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Abstract—The traditional way to detect the vertical structure of 

seawater optical properties and chlorophyll-a is mainly through 

shipboard discrete observations or Biogeochemical-Argo profiling 

floats, which requires considerable time to cover a limited area. In 

this study, the vertical distribution of seawater optical properties 

and chlorophyll-a concentration across two different optically-

contrasted sea areas from the East China Sea (ESC) to the South 

China Sea (SCS) were obtained for the first time using a shipboard 

integrated Mie-Raman-fluorescence lidar for large-scale 

observations, with a total observation distance of over 3700 km. 

More than 74,000 lidar profiles were obtained from September 5 

to September 15, 2020. In general, the lidar-estimated inherent 

optical properties (IOPs) and chlorophyll-a values decreased from 

turbid water in the ECS to clear water in the SCS. Subsurface 

scattering layers were often observed at depths ranging from 10 to 

20 m along the SCS coast. Subsequently, the lidar-derived results 

were compared against in situ measurements. In addition, the 

diurnal hourly variation in IOPs and chlorophyll-a by lidar at a 

fixed coastal station was monitored for the first time, which was 

relatively lower in the early morning and midday yet was higher 

in the evening, while the relative tide height showed the reverse 

change trend, which revealed that the tide possibly impacted the 

diurnal variation in IOPs and chlorophyll-a on the SCS coast. 

Overall, our results indicate that the lidar remote sensing 

technique is effective and feasible to monitor large-scale and long-

term subsurface phytoplankton structure over different optically-

contrasted sea regions, and integration of multiple detection 

mechanisms will enhance the monitoring capacity. 

 
Index Terms—lidar, subsurface phytoplankton layer, hybrid 

method, South China Sea, lidar attenuation coefficient, multiple 

scattering 

 

I. INTRODUCTION 

atellite passive ocean color observations can provide 

large-scale, frequent, and continuous views of the 

variability in the global ocean. It has vastly improved 
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understanding of the distribution of phytoplankton and marine 

primary productivity [1]. However, these measurements are 

limited to clear sky, daylight, high sun elevation angles, and ice-

free oceans and are exponentially weighted toward the ocean 

surface [2]. The traditional way to detect the vertical structure 

of optical properties and chlorophyll-a is often through 

shipboard discreate observations [3, 4] or Biogeochemical-

Argo profiling floats [5], which take considerable time to cover 

a limited area. These limitations can be addressed by active 

lidar technology. Active lidar measurements could provide 

depth-resolved values of ocean phytoplankton properties at 

both day and night, over the globe and in polar regions, which 

are helpful to improve the estimation of global phytoplankton 

primary productivity and carbon stocks/fluxes [6-8] and to 

understand the spatiotemporal distributions of underwater 

plankton and their dynamic variation in the upper ocean driven 

by physical and biological factors [9, 10]. With new vertically 

resolved and diurnal continuous measurements, lidar can also 

provide new insights into high latitude ecosystems and diel 

vertical migration [8, 11]. Lidar is just such a technique and can 

usher in the next revolution in satellite ocean remote sensing 

[12]. 

In recent years, interest for lidar systems has been renewed 

and they have been proposed as an effective tool for oceanic 

research, as demonstrated by a variety of measurements in the 

upper ocean [13], including profiling optical properties [14-18], 

detecting bathymetry [19, 20], fish and zooplankton [21-25], 

subsurface phytoplankton layers [26-30], and internal waves 

and bubbles [31, 32]. However, there are still very few 

applications in Chinese seas limited to the cost and technical 

maturity of the instrument. In this study, the vertical distribution 

of seawater optical properties and chlorophyll-a concentration 

across two different optically-contrasted Chinese sea areas from 

the East China Sea to the South China Sea were obtained for the 

first time using a shipboard integrated Mie-Raman-
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fluorescence lidar. More than 74,000 lidar profiles were 

observed from September 5 to September 15, 2020. The signals 

of parallel and perpendicular polarized Mie scattering, Raman 

scattering, and fluorescence were obtained simultaneously. 

Spatial and diurnal variation in the vertical distribution of 

optical properties and chlorophyll-a retrieved by the lidar data 

were analyzed. 

This article is organized as follows. In Section 2, an 

integrated Mie-Raman-fluorescence lidar system, the study area 

and a hybrid retrieval method used in this research are 

introduced. The horizontal and vertical distributions of inherent 

optical properties (IOP) and chlorophyll-a retrieved by the lidar 

data along the vessel tracks, diurnal variation of IOPs and 

chlorophyll-a at a fixed station, and comparisons between lidar-

derived and in situ-observed data are presented in Section 3. 

Finally, the summary and conclusion are provided in Section 4. 

 

II. MATERIALS AND METHODS 

A. Integrated Mie-Raman-fluorescence lidar system 

An integrated Mie-Raman-fluorescence lidar (MRFL) was 

developed by the College of Optical Science and Engineering, 

Zhejiang University. The transmitting part is mainly composed 

of a Nd:YAG pulse laser with a green band. After a series of 

collimating beam expanding systems, laser pulses with narrow 

pulse widths are emitted into the ocean. A 532 nm pulsed laser 

was utilized with a pulse energy of 5 mJ, repetition rate of 10 

Hz, and pulse width of 8 ns. The receiving part consists of a 

telescope, a field-of-view aperture, a collimating lens, an 

interference filter, a receiving lens and a photodetector. A 

telescope with a diameter of 80 mm and a field of view of 200 

mrad was employed. The bandwidth of the interference filter 

we use in the lidar system is 3 nm. Considering the relationship 

between the maximum receiving field of view and the center 

wavelength, the center wavelength of the selected filters moves 

appropriately to the short wavelength. According to the 

geometrical relationship between the telescope and the laser, 

the overlap factor can be calculated. The overlap factor of the 

MRFL usually reaches 1 after a distance of two meters. 

Therefore, when studying the signal of seawater, the influence 

of the overlap factor on the echo signal can be ignored under 

the condition that the incident optical axis and the receiving 

optical axis are parallel. The field of view aperture is placed on 

the focal plane of the telescope, and the receiving field of view 

angle can be adjusted by adjusting the aperture. An interference 

filter is placed behind a collimating lens to filter out background 

light. The photodetector is located behind the convergent lens 

and is used to convert optical signals into electrical signals. 

There are four PMT detectors for receiving signals of parallel 

polarization Mie scattering, perpendicular polarization Mie 

scattering, Raman scattering and fluorescence. The detector 

efficiency is larger than 18%. In addition, the analog digital 

converter (ADC) has a bandwidth of 200 MHz, with a sample 

rate of 400 MS/s, which corresponds to a vertical resolution of 

approximately 0.282 m in water. The resolution of the ADC is 

14 bits with four acquisition channels. The total weight of the 

system is 60 kg, and the bulk volume is 0.2 m3. Figure 1 shows 

the schematic diagram, and Table 1 shows the detailed 

parameters for the MRFL system. Figure 2 shows photos of the 

lidar system taken at day and night. 
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Fig. 1. Schematic diagram of the MRFL system. BS1, BS2, BS3: beam splitter; 

M1, M2: mirror; PBS: polarizing beam splitter; OF1, OF2, OF3: optical filter; 

PMT1, PMT2, PMT3, PMT4: photomultiplier tubes. 
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Fig. 2. Photos of the MRFL system taken at day (a) and at night (b). 

 
TABLE I 

DETAILED PARAMETERS DESIGNED FOR THE MRFL SYSTEM 

Laser 

Wavelength 532 nm 

Pulse energy 5 mJ 

Repetition rate of laser 10 Hz 

Pulse width 8 ns 

Polarization state Horizontal 

Beam Divergence <1 mrad 

Beam diameter 8 mm 

Receiver 

Diameter of telescope 80 mm 

Field of view 200 mrad 

Interference filter bandwidth 3 nm @532 nm; 10 nm @ 650, 685 nm 

Interference filter efficiency >70% 

Detector Efficiency ＞18% 

Anode responsivity 0.3 A/W 

Detector PMT 

Analog Digital Converter 

Bandwidth 200 MHz 

Sample rates 400 MS/s 

Resolution 14 bit 

Channels 4 
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Others 

Weight 60 kg 

Bulk volume 0.2 m3 

Device control interface Standard network interface 

Software platform Windows 10 

 

B. Study area 

The MRFL lidar system was deployed aboard the ‘Runjiang’ 

scientific expedition vessel, allowing continuous sampling 

from Zhoushan, East China Sea (ECS) to Sanya Bay, South 

China Sea (SCS) (Figure 3). The lidar measurement tracks 

covered both the turbid water in the ECS and the clear water in 

the SCS, with a total traveling distance over 3700 km. The 

whole investigation voyage lasted nearly two weeks from 

September 5 to September 15, 2020. Among them, the lidar 

made continuous measurements throughout the whole day at a 

fixed station (110.4434°E, 18.6024°N) on September 14. 

During the investigations, the lidar was mounted on the vehicle 

deck approximately 18 m above the sea surface at an angle of 

approximately 40° from nadir. Figure 3 shows the map of 

shipborne lidar measurement tracks and synchronous discrete 

in situ validation stations from the ECS to the SCS. The colored 

lines are lidar-observed tracks, and red triangles are in situ 

traditional optical measurement stations. The contour map 

represents the bathymetry variation and shows that the lidar-

observed tracks are below a depth of 50 m in the ECS and 

mostly above a depth of 50 m in the SCS. 

Simultaneously, in situ validation for lidar measurements 

was conducted by traditional commercial bio-optical 

instruments. A total of 63 in situ survey stations were designed 

along the lidar measurement tracks. Among them, the Stations 

from S50 to S62 are at a fixed station measured every 2 hours 

for a whole day. At each station, inherent optical properties 

(IOPs) were measured over depths ranging from 0 to 60 m using 

an absorption and attenuation meter (AC-S, Wetlab Ltd., 

America) and a backscatter meter (Hydroscat-6, HOBILabs 

Ltd., America). Chlorophyll-a fluorescence was measured 

using a multiparameter water quality monitor (RBR XR-420, 

RBR Ltd., Canada), and the fluorescence data were calibrated 

to extract chlorophyll-a concentration using a laboratory 

scanning spectrofluorometer (Trilogy, Turner Designs Inc.) 

[33]. The diffuse attenuation coefficient 𝐾𝑑 was calculated by 

absorption and backscattering coefficients based on the Lee’s 

model [34]. Among them, the AC-S operated successfully after 

Station S7, and the RBR failed to run after Station S48. Detailed 

in situ data information is presented in Table A1 in Appendix 

A.

 
 

Fig. 3. Map of shipborne lidar measurement tracks and synchronous discrete in situ validation stations from ECS to SCS from September 05 to September 15, 2020. 
The colored lines are lidar-observed tracks, and red triangles are in situ traditional optical measurement stations. The contour map represents the bathymetry 
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variation and shows that the lidar-observed tracks are below a depth of 50 m in the ECS and mostly above a depth of 50 m in the SCS. The bathymetry data is from 
the ETOPO1 Global Relief Model by the National Geophysical Data Center (NGDC) [35].

C. Lidar hybrid retrieval model 

A hybrid retrieval method [15, 26] was proposed to estimate 

the lidar extinction coefficient 𝑘lidar  and the backscatter 

coefficient at 180 degrees 𝛽𝜋(𝑧) based on the integration of the 

Klett retrieval method [36] and the perturbation retrieval (PR) 

method [17]. The lidar measured signal was calibrated by an 

iterative method [33].The Klett method assumes that there is a 

relationship between 𝑘lidar(𝑧) and 𝛽𝜋(𝑧), and the PR method 

assumes that the water optical parameters can be expressed as 

the sum of a part that does not vary with depth 𝑆ℎ(𝑧) and a 

varying part. Then, the 𝑘lidar(𝑧) , 𝛽𝜋(𝑧) , and 𝑏𝑏𝑏𝑝  could be 

estimated: 

𝑘𝑙𝑖𝑑𝑎𝑟(𝑧) =
exp⁡[

𝑆(𝑧)−𝑆𝑚
𝑟

]

{
1

𝑘𝑙𝑖𝑑𝑎𝑟(𝑚)
+
2

𝑟
∫ exp⁡[

𝑆(𝑧)−𝑆𝑚
𝑟

]𝑑𝑧
𝑧𝑚
𝑧 }

               (1) 

𝛽𝜋(𝑧) =
𝑆(𝑧)

𝑆ℎ(𝑧)
𝛽𝜋(0)                                 (2) 

𝑆(𝑧) = 𝑙𝑛( 𝑃(𝑧) × 𝑧2))                             (3) 

𝑆ℎ(𝑧) = 𝑙𝑛( 𝐴𝛽𝜋
𝑛𝑜𝑛) − 2𝑘𝑙𝑖𝑑𝑎𝑟

𝑛𝑜𝑛                        (4) 

𝑘𝑙𝑖𝑑𝑎𝑟(𝑚) = −
1

2

𝑑𝑆𝑚

𝑑𝑍𝑚
                               (5) 

𝑏𝑏𝑝 = 2𝜋𝜒(𝜃)𝛽(𝜃)                                (6) 

𝛽𝜋(0) = 
𝑒𝑥𝑝(𝑆(0))

𝐴
                                  (7) 

where 𝑃(𝑧)  is the instantaneous received power at depth ⁡𝑧 , 

𝑆(𝑧) is the logarithmically transformed range-corrected power 

of 𝑃(𝑧) , 𝑟  is an exponential parameter that depends on the 

wavelength and water optical characteristics, which is often 

equal to 1, 𝑚 is the reference depth, 𝑆𝑚 is the lidar power at the 

reference depth and 𝑘𝑙𝑖𝑑𝑎𝑟(𝑚)  is the lidar attenuation 

coefficient at the reference depth, which can be obtained using 

the slope method, in which the reference depth is often the depth 

where the lidar signal intensity is one percent of the maximum 

signal intensity. It was found the 𝑘𝑙𝑖𝑑𝑎𝑟(𝑚)  has a relatively 

small effect on the accuracy of the retrieved 𝑘𝑙𝑖𝑑𝑎𝑟  with 

increasing range between z and zm [14]. 𝐴 is the lidar system 

constant accounting for an integrated function of laser energy, 

the optical efficiency of the receiver, the detector electronic 

gain and, among others [33], 𝛽𝜋(0) and S(0) are the backscatter 

coefficient and 𝑆(𝑧) at the sea surface, and 𝑘𝑙𝑖𝑑𝑎𝑟
𝑛𝑜𝑛  and 𝛽𝜋

𝑛𝑜𝑛 are 

the mean nonvarying parts for ⁡𝑘lidar  and 𝛽𝜋 , which could be 

obtained from the linear fitting calculation of 𝑆ℎ(𝑧) for 𝑆(𝑧). 
Because lidar has a large field of view, 𝑘𝑙𝑖𝑑𝑎𝑟  approaches the 

water diffuse attenuation coefficient 𝑘𝑑  in this study [37-40]. 

The relationship between 𝑏𝑏𝑏𝑝  and 𝛽(𝜃)⁡can be expressed by 

Equation (6), where 𝛽(𝜃)  is the volume scattering function 

(VSF) at 𝜃  and 𝜒(𝜃)  is a conversion factor. There is an 

uncertainty for this model in 𝜒(180°). Most VSF instruments 

could only measure the VSF at angles up to 170° due to that the 

measurements at angles > 173° are unreliable due to stray light 

contamination [41-45]. Some studies reports the estimated 

𝜒(180°) was approximately 1.43 [46, 47], some report it was 

1.06 [18, 30, 48], while others report it was 0.5 [49-51]. In this 

study, we measured both 𝑏𝑏𝑏𝑝  and 𝛽(140°)  using the 

Hydroscat-6 instrument [52]. The scatter plot of the regression 

analysis result is shown in Figure A1 in Appendix A, and the 

calculated 𝜒(140°) was 1.08 and the estimated 𝜒(180°) was 

approximately 1.08 based on the Sullivan’s measurements [53, 

54] that the 𝜒  factor has been assumed to be 1.076 at all 

wavelengths. 

There may be a range ambiguity problem which could mix 

up the light signals scattered from various depth, which means 

the weaker signal from deeper water could be contaminated by 

the decay signal from the upper water. It also named “pulse 

stretching” by some previous studies [55-58]. The idea of a 

system without time dispersion is a mathematical convenience. 

It is never absolutely correct. Any photon deflected from the 

beam axis encounters a time delay in reaching the target plane. 

The time excess is the multipath time, τ=t-z/c. When the 

multipath time is small compared with other system time 

constraints, such as the laser pulse length, the dispersion-less 

system concept is justifiable. A theoretical basis is provided for 

the time-dependent lidar equations in the forward-scattering 

regime based on the beam spread function with time dispersion 

as a Green’s function [57]. The Monte Carlo numerical method 

is an alternative to the analytical approach and inherently 

includes pulse stretching along with beam spreading. Based on 

previous studies, if the receiver FOV is sufficiently large, the 

complex analytical approximation reduces to a commonly used 

lidar equation and the derived 𝑘lidar  approaches to 𝑘d . In 

addition, there may be an issue that a slow transient recovery 

occurs for some PMTs, in which the signal arising from a strong 

surface return is spread over several adjacent range bins starting 

from the bin that contains the surface echo [13, 59]. In this study, 

the lidar has a large incident angle (40-degree off nadir angle) 

and fast transient recovery of the PMTs, which is hard to receive 

the specular reflection of strong backscattering signal at the 

backward direction, and a return spreading over several 

adjacent range bins by the PMTs could not occur. 

III. RESULTS AND DISCUSSION 

A. An example of lidar echo signals 

Figure 4 shows an example of the lidar echo signals for the 

MRFL. The colored lines are the signals of parallel Mie 

scattering, perpendicular Mie scattering, Raman scattering at 

650 nm and chlorophyll fluorescence at 685 nm. The various 

lidar signals are in a.u., and they are digitized signals with the 

relative magnitudes between them accurate. The signals 

gradually decrease due to sea water attenuation, while the signal 

decay rates are different for the four signal channels. The 

fluorescence and Raman signals (685 nm and 650 nm) have a 

larger decay rate than the Mie scattering signal (532 nm). 

Therefore, it appears that the maximum detection depth for 

fluorescence and Raman signals were no more than 12 m, 

compared to the maximum detection depth of nearly 40 m for 

Mie scattering signals. The parallel Mie scattering signal 

appears to have a little larger decay rate than the perpendicular 

Mie scattering signal due to the depolarization impacted by 

multiple scattering [60]. It can be seen that both the parallel 

polarization and perpendicular polarization Mie scattering 
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signals started to increase at approximately 25 m. This revealed 

that there may be a subsurface scattering layer starting from a 

depth of approximately 25 m. The depolarization should be 

helpful for detecting the subsurface scattering layer. 

 
Fig. 4. An example of the lidar echo signals for the MRFL. The colored lines 

are the signals of polarized Mie scattering, Raman, and fluorescence. 

 

B. Lidar signal profiles along the vessel tracks 

Figure 5 shows the lidar echo signals of polarized Mie 

scattering as a function of depth along the vessel traveling 

tracks. The signals range from the sea surface to the depth of 40 

m below the sea surface. The left panels ranging from top to 

bottom (Figs. 5(1), 5(3), …5(21)) correspond to the lidar echo 

signals of parallel polarization Mie scattering obtained from 

September 5 to September 15, 2020. The right panels ranging 

from top to bottom (Figs. 5(2), 5(4), …5(22)) correspond to the 

lidar echo signals of perpendicular polarization Mie scattering 

obtained from September 5 to September 15, 2020. The vertical 

profiles of lidar signals vary as the observation positions varied 

along the tracks, which reveals the variation in seawater optical 

properties as the vessel travels from the ECS to the SCS. The 

intensities of the lidar signal vertical profile measured on 

September 5 appear very strong, as shown in Figure. 5(1) was 

due to the estuarine outflow from the Yangtze River and 

Hangzhou Bay making these seawaters very turbid. Although it 

appears that there are still lidar echo signals at depths below 15 

m, as shown in panels 5(1) to 5(4), in fact, the lidar maximum 

penetration depth in these turbid regions is basically no more 

than 15 m, the echo signals at depths below 15 m were mainly 

noise signals due to low signal to noise ratio after the depth, 

because the signal intensity decreases rapidly in turbid water 

[11]. It can be seen that the lidar maximum penetration depths 

begin to increase considerably in Figure. 5(5) (the blue color 

regions begin to appear), which was because the water became 

clear when the vessel reached the coast of Fujian Province. The 

maximum lidar penetration depth increased from 15 m to 40 m 

as the vessel traveled from the ECS to the SCS. This revealed 

that lidar could rapidly monitor the spatial variations in 

seawater turbidity or seawater transparency at a large scale 

based on lidar echo intensity variations. It also showed that the 

sea floors or subsurface plankton in some areas off the SCS 

coast may be detected, such as those in Figures. 5(16), 5(21) 

and 5(22). 
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Fig. 5. Map of lidar echo signals of polarized Mie scattering along the ship traveling tracks. The left panels ranging from Fig. 5(1) to Fig. 5(21) correspond to the 
lidar echo signals of parallel polarization Mie scattering obtained from September 5 to September 15, 2020, respectively. The right panels ranging from Fig. 5(2) 

to Fig. 5(22) correspond to the lidar echo signals of perpendicular polarization Mie scattering obtained from September 5 to September 15, 2020, respectively. 

 

Figure 6 shows the lidar echo signals of fluorescence and 

Raman scattering along the vessel traveling tracks. The signals 

range from the sea surface to the depth of 8 m below the sea 

surface. The left panels ranging from top to bottom (Figs. 6(1), 

6(3), …6(21)) correspond to the lidar echo signals of 

fluorescence at 685 nm obtained from September 5 to 

September 15, 2020. The right panels ranging from top to 

bottom (Figs. 6(2), 6(4), …6(22)) correspond to the lidar echo 

signals of Raman scattering at 650 nm obtained from September 

5 to September 15, 2020. The vertical profiles of lidar signals 

vary as the observation position varied along the tracks, which 

reveals the variation in chlorophyll-a concentration as the 

vessel traveled from the ECS to the SCS. Strong signals are 

observed just under the surface (up to 2 meters) in panels 6(1) 

to 6(10) which could be related to the presence of 

phytoplankton. The fluorescence signal then decreases and is 

very low for panels 6(11) to 6(21), in the open ocean waters. 

The Raman signal also decreases for these areas but remains 

quite strong. It also appears that the signals during the daytime 

are noisy compared to those during the nighttime due to the 

influence from solar background light. 

 

 
Fig. 6. Map of lidar echo signals of fluorescence and Raman scattering along the ship traveling tracks. The left panels ranging from Fig. 6(1) to Fig. 6(11) correspond 

to the lidar echo signals of fluorescence obtained from September 5 to September 15, 2020, respectively. The right panels ranging from Fig. 6(2) to Fig. 6(22) 
correspond to the lidar echo signals of Raman scattering obtained from September 5 to September 15, 2020, respectively. 

 

Figure 7 shows the lidar echo signals of depolarization (the 

ratio of perpendicular signal divided by parallel signal) along 

the vessel traveling tracks. The signals ranged from the sea 

surface to the depth of 40 m below the sea surface. The panels 

ranging from top to down (Figs. 7(1), 7(2), …7(11)) correspond 

to the lidar echo signals of depolarization obtained from 

September 5 to September 15, 2020. The vertical profiles of 

lidar depolarization signals vary as the observation position 

varied along the tracks, which reveals the variation in optically-

active particles as the vessel traveled from the ECS to the SCS. 

This is especially true for the coastal areas (panels 7(1) to 7(3)). 

This also shows that the sea floors in some areas off the ESC 

coast and SCS coast were detected, such as those in Figures. 

7(8) and 7(11). Compared to the detection results of sea floors 

in Figure 4, the sea floor detected by lidar depolarization signals 

was more pronounced and visible. The polarization signal is 

helpful to enhance the ability for underwater target monitoring 

[61, 62]. 
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Fig. 7. Map of lidar echo signals of depolarization along the ship traveling tracks. The panels ranging from Fig. 7(1) to Fig. 7(11) correspond to the lidar echo 

signals of depolarization from September 5 to September 15, 2020, respectively. 
 

Figure 8 shows the lidar echo signals of Raman normalized 

fluorescence (the ratio of fluorescence signal divided by Raman 

scattering signal) along the vessel traveling tracks. These two 

receiver channels of fluorescence and Raman signals were 

calibrated by the Luo’s method [63]. Here, a water Raman 

signal was used for normalization of the laser fluorescence to 

correct the effects accounting for water environmental variation 

and lidar observation geometry [64, 65]. The signals ranged 

from the sea surface to the depth of 8 m below the sea surface. 

The panels ranging from top to bottom (Figs. 8(1), 8(2), …8(11)) 

correspond to the lidar Raman normalized fluorescence 

obtained from September 5 to September 15, 2020. The echo 

signals in panels 8(1) to 8(3) are noisy just like those in Figure 

7. The vertical profiles of lidar Raman normalized fluorescence 

signals varied as the observation position varied along the 

tracks, which reveals the variation in chlorophyll-a 

concentration as the vessel traveled from the ECS to the SCS. 

The Raman normalized fluorescence signals appear larger in 

the ECS than in the SCS. 
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Fig. 8. Map of lidar echo signals of Raman normalized fluorescence along the ship traveling tracks. The panels ranging from Fig. 8(1) to Fig. 8(11) correspond to 
the lidar Raman normalized fluorescence from September 5 to September 15, 2020, respectively. 

 

C. Horizontal distributions of IOPs and chlorophyll-a 

Figure 9 shows the horizontal distributions of optical 

properties and chlorophyll-a in seawater along the vessel 

traveling tracks from the ECS to the SCS. These data were 

obtained by traditional bio-optical instruments. Figure 9(a) 

presents the horizontal distributions of chlorophyll-a, Figure 

9(b) displays the horizontal distributions of the particle 

absorption coefficient 𝑎𝑝(532) , Figure 9(c) shows the 

horizontal distributions of the particle attenuation coefficient 

𝑐𝑝(532), and Figure 9(d) shows the horizontal distributions of 

particle backscattering⁡𝑏𝑏𝑝  at 550 nm. There are no 𝑏𝑏𝑝(532) 

because Hydroscat-6 could measure the backscattering 

coefficients at 442, 488, 550, 620, 700, and 852 nm [52]. There 

are no⁡𝑎𝑝 and 𝑐𝑝 measurements in the nearshore regions of the 

ECS because the absorption and attenuation meter did not 

operate successfully in this region in very turbid water (Figs. 

9(b) and 9(c)). It can be seen that chlorophyll-a,⁡𝑎𝑝, 𝑐𝑝, and 𝑏𝑏𝑝 

appeared to have similar horizontal distributions. Chlorophyll-

a, ⁡𝑎𝑝 , 𝑐𝑝 , and 𝑏𝑏𝑝  appear larger on the ECS coast, the SCS 

coast, and the Pearl River estuary (large green circles) than in 

the open sea of the SCS (small orange circles). Chlorophyll-a 

ranged from approximately 0.01 to 0.3 g/L in the open sea of 

the SCS, ranging from 0.3 to 3 g/L on the SCS coast, and 

ranging from 3 to 8 g/L on the ECS coast and Pearl River 

estuary. 𝑎𝑝 ranged from approximately 0.04 to 0.046 m-1 in the 

open sea of the SCS, ranging from 0.046 to 0.05 m-1 on the SCS 

coast, and ranging from 0.05 to 0.09 m-1 in the Pearl River 

estuary. 𝑐𝑝  ranged from approximately 0.05 to 0.1 m-1 in the 

open sea of the SCS, ranging from 0.1 to 0.2 m-1 on the SCS 

coast, and ranging from 0.2 to 0.5 m-1 in the Pearl River estuary. 

𝑏𝑏𝑝 ranged from approximately 0.001 to 0.002 m-1 in the open 

sea of the SCS, ranging from 0.002 to 0.003 m-1 in the SCS 

coast, and ranging from 0.003 to 0.35 m-1 in the Pearl River 

estuary and ECS coast. The relationship between chlorophyll-a 

concentration and 𝑏𝑏𝑝, and chlorophyll-a concentration and 𝑎𝑝 

were compared. As shown in Figure 10, there was a relatively 

good agreement between chlorophyll-a and IOPs, which reveals 

the potential of quantifying phytoplankton using lidar-derived 

IOPs. There are different regression models for the data in the 

SCS and those in the ESC, respectively. It has a relationship of 

𝑦 = 0.0088 × 𝑥1.59 for the SCS data, with the determination 

coefficient (R2) of 0.68, root mean squared error (RMSE) of 

0.0027 m-1, and relative error of 45.5%; while it has a 

relationship of 𝑦 = 0.000029 × 𝑥4.38⁡ for the ESC data, with 

the R2 of 0.78, RMSE of 0.044 m-1, and relative error of 48.6%. 

It also shows a higher R2 for chlorophyll-a vs. 𝑏𝑏𝑝 compared 

with the relationship for chlorophyll-a vs. 𝑎𝑝 , and the 

relationship between chlorophyll-a and 𝑎𝑝 is not great. 𝑏𝑏𝑝 and 

particulate scattering 𝑏𝑝 has a ratio relationship 
𝑏𝑏𝑝

𝑏𝑝
= 0.002 +

0.01[0.5 − 0.25 log10(𝑐ℎ𝑙)] [44, 53, 66]. There are different 

models relating chlorophyll and 𝑏𝑝  in the past. Some studies 

reported the model 𝑏𝑝(550) = 0.416𝐶0.766  [67], where C 

represents the total chlorophyll concentration, some reported a 

more complex model ⁡𝑏𝑝(λ) = ∑ 𝑏𝑝
∗(λ)3

𝑖=1 𝐶𝑖 , where 𝑏𝑝
∗  
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represents the chlorophyll specific particle backscattering 

coefficient and 𝑖  represent pico-, nano- and micro 

phytoplankton, respectively [54, 68, 69], while others reported 

it was 𝑏𝑝(660) = 0.252𝐶0.635 [70, 71]. In this study, the model 

parameters were different due to that the measurements were 

across two different optically-contrasted Chinese sea areas, 

from very turbid seawater in the ECS to clear seawater in the 

SCS. The high exponent between 𝑏𝑏𝑝 and chlorophyll-a 

concentration maybe due to the impact from high concentration 

suspended sediment in the ECS. 

 

 
Fig. 9. Horizontal distributions of IOPs and chlorophyll-a in seawater along the vessel traveling tracks from the ECS to the SCS. (a) Horizontal distributions of 
chlorophyll-a; (b) horizontal distributions of the particle absorption coefficient; (c) horizontal distributions of the particle attenuation coefficient; (d) horizontal 

distributions of particle backscattering. 
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Fig. 10. The relationship between in situ-measured chlorophyll-a and IOPs. (a) chlorophyll-a vs. 𝑏𝑏𝑝; (b) chlorophyll-a vs. 𝑎𝑝. 

 

D. Vertical distributions of IOPs and chlorophyll-a 

Figures 11, 12, 13 and 14 show the vertical distributions of 

IOPs (𝐾𝑙𝑖𝑑𝑎𝑟 , β(π), and 𝑏𝑏𝑝) and chlorophyll-a concentration 

derived by lidar associating with GPS position information. 

Among them, the 𝐾𝑙𝑖𝑑𝑎𝑟  was obtained by Eq. (1) in this study, 

β(π) was calculated by Eqs. (2-5), 𝑏𝑏𝑝 was obtained by Eq. (6), 

and chlorophyll-a concentration was derived from the 

regression relationship between 𝑏𝑏𝑝  and chlorophyll-a 

concentration in Figure 10(a). Figure 11 shows the vertical 

distributions of the lidar attenuation coefficient in seawater 

along the vessel traveling tracks from the ECS to the SCS. The 

panels ranging from Figures 11(a) to 11(k) correspond to the 

lidar-estimated 𝐾𝑙𝑖𝑑𝑎𝑟  from September 5 to September 15, 2020. 

The range values of the color bars for Figures 11(a) and 11(b) 

are [0.05 m-1: 0.5 m-1] when the observations were in turbid 

water, while it is [0.05 m-1: 0.2 m-1] for the color bars from 

Figures 11(c) to 11(j) when the observations were in clear water. 

As shown in Figure 11, the estimated values varied obviously 

from the ECS coast to the Pearl River Estuary to the offshore 

and open sea of the SCS. In Figure 11(a), there was a continuous, 

strong subsurface maximum layer at depths from 2 to 5 m. The 

maximum signal occurred at approximately 2 m, and as the 

latitude and longitude decreased in the sea area from Zhejiang 

Province toward Fujian Province, the maximum depth of the 

signal value gradually dropped to 5 m. Figure 11(b) shows that 

the subsurface water attenuation coefficient below a depth of 6 

m was smaller than the surface value. There was a subsurface 

maximum layer at depths from 6 to 10 m after the position 

(24.98°N, 119.22°E). In Figure 11(c), as the vessels traveled 

into the sea area in Guangzhou Province, the water clarity 

gradually varied from turbid to clear, the estimated value 

became weaker and discontinuous, and the maximum value 

depth increased. A strong subsurface maximum layer signal 

appeared and fell from 5 m to 20 m from the position (23.57°N, 

117.91 °E) to the position (22.74 °N, 117.47 °E) along the 

observation track. Figures 11(d) and 11(e) show the vertical 

distribution in the Pearl River Estuary. When the vessel reached 

the Pearl River Estuary, there was a sudden increase in the 

subsurface signal value, while when it left away from the coast, 

a sudden decrease in the subsurface signal value was observed. 

Additionally, the maximum depth of the subsurface layer signal 

seemed to rise from 25 m to 10 m at the position (21.2°N, 114°

E), as shown in Figure 11(e). Actually, when subsurface layers 

at 5-20m were observed, lidar could hardly get any signal from 

the depth below 20m mainly due to the strong attenuation. It 

doesn’t mean there was no layer below 20m. It should be noted 

that although the “observed” maximum depth of the layer rose 

from 25m to 10m, it’s not certain that the “real” maximum 

depth of the layer rose or not. Figures 11(f) to 11(i) show the 

vertical distribution in the eastern South China Sea. As the 

water body became very clear, there was no obvious subsurface 

maximum layer within the depth of 25 m. In Figures 11(f) and 

11(h), the vessel reached the SCS coast, a strong signal 

occurred from the position (20.82°N 111.57°E) to the position 

(20.21°N 111.78°E) and from the position (19.37°N 110.83°E) 

to the position (19.15°N 111.66°E) along the observation track. 

Figures 11(j) and 11(k) show the vertical distribution on the 

southern SCS coast, and the signal value increased as the vessel 

traveled from open sea water to coastal water. The subsurface 

maximum layer appeared at depths from 5 m to 15 m. Figures 

12 to 14 show the vertical distributions of β(π) , 𝑏𝑏𝑝  and 

chlorophyll-a concentration derived by lidar along the vessel 

traveling tracks, respectively, and they appeared to have a 

similar spatial variation pattern. The reason is that both the 

factors to calculate lidar 𝑏𝑏𝑝  from lidar β(π) and to calculate 

lidar chlorophyll-a concentration from lidar 𝑏𝑏𝑝  are constant. 

Accordingly, those three parameters derived from lidar 

definitely have exactly same trend. As shown in Figs. 11(d), 

12(d), 13(d) and 14(d), the layer depth and thickness of 

subsurface chlorophyll, 𝐾𝑙𝑖𝑑𝑎𝑟 , β(π), and 𝑏𝑏𝑝 appeared a slight 

difference from each other, which may be due to the model 

uncertainty. Similar results were observed in Figs. 11(e), 12(e), 

13(e) and 14(e), and in Figs. 11(j-k), 12(j-k), 13(j-k) and 14(j-

k). As shown in Figs. 11(a), 12(a), 13(a) and14(a), the thickness 

of subsurface scattering maximum layers was different from 

that of chlorophyll-a, which was due to that the IOPs were 

influenced combinedly by organic and inorganic particles in 

0.1 1 10

0.001

0.01

0.1

0.01 0.1 1 10

0.04

0.05

0.06

0.07

0.08

0.09

0.1

N=29 (SCS)

y=0.0088*x1.59

R2=0.68

RMSE=0.0027

N=15(ECS)

y=0.000029*x4.38 

R2=0.78

RMSE=0.044

ECS regional model

SCS regional model

 Morel and Maritorena(2001)

b
b

p
 (

m
-1

)

Chlorophyll-a (ug/L)

N=44(all)

y=0.00003*x4.37 

R2=0.81

RMSE=0.026

a
p
 (

m
-1
)

Chlorophyll-a (ug/L)

N=39

y=0.058*x0.17

R2=0.37

RMSE=0.012

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3174230

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

11 

seawater in the ECS.  
 

 
Fig. 11. Vertical distributions of the lidar-derived 𝐾𝑙𝑖𝑑𝑎𝑟 in seawater along the vessel traveling tracks from the ECS to the SCS. The panels ranging from (a) to (k) 

correspond to the lidar-estimated results from September 5 to September 15, 2020, respectively. The range values of the color bars for (a) and (b) are [0.05 m-1: 

0.5 m-1], while it is [0.05 m-1: 0.2 m-1] for the color bars from (c) to (j). 
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Fig. 12. Vertical distributions of the lidar-derived β(π) in seawater along the vessel traveling tracks from the ECS to the SCS. The panels ranging from (a) to (k) 

correspond to the lidar-estimated results from September 5 to September 15, 2020, respectively. The range values of the color bars for (a) and (b) are [0.00035 m-

1sr-1: 0.0027 m-1sr-1], while it is [0.00035 m-1sr-1: 0.0011 m-1sr-1] for the color bars from (c) to (j). 
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Fig. 13. Vertical distributions of the lidar-derived 𝑏𝑏𝑝 in seawater along the vessel traveling tracks from the ECS to the SCS. The panels ranging from (a) to (k) 

correspond to the lidar-estimated results from September 5 to September 15, 2020, respectively. The range values of the color bars for (a) and (b) are [0 m-1: 0.017 

m-1], while it is [0 m-1: 0.007 m-1] for the color bars from (c) to (j). 
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Fig. 14. Vertical distributions of lidar-derived chlorophyll-a concentration in seawater along the vessel traveling tracks from the ECS to the SCS. The panels ranging 

from (a) to (k) correspond to the lidar-estimated results from September 5 to September 15, 2020, respectively. The range values of the color bars for (a) and (b) 

are [0 g/L: 8 g/L], while it is [0 g/L: 4 g/L] for the color bars from (c) to (j). 

 

E. Lidar-estimated vs. in situ-observed IOPs and 

chlorophyll-a profiles 

Figure 15 shows the vertical profiles of the comparison 

between the lidar-estimated 𝐾𝑑 (red dot) and in situ observed 

𝐾𝑑 (blue dot) at the stations (S21, S22, S23, S25, S28, S29, S30, 

S31, S32, S33, S34, S35, S36, S37, S45, S46) in the SCS 

obtained from September 11 to September 13. The AC-S 

operated unsuccessfully in very turbid seawater in the ECS and 

the Pearl River estuary on the other dates. Detailed in situ 

station information is presented in Table A1 in Appendix A. 

Overall, the profiles of lidar-estimated and in situ-observed 

values had similar levels of variability over much of the depth 

range, the change trend of lidar-estimated values was basically 

the same as the in situ-observed value, and only S25 had a lower 

match degree. At all stations, the 𝐾𝑑  of the lidar-estimated 

value increased from 0.07 to 0.08 m-1 at depths of 2 to 5 m, 

which may be due to the backward Klett model limitation, 

similar results could be found in previous studies [14]. 

Therefore, the lidar-estimated 𝐾𝑑 increased gradually with the 

signal away from the water surface. It also showed that most of 

the lidar-estimated value decreases after a depth of 20 m, which 
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may be because the signal-to-noise ratio at a certain depth after 

20 m was insufficient, and the noise signal dominated after this 

certain depth and the signal intensity was basically not decaying 

too much. Therefore, the calculated 𝐾𝑑  would then decrease 

gradually. The 𝐾𝑑  of the in situ-observed value was mainly 

between 0.07 and 0.085 m-1, and the 𝐾𝑑 of S25 on the coast was 

larger and more discrete than that of the other stations, which 

varies from 0.08 to 0.1 m-1. Figure 16 shows the vertical profiles 

of the comparison between the lidar-estimated 𝑏𝑏𝑝 (red dot) and 

in situ observed 𝑏𝑏𝑝 (blue dot) at these stations. The profiles of 

lidar-estimated and in situ-observed 𝑏𝑏𝑝 had similar levels of 

variability over much of the depth range, the change trend of 

lidar-estimated values was basically the same as the in situ-

observed value. The 𝑏𝑏𝑝  of the in situ-observed value was 

mainly between 0.001 and 0.002 m-1, and the 𝑏𝑏𝑝 of S25 on the 

coast was larger than that of the other stations, which varied 

from 0.0025 to 0.003 m-1. There appeared subsurface scattering 

layers at the sites of S25 and S45 as shown in Figs. 15 and 16. 

In general, the lidar-estimated value was in good agreement 

with the in situ-measured value.
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Fig. 15. Comparisons of vertical profiles between lidar-estimated and in situ-observed values at different stations. Red dots are lidar-estimated, and blue dots are 

in situ-observed 𝐾𝑑. 
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Fig. 16. Comparisons of vertical profiles between lidar-estimated and in situ-observed values at different stations. Red dots are lidar-estimated, and blue dots are 

in situ-observed 𝑏𝑏𝑝. 

 

Figure 17 shows the scatter plot of the regression analysis 

results between the lidar-estimated and in situ-observed 𝐾𝑑 

profiles. The correlation coefficient R2 was 0.51, which 

indicated that lidar-estimated 𝐾𝑑 was highly correlated with in 

situ-observed 𝐾𝑑, and the RMSE was 0.003 m-1, which means 

that the dispersion of the two groups of data was small. Most of 

the data were between 0.07 and 0.085 m-1, and only a small part 

of the data was between 0.09 and 0.10 m-1. The normalized root 

mean squared error (NRMSE) [72] and mean absolute 

percentage error (MAPE) were also low, which were 11.5% and 

29.55%, respectively. There was a slight overestimation of 𝐾𝑑 

by lidar when 𝐾𝑑 was larger than 0.09 m-1. Compared with 𝐾𝑑, 

the R2 for the lidar-estimated and in situ-observed 𝑏𝑏𝑝 profile 

was higher, with value of 0.88, as shown in Figure 18 and the 

RMSEs was 0.0001 m-1. The data were mainly concentrated 

between 0.0012 and 0.0018 m-1. Both the NRMSE and MAPE 

of 𝑏𝑏𝑝  are higher than 𝐾𝑑 , and they are 54.9% and 49.1%, 

respectively. There was an overestimation of 𝑏𝑏𝑝 by lidar when 

𝑏𝑏𝑝  was larger than 0.0025 m-1, while there is an 

underestimation when it was smaller than 0.0015 m-1. Figure 19 

shows the scatter plot of regression analysis results between 

lidar-estimated and in situ-observed surface chlorophyll-a 

concentration. Chlorophyll-a along the vertical direction were 

not obtained during this experiment, so the matching pairs 

number was much lesser than those in Figs. 17 and 18. The 

chlorophyll-a results show that the lidar-estimated value was 

highly related to the in situ-observed value, with an R2 of 0.74, 

as shown in Figure 19. The RMSE for lidar-estimated 

chlorophyll-a data was 1.07 g/L. Half of the data were 

concentrated between 0 and 1 g/L, most of the other half were 

between 1 and 4 g/L, and some data were between 5 and 

8 g/L. The NRMSE and MAPE of chlorophyll-a retrievals 

were the highest compared with those of 𝐾𝑑  and 𝑏𝑏𝑝 , with 

values of 65.3% and 48.2%, respectively. Overall, these results 

showed that the proposed hybrid retrieval method was effective 

and robust to estimate seawater IOPs and chlorophyll-a 

concentration. 
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Fig. 17. Scatter plot of regression analysis results between lidar-estimated and 

in situ-observed 𝐾𝑑 profiles. The points colors range from blue to red represent 

the points density increases. 

 

 
Fig. 18. Scatter plot of regression analysis results between lidar-estimated and 

in situ-observed 𝑏𝑏𝑝 profiles. The points colors range from blue to red represent 

the points density increases. 
 

 

Fig. 19. Scatter plot of regression analysis results between lidar-estimated and 
in situ-observed surface chlorophyll-a concentration. The points colors range 

from blue to red represent the points density increases. 

F. Lidar fluorescence and depolarization vs. in situ-observed 

water surface chlorophyll-a 

We compared the lidar fluorescence and depolarization 

signals to in situ-observed water surface chlorophyll-a. Figure 

20(a) shows the comparison between continuous lidar-observed 

fluorescence signal with discrete in situ-observed chlorophyll-

a concentration. The x-axis corresponds to the entire time series 

of the continuous lidar measurements. During nearly two weeks 

of investigation, the lidar sampled more than 74,000 continuous 

lidar profiles. Figure 20(b) shows the regression plot for lidar 

fluorescence and in situ-observed chlorophyll-a concentration. 

We can see that there appears similar intensity change trend for 

lidar fluorescence signal and in situ-observed chlorophyll-a 

concentration as the vessel traveled in the SCS. The 

fluorescence signal is very noisy with a very high variability 

(seen samples 1-10000 in Fig. 20(a)) maybe due to the after-

pulse effect on detector due to specular reflection [11, 13], 

because the wind was very strong during those observation 

times. Statistical analysis shows that the lidar fluorescence 

agrees well with in situ-observed chlorophyll-a concentration, 

with R2 of 0.78 and RMSE of 1.04 g/L, while the relative error 

is relatively high (88.5%). This may be due to that the 

disturbance of weak fluorescence signal by the background 

solar light [73]. The fluorescence efficiency variation may be 

another impact factor due to for the changes in functional 

populations of phytoplankton as the vessel traveled from the 

ECS to the SCS [74]. Figure 21 (a) shows the comparison 

between continuous lidar-observed depolarization signal with 

discrete in situ-observed chlorophyll-a concentration. The x-

axis corresponds to the entire time series of the continuous lidar 

measurements. Figure 21(b) shows the regression plot for lidar 

depolarization and in situ-observed chlorophyll-a concentration. 

Statistical analysis shows that the lidar depolarization agree 

relatively well with in situ-observed chlorophyll-a 

concentration in the SCS, with the R2 of 0.54 and the RMSE of 

0.7 g/L, while the relative error was high, with MAPE of 

174.9%. No relationship was observed in the ECS coast. 

Compared with the correlation between lidar fluorescence and 

in situ-observed chlorophyll-a, the correlation decreased, and 

the relative error increased as well. This may be due to that the 

lidar fluorescence gave more reliable results than lidar 

depolarization due to the influence of the high load of 

suspended matter on the depolarization in coastal waters. 

Overall, our results showed that the lidar fluorescence and 

depolarization was feasible and effective for phytoplankton 

monitoring at large-scale. 
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Fig. 20. Lidar fluorescence vs. in situ-observed water surface chlorophyll-a. (a) 

Comparison between continuous lidar-observed fluorescence signal with 
discrete in situ-observed chlorophyll-a; (b) Regression plot for lidar 

fluorescence and in situ-observed chlorophyll-a. 

 

 
Fig. 21. Lidar depolarization vs. in situ-observed water surface chlorophyll-a. 
(a) Comparison between continuous lidar-observed depolarization signal with 

discrete in situ-observed chlorophyll-a; (b) Regression plot for lidar 
depolarization and in situ-observed chlorophyll-a in SCS. 

G. Diurnal hourly variation in IOPs and chlorophyll-a at a 

fixed station 

Continuous lidar measurements were collected throughout 

the whole day at a fixed station (110.4434°E, 18.6024°N) on 

the SCS coast on September 14, 2020. The fixed station was 

about 10 km far from the coast. Figure 22 shows the vertical 

distributions of IOPs and chlorophyll-a obtained by lidar at the 

fixed station. The panels from the top to the bottom are 𝐾𝑑 , 

β(π), 𝑏𝑏𝑝, and chlorophyll-a concentration, respectively. The 

black masks mean the inversion failure region. The vertical 

distribution patterns agreed relatively well with each other. The 

reason is that both the factors to calculate lidar 𝑏𝑏𝑝 from lidar 

β(π) and to calculate lidar chlorophyll-a concentration from 

lidar 𝑏𝑏𝑝  are constant. Accordingly, those three parameters 

derived from lidar definitely have exactly same trend. It also 

appeared that the subsurface scattering layer (SSL) occurred 

obviously at depths of 10 m and 20 m in the evening, with a 

layer thickness of approximately below 5 m, while the SSL 

disappeared during the daytime. The 𝐾𝑑  of the SSL was 

approximately 0.14 m-1, while the value in homogenous water 

was approximately 0.07 m-1. β(π)  of the SSL was 

approximately 0.00075 m-1sr-1, while the value in homogenous 

water was approximately 0.00045 m-1sr-1. 𝑏𝑏𝑝 of the SSL was 

approximately 0.003 m-1, while the value in homogenous water 

was approximately 0.002 m-1. The chlorophyll-a concentration 

of the SSL was approximately 2 g/L, which was 

approximately twice the value in homogenous water. Figure 23 

shows hourly variations in the lidar-derived 𝐾𝑑 , 𝑏𝑏𝑝 , and 

chlorophyll-a at depths of 2 m, 10 m, and 20 m during a whole 

day. The lidar-derived IOPs and chlorophyll-a showed similar 

diurnal hourly variations. The lidar-derived values at depths of 

10 m and 20 m were both highest at 0:00, and they decreased 

gradually to their lowest values at approximately 10:00. After 

that time, the lidar-derived values increased gradually over time 

and reached their highest values at approximately 18:00. Then, 

they decreased gradually and reached their lowest values at 

approximately 22:00. Subsequently, they increased gradually 

over time again. These results revealed that phytoplankton 

varied from day to night as expected, showing the interest to 

use lidar technology to monitor the phytoplankton diurnal 

variation. 

In addition, the hourly variation between tide height on the 

SCS coast and lidar-derived chlorophyll-a were compared 

during a whole day. The tide height data were obtained from the 

National Marine Data and Information Service (http://global-

tide.nmdis.org.cn). We analyzed the day-to-night variation and 

high-to-low tide variation for subsurface chlorophyll-a 

concentration as shown in Table 2. For the day-to-night 

variation, we binned the data into daytime (one hour after 

sunrise to one hour before sunset) and nighttime (one hour after 

sunset to one hour before sunrise) and see if there is a 

statistically significant difference in the mean values of the day 

and night bins for each depth. For the tidal effects, we binned 

the data into high and low tide periods. It appeared the 
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subsurface chlorophyll-a concentration was a little larger at the 

daytime than those at the nighttime, while the mean value was 

higher at the ebb tide time than those at the high tide time. 

Figure 24 shows the plot of hourly variation comparison 

between tide height and lidar-estimated chlorophyll 

concentration at different depths. The blue, green and red lines 

are lidar-estimated chlorophyll at the depth of 2 m, 10 m, and 

20 m, respectively, and the black line is tide height. The lidar-

derived values at depths of 10 m and 20 m were both highest at 

0:00, and they decreased gradually to their lowest values at 

approximately 8:00 for chlorophyll at the depth of 10 m, and 

approximately 10:00 for chlorophyll at the depth of 20 m. The 

amplitude of chlorophyll variation at the depth of 20 m were 

larger than those at the depth of 2 m and 10 m. As shown in 

Figures 23 and 24, the diurnal hourly variation in IOPs and 

chlorophyll-a was relatively lower in the early morning and 

midday but higher in the evening, while the relative tide height 

showed the reverse change trend, which revealed that the tide 

possibly impacted the diurnal variation in IOPs and 

chlorophyll-a on the SCS coast. One possible reason is that tides 

play an important role in the aggregation and diffusion of 

phytoplankton [75]. Phytoplankton may disperse with high 

tides because many phytoplankton may be brought into coastal 

waters during high tides so that the chlorophyll-a values 

decrease. The chlorophyll-a values increased as phytoplankton 

aggregated around ebb tides. The fixed station was about 10 km 

far from the coast hence the seawater was possibly affected by 

tides. The other possible reason may be due to diel vertical 

migration [8]. Previous studies were performed on the diel 

variability of IOPs in various oceanic regions [76-82]. The 

causes of the diel variations in optical properties remain poorly 

understood, including the balance between daytime production 

and nighttime degradation of biogenic particles (phytoplankton, 

bacteria, small heterotrophs), including phytoplankton 

excretion, cell division, and cell mortality (grazing activity and 

viral lyses). These biological responses depend on temperature, 

nutrients availability, light intensity, dynamic process and so on 

[80]. One note that there are relatively large uncertainties for 

chlorophyll-a and IOP retrievals, which may impact on the 

analysis of day-to-night variation. While the mean magnitude 

variation of chlorophyll-a concentration at the depth of 20 m 

between day-to-night is as large as 158% (Table 3), so the 

related analysis is relatively convincing. Future investigations 

will be carried on to reduce the retrieval uncertainty through 

more experiments and model study. The preliminary results 

indicate that the lidar remote sensing technique is feasible to 

monitor long-term subsurface phytoplankton structure. 

 
Fig. 22. Vertical distributions of IOPs and chlorophyll-a obtained by lidar 

throughout the whole daytime at the fixed station (110.4434°E, 18.6024°N) on 

September 14, 2020. The panels from the top to the bottom are 𝐾𝑑, β(π), 𝑏𝑏𝑝, 

and chlorophyll-a, respectively. 

 
Fig. 23. Plot of the lidar-derived 𝐾𝑑, 𝑏𝑏𝑝, and chlorophyll-a at depths of 2 m, 

10 m and 20 m during a whole day. The panels from the top to the bottom are 

𝐾𝑙𝑖𝑑𝑎𝑟, β(π), 𝑏𝑏𝑝, and chlorophyll-a, respectively. 
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Fig. 24. Plot of hourly variation comparison between lidar-estimated 

chlorophyll concentration at different depths and tide height. The blue, green 

and red lines are lidar-estimated chlorophyll at the depth of 2 m, 10 m, and 20 
m, respectively, and the black line is tide height. 
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TABLE 2 STATISTICAL ANALYSIS FOR DAY-TO-NIGHT VARIATION OF 

SUBSURFACE CHLOROPHYLL-A. 

Depth of 

subsurface 

chlorophyll (m) 

Mean 

value of 

the day 

(g/L) 

Mean 

value of 

the night  

(g/L) 

Mean 

value into 

high tide 

(g/L) 

Mean 

value into 

ebb tide 

(g/L) 

2 1.40 1.49 1.25 1.54 

10 1.58 1.75 1.53 1.79 

20 0.53 1.37 0.72 1.00 

IV. SUMMARY AND CONCLUSION 

In this study, spatial variations in the vertical distribution of 

optical properties and chlorophyll-a across two different 

optically-contrasted sea areas from the ECS to SCS by lidar 

were obtained and analyzed for the first time. During nearly two 

weeks of investigation, the lidar sampled more than 74,000 

continuous lidar profiles, while discrete in situ measurements 

were obtained at 63 stations. The lidar-estimated vertical 

structure varied from the ECS coast to the Pearl River Estuary 

to the offshore and open sea of the SCS. The relative errors of 

lidar-estimated values for 𝐾𝑑 , 𝑏𝑏𝑝  and chlorophyll-a 

concentration were 29.55%, 49.1%, and 48.2%, respectively. 

The above results indicate that lidar remote sensing technology 

was effective and feasible for different optically-contrasted 

ocean regions. 

Statistical analysis showed that the lidar fluorescence agreed 

well with in situ-observed chlorophyll-a concentration, with the 

R2 of 0.78, while the relative error was relatively high, with the 

MAPE of 88.5%. This may be due to that the weak fluorescence 

signal was disturbed by the background solar light. The 

fluorescence efficiency variation may be another impact factor 

due to for the changes in functional populations of 

phytoplankton as the vessel traveled from the ECS to the SCS. 

It also showed that the lidar fluorescence gave more reliable 

results than lidar depolarization in this experiment, which may 

be due to that the depolarization was influenced by the high load 

of suspended matter in coastal waters. 

Lidar technology was used to successfully investigate the 

diurnal variability of IOPs and chlorophyll-a for the first time. 

The results showed that the diurnal hourly variation in IOPs and 

chlorophyll-a was relatively lower in the early morning and 

midday but higher in the evening, while the relative tide height 

showed the reverse change trend, which revealed that the tide 

possibly impacted the diurnal variation in IOPs and 

chlorophyll-a on the SCS coast. One possible reason was that 

tides play an important role in the aggregation and diffusion of 

phytoplankton. The other possible reason may be due to diel 

vertical migration. Overall, the above results indicate that lidar 

remote sensing technology is effective and feasible for day-to-

night continuous monitoring. Ocean color observations cannot 

be provided for monitoring day-to-night changes because they 

are limited to sunlight. It was significant to employ the new 

lidar technology for phytoplankton diurnal variation monitoring. 

There was a continuous, strong subsurface maximum layer at 

depths from approximately 2 to 5 m along the ECS coast, while 

the subsurface maximum layer depth dropped to approximately 

10-15 m along the lidar observation track along the SCS coast. 

The vertical structure of the subsurface maximum layer varied 

over time and space. The traditional way to detect the vertical 

structure of optical properties and chlorophyll-a is mainly 

through shipboard discrete observations or Biogeochemical-

Argo profiling floats, which take considerable time to cover a 

limited area. Compared with traditional methods, lidar has the 

advantages of being large-scale and long-term, and no 

disturbance is associated with touching measurements. It would 

be a good complement to passive satellite remote sensing and 

discrete in situ observations, which could help us to improve 

the estimation of phytoplankton primary productivity and 

carbon stocks/fluxes and to understand the temporal and spatial 

variation characteristics of IOPs and phytoplankton. Further 

investigations are needed to conduct more lidar experiments 

with multiple detection mechanisms for monitoring IOPs and 

chlorophyll-a on a larger temporal and spatial scale in the future. 

APPENDIX 

Supplementary data to this article can be found online at 

https://zenodo.org/record/6448741#.YlRgqZFBzGI. 
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