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Classification and recognition tasks performed on photonic hardware-based

neural networks often require at least one o	ine computational step, such as in

the increasingly popular reservoir computing paradigm. Removing this o	ine step

can significantly improve the response time and energy e�ciency of such systems.

We present numerical simulations of di�erent algorithms that utilize ultrafast

photonic spiking neurons as receptive fields to allow for image recognitionwithout

an o	ine computing step. In particular, we discuss the merits of event, spike-time

and rank-order based algorithms adapted to this system. These techniques have

the potential to significantly improve the e�ciency and e�ectiveness of optical

classification systems,minimizing the number of spiking nodes required for a given

task and leveraging the parallelism o�ered by photonic hardware.

KEYWORDS

photonic hardware, temporal coding, rank-order code, spiking neurons, microlasers,

receptive fields

1. Introduction

Photonic artificial neural networks can open great prospects for the realization of fast

and energy efficient image recognition tasks. The advantages of photonic systems include

integration, very small dissipation during information transport, ultra-fast response times

(sub nanosecond) and, due to the number of controllable nonlinearities in optical materials,

a wealth of physical properties useful for information processing. In particular, spiking or

excitable photonic systems (Nahmias et al., 2013; Feldmann et al., 2019; Skalli et al., 2022) are

exceptional candidates for building third generation neural networks, which are predicted to

signficantly improve power consumption and augment computational capabilities (Maass,

1997; Thorpe et al., 2001; Stöckl and Maass, 2021).

Recent research has generated great interest in the use of physical reservoir computing,

where the complex dynamics of a physical system are exploited to project input data into

a larger dimensional space. Its output is then typically classified in an offline computation

using a relatively simple method like a ridge regression (Tanaka et al., 2019; Nakajima, 2020).

Suchmethods include a wide variety of different systems such as nano-electronic spin-torque

nanoscillators (Torrejon et al., 2017), organic electrochemical networks (Cucchi et al., 2021),

and photonics (Lugnan et al., 2020) using, e.g., optoelectronic oscillators (Larger et al., 2017)

or spiking vertical cavity surface emitting lasers (Robertson et al., 2022; Owen-Newns et al.,

2023). One exception to resorting to a software based step involved all-optical time-series

prediction using passive devices (Bueno et al., 2018) and emulated spiking-based recognition

of four different letters in the optical domain (Feldmann et al., 2019). Removing this offline

step can significantly improve the response time and energy efficiency of these systems. In
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this study, we present an algorithmic approach to image

recognition that utilizes ultrafast photonic spiking neurons,

allowing for a recognition by solely observing the responses of

these neurons. This work represents an important step toward

the development of more efficient and effective methods for

image classification.

We investigate a model task of digit classification utilizing

simplified 5 × 5 binary pixel images of the 10 digits, as depicted

in Figure 1A. The photonic nodes used here are semiconductor-

based micropillar lasers with integrated saturable absorber. Our

technique is based on tuning the key physical parameters of

photonics microlaser neurons, such as the bias pump, input bit time

and intensity, so that their response consists of a single spike that is

sensitive to certain features of the data. The optical spiking neurons

exhibit the fundamental properties of biological neurons, such as

excitability, relaxation, and a refractory period, but are six orders of

magnitude faster (Pammi et al., 2020).

The inspiration for this technique is found in the biological

concept of a receptive field (RF), where neurons exhibit a

selectivity to only certain stimuli, resulting in a very sparse and

therefore energy efficient encoding of information. Our method

is also related to temporal encoding schemes known as time to

first spike (Bonilla et al., 2022), which are gaining increasing

interest due to its low energy consumption while maintaining an

excellent computational performance (Abderrahmane et al., 2020;

Kheradpisheh and Masquelier, 2020; Park et al., 2020; Gardner and

Grüning, 2021; Guo et al., 2021). Such encoding is believed to

play a crucial role in several cognitive processes, such as memory

retention and decision-making. It is particularly well-suited for

applications where speed is required. While we explore here a

simple classification task, our approach may also be used for ultra-

fast feature selection prior to a larger classification task, which will

benefit the system by reducing its dimensionality. What makes

our results unique in the literature is not just the consideration of

different temporal schemes based on an optically spiking neuron,

but the use of a more complex neuron model for hardware

compared to the integrate and fire neurons previously explored.

2. Methods

2.1. Model for spiking microlaser neuron

The model we use to describe the microlaser neurons derives

from the Yamada (1993) model, which has proven to adequately

predict the response of such systems in various configurations

(Barbay et al., 2011; Terrien et al., 2020). It consists of three

dimensionless coupled ordinary differential equations:

İ = I (G− Q− 1) + β(G+ η)2

Ġ = γG
(

µ1(t)− G(1+ I)
)

Q̇ = γQ
(

µ2 − Q(1+ sI)
)

(1)

where I is the intracavity intensity, G is the gain, Q is the

saturable absorption, and γG and γQ are the gain and the SA

relaxation rates, respectively. All the parameters are scaled to the

cavity photon lifetime, which is on the order of 1–2 ps in physical

units. The parameter β models the amout of spontaneous emission

coupled to the laser cavity mode.We define the important quantity,

net gain, asR = G−Q−1. Themicrolaser is pumpedwith a strength

µ1, which can be adapted to either electrical or optical pumps, and

µ2 is the linear unsaturated absorption. The saturation parameter is

s, which, for semiconductor materials here, takes the value s ≃ 10.

We use typical parameters for semiconductor materials, such that

γG = γQ = 0.005, µ2 = 2, η = 1.4, and β = 10−4. Note that the

gain and SA recombination rates are small (γG,Q ≪ 1), resulting in

a slow-fast nonlinear system. The intensity dynamics are essentially

governed by the net gain (at least in the linear regime): if R > 0

laser intensity increases, and if R < 0 it decreases. The nonlinear

terms in the gain and SA equations describe stimulated emission

and absorption processes, leading either to light amplification or

(saturable) absorption. The main physically controllable parameter

is the pump µ1(t).

These equations have been studied theoretically in Dubbeldam

and Krauskopf (1999) in the limit β → 0. When the pump µ1

is increased from 0, the laser starts in its off state and no light

is emitted until the laser threshold is reached. Above the laser

threshold (µ1 > µ1,th = 1 + µ2), the microlaser is in the self-

pulsing regime and emits a train of short pulses. Just below the

laser threshold, the microlaser is in the excitable regime: it has

a stable quiet state corresponding to no laser emission; if it is

perturbed above a certain threshold (the excitable threshold), it

emits a fast calibrated pulse in response and returns back to its

quiet state in a time corresponding to the absolute and relative

refractory periods. Experimentally, the pulse duration is about 200

ps and the relative refractory period is of the order of a few hundred

piocseconds, typically 350 ps or more (Selmi et al., 2014). The

spiking microlaser also displays spike latency (Selmi et al., 2016)

and temporal summation (Selmi et al., 2015). It thus has all the

main ingredients of a biological neuron from a computational point

of view.

In this study, we focus on the excitable regime, where the

microlaser can be considered as a photonic spiking neuron.

Input signals can act on I or G, and are defined, respectively as

coherent or incoherent. We consider the latter case, which is more

practical experimentally, and input the information in the system

on the pump parameter µ1(t), with a coding scheme that will be

explained below.

2.2. Input coding

The data to be classified consists of images of digits, each of

which is made up of 25 binary pixels (Figure 1A). These images are

input into the micropillar by translating the value of each pixel in a

row (Hi) or column (Vi) into a corresponding time varying pump

value relative to the base pump value (µ0). This process is illustrated

in Figure 1B). The input pump coding is defined by each input bit

p from the given receptive field (Hi or Vi) such that:

µ1(t) = µ0 +
∑

i

cpi5τp (t − iτb) (2)

where 5τp (t) is a boxcar function of duration τp. The time

varying pump value is calculated as the sum of the base pump value

µ0 and of the translated bit sequence, each bit having duration
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FIGURE 1

(A) The 10 digits used in this study. Digits consist of 5 × 5 binary pixels in each image. (B) Horizontal and vertical receptive fields define input bit

sequences, which are fed into the neuron through the time varying pump µ1(t). Depending on the neurons internal parameters, the neurons can fire

or not. (C) Illustration of the neuron response to the V4 receptive field with the input bit sequence [0, 0, 1, 1, 1]. (Top): Corresponding input pump

µ1(t) (Equation 2) with bit duration τb, pump pulse duration τp and pump amplitude c. (Middle): Net gain of the micropillar R(t). (Bottom) Output

intensity I(t).

τb ≥ τp and the added pump amplitude corresponding to the

bit “1” being c (0 otherwise). The control parameters τb and τp

are determined by physical considerations. If τb is much larger

than the relative refractory period of the microlaser, the input bits

will not interact since the system can reach steady state after each

input pump pulse. By choosing the bit time τb slightly less than the

relative refractory time, consecutive bits can be summed up due to

temporal summation and the system can be made to fire only after

a certain sequence is met. This is illustrated in Figure 1B) where

the three consecutive “1” part of the input bit sequence “00111”

allows the net gain R(t) to increase slightly above zero and thus

elicit a spike in the laser intensity. Note that in this case, the system

only fires after at least three consecutive input “1”s. The pump

pulse width τp is chosen in conjunction with the pump amplitude

c since, in the small pump pulse duration limit, the physically

relevant quantity for the system is the pump pulse energy, i.e., the

product τpc.

3. Results

3.1. Horizontal and vertical receptive fields

Our approach to digit recognition is based on the temporal

summation property of neurons (Koch, 2004), which results in

receptive fields for vertical and horizontal features in the input

image. Temporal summation, a.k.a. integration, occurs when the

neuron integrates the individual stimuli into a single, stronger

signal. It has been shown to be important biologically for numerous

cognitive functions such as sensing pain (Price et al., 1977), seeing

in dim light (Warrant, 1999), and auditory perception (Heil and

Neubauer, 2003). It has been demonstrated in a photonic spiking

neuron in Selmi et al. (2015) and used for ultrafast image processing

using VCSELs in Hejda et al. (2022) and Robertson et al. (2022).

As shown in Figure 1, the majority of the features of each

digit are oriented horizontally and vertically, and often consist of

aligned blocks of pixels. This observation will drive our approach

to the classification task. Our strategy is based on the manipulation

of the physical parameters of the micropillar neurons such that

they respond to specific input patterns. As shown in Figure 1,

by encoding the pixels into pump values and sending them row

by row or column by column to the corresponding micropillar

neurons, we can elicit a response in the form of a spike if a certain

pattern is detected (in this case, three perturbations in a row). This

approach allows us to effectively classify the digits based on their

distinctive features.

A salient feature observable in all the images in Figure 1 is

the presence of either three or four perturbations arranged in a

contiguous row or column. Furthermore, the digits 2 and 5 possess

symmetrical features, requiring the implementation of neurons

with new sets of parameters to detect the patterns “11101” or

“10111.” By exploiting the principle of temporal summation, the

parameters of the micropillar can be optimized such that the

arrival of either of these perturbation patterns results in a net

gain above the threshold (R ≥ 0), leading to the generation

of a spike. This can be used subsequently as an indicator of

the detection of a specific pattern, making the classification

in an experimental implementation relatively straightforward.

Alternatively, the latency of the resultant spike can be utilized as

a means of differentiating between the two primary patterns, as

shown below.

3.2. Feature detection

We aim to investigate the parameter regime in which

micropillars exhibit a spike response to a specific pattern while

remaining insensitive to other patterns. To accomplish this

objective, a comprehensive sweep of the relevant parameter
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FIGURE 2

(A) Minimum number of consecutive “1” bits in the input sequence required to excite the photonic neuron. The region µ0 ' 2.75 for the pump value

corresponds to the self-pulsing regime and does not require any additional perturbations to produce a spike. (B) Parameter region where the input

sequence 10111 is distinguishable. (C) Spike latency di�erence (in log10 scale) for sequences of three and four consecutive “1” bits, as a function of

pump values and coe�cients. The other parameters are τb = 50 and τp = 30.

space was conducted. The parameters that were varied in this

sweep include the pump value (µ1), as well as the intensity of

the perturbation, represented by the coefficient c. Furthermore,

the effects of two additional parameters, namely the bit- and

perturbation-times were also considered. The bit-time represents

the duration of time allocated for each pixel to influence the

system, while the perturbation-time denotes the duration of the

perturbation when it is present. Through systematic variation of

these parameters, we were able to determine the optimal parameter

values that lead to the desired behavior in the micropillars. As

demonstrated in Figures 2A, B, the distinction between various

features is possible by a proper choice of the parameters (µ) and

(c). Interestingly, the summation being a time dependant process,

the input sequences “11101” and “10111” can be distinguished in a

sizeable parameter range. Here, the bit-time and perturbation-time

were fixed at 50 and 30 units of simulation time, respectively. These

values serve to broaden the parameter regions for each pattern, thus

enabling greater accuracy in identification.

3.3. Output coding with spike latency

Spike latency, also known as the temporal delay, is a nonlinear

interval between the presentation of a stimulus to a neuron and

the subsequent generation of an action potential as a response. This

latency period is of paramount importance in neuron activation as

it enables encoding the strength of the stimulus in the time domain

(Fujii et al., 1996) a process known as temporal coding. In general,

spike latency is a critical aspect of neuronal function and plays a

pivotal role in a plethora of brain processes.

As an alternative to the previous coding scheme, we can take

advantage of the fact that the temporal stamp for each spike,

in the event of receiving any of the two predominant patterns,

will be unique to that specific pattern. Through this approach,

we can further diminish the feature space of the original dataset.

In order to effectively implement this method experimentally, it

is imperative to have a substantial disparity between the spike

latencies of the two dominant patterns (three or four perturbations

in a row). As depicted in Figure 2C, we conducted a comprehensive

sweep over the same parameters, while maintaining the values of

τb and τp as previously established. The spike latency diverges to

infinity at the excitable threshold and decreases strongly when the

excitation increases, until saturating to some non-zero value. This

strong variation can be seen in Figure 2C where the spike latency

difference varies over several orders of magnitude. It shows that

a proper choice of parameters can allow for a large spike latency

when needed to ease the feature distinction. In the vicinity of the

excitable threshold, we can find the parameter region where the

difference grows exponentially toward infinity, thus providing a

window where the detection of two patterns will be eased. Indeed,

from an experimental point of view, the system would also be

subject to noise and large latencies would also be accompanied

by large fluctuations of the latency time. Thus, a large latency

difference can be useful to differentiate among input features.

3.4. Classification

We present three classification methods based on the encoding

of the output spikes. One relies only on the presence or absence

of a spike related to a specific feature (event based). The second

incorporates the timing information of the spike arrival (spike-time

based). The last one depends on the arrival order of the spikes (rank

order based). As we will show, this choice can have a significant

impact on the performance of the model and on the reduction

of the overall computational cost. In the present classification

methodology, the vertical and horizontal receptive fields (V and

H, respectively) allow the retrieval of particular features at specific

positions in the input image. This is rendered possible by fixing the

pair of parameters, µ0 and c, for each considered feature.

3.4.1. Event base coding
A time-independent classification approach is employed,

relying on an event-driven coding strategy. In this method, each

receptive field is input into a photonic neuron with different

parameters µ0 and c, which are adjusted to detect the desired

input feature corresponding to the presence or absence of a
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FIGURE 3

Spike time based coding. Input sequences in chosen receptive fields are sent to micropillar lasers tuned to spike in response to at least three

consecutive “1” bits. τ (3) and τ (4) are the latency times for input patterns “111” and “1111,” respectively. Possible spike timings are separated by τb

(temporal length of the pixel) and are indicated by labels 1–5. The correct output sequence can be identified and results in the prediction of a given

class.

specific sequence, as calculated in Figure 2A. As shown in Table 1a,

the three most significant sequences that result in a successful

classification of the 10 digits are found to be “111,” “1111,” and

“10111.” The parameters chosen to detect the sequences “111” and

“1111” are µ0 = 1.25 and c = 6 and c = 5.5, respectively.

In order to separate the classes corresponding to digits 2 and 5,

it is necessary to introduce a feature to differentiate between the

sequences “10111” and “11101.” Based on Figure 2B, we choose a

feature withµ0 = 1.25 and c = 5.5. As a result, we show in Table 1a

the codes associated to the different features tested. From these, it

is clear that only 10 features are necessary to distinguish between

the digits: {H1,H3,H5,V2,V4} associated to “111,” {V2,V3,V4}

associated to “1111” and {V2} or {V4} associated to “10111.” We

can eventually add {V3} tuned to detect “1111” if we exclude the

empty code for digit “1.” This method can thus classify the digits

using 10 neurons in parallel, provided one inputs the data of chosen

receptive fields. The classification time taken will be on the order of

5τb + τl, τl being the largest latency time expected for the response.

In physical units, this can lead to a few nanoseconds for the process.

3.4.2. Spike-time coding
In this second method, we make use of spike latency, one of the

fundamental properties of biological neurons that also exists in our

artificial photonic neuron. As shown in Figure 2C, the theoretical

spike latency difference (δτl) between the two input sequences,

namely “111” and “1111,” can approach infinity. This difference

in latency derives from the evolution of net-gain [R(t)] and laser

intensity [I(t)] in the different input sequences. To surmount

this, we consider the temporal position of the resulting spikes. As

illustrated in Figure 3, by choosing a parameter region (µ0, c, τb,

and τp), where the time latency difference δτl = τ (3)−τ (4) is greater

than τb, we can introduce a coding scheme based on spike time.

This spike-time coding scheme, which is shown in Table 1b, assigns

a temporal position stamp k to each receptive field (Hnk/Vnk), k

ranging from 1 to 5, fastest to arrive (lowest latency) to slowest,

respectively. This leads to a unique code for each digit class.

This method of coding removes the need for the redundant

check of receptive fields {V2,V3,V4}, for presence of different

patterns, where the temporal position of the output spike (k)

contains the information of type and location of the pattern all

at once. This reduces to seven the number of artificial neurons

needed for this coding, while increasing the collected features to

12. By choosing µ0 = 2.65 and c = 0.5 we can be assured of a

delay difference δτl ≈ 103, which is an order of magnitude greater

than τb = 50, therefore satisfying the criteria of no overlap of

temporal position stamps, regardless of input pattern disposition

in receptive fields.

As shown in Figure 3, the output spike time of each receptive

field, can be utilized in different ways to decode. The simplest way
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TABLE 1 Minimal output code (see text) without and with spike latency, respectively (a, b), and with arrival time (c) for each input digit.

In (A), each column contains the list of receptive fields eliciting a spike for a specific input sequence corresponding to a given digit. The minimum output code is highlighted in blue (the

unique code with minimum number of receptive fields). Notice that some receptive fields will be activated with more than one input pattern. In (B), the output code for each digit contains the

list of receptive fields eliciting a spike with its arrival rank, from 1 to 5, to each spike based on the number of perturbations and position in the image. In (C), the output code for rank order

classification based on the first three arrived spikes, where the lowest latency is first in the list.

to realize the decoding scheme consists in the use of a set of ten

micropillars, each tuned to respond to a certain pattern of output

codes. The system still takes advantage of parallel processing, and

therefore, keeps the feature extraction and prediction time to a

few nanoseconds.

3.4.3. Rank coding
We can extend the framework of spike-time coding to align

with the principles of rank order coding (Thorpe and Gautrais,

1998), where only the order of arrival of spike times is taken into

account. To ensure that each the spike resulting from a receptive

field is unique and remove accidental degeneracies of spike-times

in different receptive fields, we assign a random delay τd ∈ [1, 100]

to each receptive field. The range of τd was decided in relation

to the delays of other patterns so that it can alter the arrival

time effectively. Here we chose τb = [24, 47, 20, 60, 91, 9, 67] for

receptive fields {V2,V3,V4,H1,H3,H4,H5}, respectively. We use

the same number of receptive fields, i.e., 7. We use the parameters

µ0 = 2.6, c = 0.7, and keep τb = 50, such as to have a clear

distinction between the three patterns : “111,” “1111,” and “11111.”

As illustrated in Table 1c, by considering only the arrival order

of the first three spikes, we can accurately predict the class to which

it belongs. During the learning process, the output connection of

each class ismade to a particular receptive field that has been chosen

and optimized to respond to a specific spike arrival order. In the

case of digits with fewer than three output spikes, such as 1 and

7, the order is still unique and distinguishable from other classes.

Using a more comprehensive dataset would result in a wider range

of spike combinations.

It is worth noting that the random delay can be easily

implemented by, e.g., adding a small random difference in the

pump parameter µ0 of each neuron, or could even be “naturally”

implemented by the inherent fabrication inhomogeneities of the

different microlasers considered. All the random choices are not

equivalent and may not lead to an efficient classification. They can

thus be considered as hyperparameters for our problem. However,

our simulations show that it is rather easy to select a set of random

delays suitable for a given task.

4. Discussion and conclusion

In this numerical study, we demonstrate the efficacy of

incorporating a nonlinear element, specifically laser micropillars,

into the classification task. The incorporation of this fundamental

nonlinearity serves to elevate the feature space, thereby enabling

the utilization of fewer features for the classification task. By using

the concept of a receptive field, we can significantly reduce the

number of spikes from one spike per one bit, to one spike per

multiple bits. This shows howmore complex neuron models can be

used to advantage to improve the energy consumption of a spiking

neural network.

In the event-based method, we observe that utilizing 10

artificial neurons (laser micropillar neurons)—as opposed to the

25 features (of which 15 are distincts) in the original feature space

consisting of 5 × 5 images—enabled successful classification of the

entire dataset. The classification is based on choosing the right

parameters for the micropillar laser, enabling the separation of

different input sequences. We find that it can be rather easy to

obtain a correct classification requiring a resolution of 10 percent

in both µ0 and C.

We also implementedmethods using time coding, which brings

the functionality of our system closer to that of biological systems.

In the spike-time based and rank based methods, the number of

artificial neurons needed is further reduced to 7, representing an

absolute minimum for the dataset in question. The reduction in

the number of features and subsequently, the number of neurons

required, is of significant importance as it allows for offline or
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extra computation to be avoided, thereby enabling the system to

naturally identify distinguishable features and minimized the time

and energy required for a classification. The parameters range

required in this case is slightly smaller than the one identified

in Figure 2A, as can be seen in Figure 2C and still represents a

sizable range. Moreover, the rank order classification algorithm is

particularly appealing because it only relies on the spike arrival

order. This is unlike spike-time based methods, where spike arrival

timesmust be compared to a reference. The classification is effective

within the time needed to receive the third fastest spike, which

can be on the order of only a few nanoseconds in physical systems

(Selmi et al., 2016).

In light of the findings of this theoretical study, the

implementation in an experimental setup would serve as a clear

demonstration of the computational and learning capabilities of

a neuromorphic system based on micropillars. As depicted in

Figure 3, this implementation can be achieved using multiple

micropillars or by dividing the task into a manageable process for

a single pillar through adjustments of the necessary parameters.

Using semiconductor sources to pump the micropillars optically

and multiple optical modulators to produce optical pulses as input

data into the pillars are experimentally feasible approaches for this

implementation. Electrical biasing of the micropillar lasers is also a

viable and promising technique. We also note that the algorithms

presented here are not restricted to these specific setups and could

be used in the experimental platforms of Ma et al. (2017) and Skalli

et al. (2022).

Scaling up of the network much further or generalization to

larger datasets is an open question. However, we would like to

stress that our system in its current configuration, in addition to

being used as the output of a physical reservoir for a classification

task, may also be used prior to a larger classification as an ultra-

fast feature selector, in the spirit of convolutional neural networks.

It is worth also noting that a multilayer structure can in principle

be adopted in this approach since the timing information would

simply flow between the layers. In the case of the rank order code,

it occurs at the network’s final stage and it is no necessary to

determine the timing at any other point in the network.

Furthermore, the biological relevance of the temporal models

introduced in this study allows for the exploration of more

complex, real-world datasets as was used in Van Rullen et al.

(1998) for facial recognition using one spike per neuron. Such an

algorithm relies on detecting basic facial features and their relative

positions which could be performed in hardware with our ultra fast

system. The fundamental principle remains the same, identifying

the dominant features that define the dataset and allowing the

micropillar to reduce the feature space through its nonlinearity.

The ranking of the output is also a crucial factor in reducing

the time and energy required for more complex tasks where,

only specific connections are capable of extracting the necessary

information for classification. The potential applications are diverse

and, owing to the rapid response time of our artificial neurons,

highly convenient. In addition, we point out that the ingredients

used by our algorithms stem from very general properties found

in many other excitable systems, namely temporal summation and

spike latency. Thus, we expect that the algorithms introduced here

can be implemented in many other systems.
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