obtained. Second, there must be at least one
reference band in the NIR region [60]. However, in the case of extremely high turbidity
such as coastal waters, the reflectance spectrum of NIR varies considerably [61] and, maybe,
this could be the reason for lower performances. Besides, the other reason can be that
iCOR uses a fixed aerosol model for the rural area, which is not suitable for the coastal area,
which needs a marine or pollution aerosol model [62]. Another reasonable explanation for
these lower performances is that iCOR requires a combination of pure green vegetation
and bare soil endmember, and when these conditions cannot be satisfied to calculate the
AOT value, it is recommended to manually set the appropriate AOT value for the area [42].
However, in this study, instead of using a specific AOT value for each region, the AOT
value used by iCOR was set to default.

6.3. Processing Time

In terms of the ease of using AC algorithms, with the processor of i7-7700HQ with
8 cores and 16 GB RAM, the time processing of OC-SMART with default setting is the
fastest out of the seven algorithms. The normal process time OC-SMART takes for
1830 × 1830 pixels of Sentinel-2 is in the range of 150 to 450 s. ACOLITE with default
setting is the second fastest algorithm, followed by Polymer and Sen2Cor. In fourth place,
iCOR and C2RCC took approximately 40 to 50 min to process the whole Sentinel-2 scene.
NASA-AC took the longest processing time, which could reach around 2 h with the “-2”
option for aerosol that is based on Bailey et al. [17] method. Regardless of the time pro-
cessing and also the performance, OC-SMART is highly recommended for atmospheric
correction in the coastal area.

7. Conclusions

This research aimed to test and validate the performance of seven S2/MSI atmospheric
correction processors by using in situ measurements collected in two contrasted French
coastal water: the English Channel and French Guiana. We used statistical parameters
on the absolute values of Rrs and on the Rrs spectra and a ranking scheme to evaluate the
performances of each AC.

The scoring scheme system applied in this study has been effective in evaluating and
ranking atmospheric correction algorithms for coastal waters. This scheme was taken into
consideration for scoring the AC processors and then ranking them with respect to their
performances. The ranking system given in this article should be applied in atmospheric
correction of coastal area.

The results showed that out of seven algorithms, OC-SMART and NASA-AC are
the best suitable processor on our in situ dataset. This is similar with the conclusion in
ACIX-Aqua research of Pahlevan et al. [10]. In detail, OC-SMART has the highest total
score of 16.89/20, NASA-AC is the second most suitable AC with the value Stot is 17.13/20
in the case of common match-ups dataset. However, there is a tradeoff for using NASA-AC
since its available match-ups number is considerably lower compared to the other ACs.
Polymer and C2RCC are, respectively, third and fourth in the ranking system. However, the
accuracy of these algorithms is not high in the blue band (443 nm) and increases towards
the red and green bands. This trend can also be observed for the other ACs algorithms.
ACOLITE is the fifth in the ranking system. The two left ACs show lower performances on
our dataset, especially in the blue band. It is suggested that the tested versions of these two
left ACs should be better applied to inland scenes.

We tested the sensitivity of the performances on the position of the extraction box
to the in situ measurement location. As the size of the structure that helped to collect
the in situ measurements can be substantial to the pixel size of S2/MSI, it is necessary
to study the impact of these structures on the performances of the AC. However, most
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of the results obtained for the data extraction methods tested in this study did not show
significant changes, except for the case of right-shifted and down-shifted boxes, with a
small improvement in the overall scoring scheme results. Therefore, it is not possible to
conclude with certainty whether this right shift box or down shift box test method are
better than the conventional data extraction method. This might be because our seawaters
were too homogeneous or because we processed all the MSI images at a 60-m spatial
resolution. However, it is necessary to consider the size of the measurements platforms
when validating MSI images over the ocean.

We recommend using the ranking system result of this research over our regions of
interest or similar regions.
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Appendix A

Table A1. Statistical parameters for sixth positions of the colocation box: Number of the available
match-up (N); Quality Assurance Score (QAS), Chi-Square (χ2), Spatial Angle Mean (SAM); Total
Score (Stot).

Box N QAS χ2 (%) SAM Stot

iCOR

Normal 22 0.65 0.38 9.35 7,70
No Center 22 0.67 0.36 9.01 8,02
Upshifted 22 0.64 0.35 8.99 7,83

Downshifted 22 0.64 0.38 9.70 7,73
Left-shifted 22 0.65 0.35 9.00 7,80

Right-shifted 22 0.64 0.37 9.30 8,25

ACOLITE

Normal 16 0.88 0.12 7.07 14,52
No Center 16 0.88 0.12 7.09 14,69
Upshifted 16 0.87 0.12 7.21 13,72

Downshifted 16 0.86 0.13 7.26 15,00
Left-shifted 16 0.88 0.12 7.16 14,10

Right-shifted 16 0.92 0.12 7.00 14,75

C2RCC

Normal 21 1.00 0.14 8.76 13,31
No Center 21 1.00 0.14 8.74 13,49
Upshifted 19 1.00 0.15 8.80 11,80

Downshifted 21 1.00 0.15 9.01 14,29
Left-shifted 21 1.00 0.14 8.98 12,81

Right-shifted 21 1.00 0.14 9.05 13,89

https://scihub.copernicus.eu/dhus/
https://scihub.copernicus.eu/dhus/
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Table A1. Cont.

Box N QAS χ2 (%) SAM Stot

Sen2Cor

Normal 22 0.58 0.27 9.59 2,01
No Center 22 0.58 0.27 9.58 2,03
Upshifted 22 0.57 0.27 9.64 1,56

Downshifted 22 0.57 0.33 10.05 1,28
Left-shifted 22 0.58 0.28 9.60 2,01

Right-shifted 22 0.61 0.33 10.03 1,25

Polymer

Normal 21 0.87 0.07 5.99 14,90
No Center 21 0.87 0.07 5.97 15,08
Upshifted 21 0.87 0.07 6.04 14,30

Downshifted 22 0.89 0.07 6.04 15,30
Left-shifted 21 0.88 0.07 6.06 14,74

Right-shifted 22 0.89 0.07 6.09 15,58

NASA-AC

Normal 15 0.94 0.04 4.99 14,36
No Center 14 0.94 0.04 4.99 13,82
Upshifted 14 0.97 0.03 4.46 15,42

Downshifted 11 0.94 0.05 5.17 12,14
Left-shifted 14 0.94 0.04 4.87 13,83

Right-shifted 13 0.92 0.04 5.09 13,28

OC-
SMART

Normal 21 0.87 0.04 4.44 16,89
No Center 20 0.86 0.04 4.34 16,66
Upshifted 19 0.91 0.04 4.39 16,54

Downshifted 21 0.86 0.04 4.61 17,06
Left-shifted 21 0.87 0.05 4.85 17,03

Right-shifted 21 0.83 0.04 4.52 17,20
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