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Two-dimensional superflow past an obstacle of arbitrary penetrability: Exact results for the critical velocity

We present theoretical results concerning the critical velocity for dissipationless motion of a two-dimensional nonlinear Schrödinger superfluid past a static obstacle represented by a repulsive potential of large width. In contrast to most of the state of the art, our study is not restricted to an impenetrable obstacle potential nor to a quartic interaction Hamiltonian, which makes it possible to get closer to recent experiments with atomic Bose-Einstein condensates and paraxial superfluids of light. Our analytical approach of the equations modeling the hydrodynamics of the superfluid relies on an analogue of the hydraulic approximation, the hodograph method, and Janzen-Rayleigh expansions of the velocity potential. A very good agreement with imaginary-time numerical calculations is shown.

I. INTRODUCTION

Superfluidity is the ability of a fluid to flow without any loss of kinetic energy [START_REF] Leggett | Superfluidity[END_REF][START_REF] Balibar | The Discovery of Superfluidity[END_REF][START_REF] Pitaevskii | Bose-Einstein Condensation and Superfluidity[END_REF]. Following its discovery in liquid helium-4 [START_REF] Kapitza | Viscosity of Liquid Helium below the λ-Point[END_REF][START_REF] Allen | Flow of Liquid Helium II[END_REF], a criterion for it has been proposed by Landau [START_REF] Landau | Theory of the Superfluidity of Helium II[END_REF][START_REF] Landau | The Theory of Superfluidity of Helium II[END_REF], which states that superfluidity is the rule as long as the velocity of the fluid is smaller than v c = min q ω q /q, where ω q denotes the angular frequency of an elementary excitation with wave vector q in the fluid at rest. However, Landau's criterion often overestimates the actual critical velocity for superfluidity because it does not properly account for the nonlinear nature of the interaction of the fluid with its environment [START_REF] Feynman | Chapter II: Application of Quantum Mechanics to Liquid Helium[END_REF]. This is not only noticed in liquid helium-4 but also in many other systems evidencing a superfluid transition, which include liquid helium-3 [START_REF] Osheroff | Evidence for a New Phase of Solid He3[END_REF][START_REF] Osheroff | New Magnetic Phenomena in Liquid He3 below 3 mK[END_REF], ultracold atomic Bose [START_REF] Raman | Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas[END_REF][START_REF] Onofrio | Observation of Superfluid Flow in a Bose-Einstein Condensed Gas[END_REF][START_REF] Raman | Dissipationless Flow and Superfluidity in Gaseous Bose-Einstein Condensates[END_REF][START_REF] Engels | Stationary and Nonstationary Fluid Flow of a Bose-Einstein Condensate Through a Penetrable Barrier[END_REF][START_REF] Neely | Observation of Vortex Dipoles in an Oblate Bose-Einstein Condensate[END_REF][START_REF] Dries | Dissipative transport of a Bose-Einstein condensate[END_REF][START_REF] Desbuquois | Superfluid behaviour of a two-dimensional Bose gas[END_REF][START_REF] Kwon | Critical velocity for vortex shedding in a Bose-Einstein condensate[END_REF] and Fermi [START_REF] Miller | Critical Velocity for Superfluid Flow across the BEC-BCS Crossover[END_REF] gases, exciton-polariton condensates in semiconductor optical microcavities [START_REF] Amo | Superfluidity of polaritons in semiconductor microcavities[END_REF][START_REF] Lerario | Room-temperature superfluidity in a polariton condensate[END_REF], and more recently laser beams which behave as atomic Bose-Einstein condensates when propagating in cavityless nonlinear dielectrics, the so-called paraxial superfluids of light [START_REF] Vocke | Role of geometry in the superfluid flow of nonlocal photon fluids[END_REF][START_REF] Michel | Superfluid motion and drag-force cancellation in a fluid of light[END_REF][START_REF] Eloy | Experimental observation of turbulent coherent structures in a superfluid of light[END_REF].

In the wake of a previous theoretical study in one spatial dimension [START_REF] Huynh | Critical velocity for superfluidity in the one-dimensional mean-field regime: From matter to light quantum fluids[END_REF] (see also bibliography therein), we are here specifically concerned with a two-dimensional nonlinear Schrödinger superfluid flowing past a static obstacle represented by a repulsive potential of large width. Building atop previous theoretical works [START_REF] Frisch | Transition to dissipation in a model of superflow[END_REF][START_REF] Josserand | Dynamique des superfluides : nucléation de vortex et transition de phase du premier ordre[END_REF][START_REF] Josserand | Vortex shedding in a model of superflow[END_REF][START_REF] Huepe | Scaling laws for vortical nucleation solutions in a model of superflow[END_REF][START_REF] Stießberger | Critical velocity of superfluid flow past large obstacles in Bose-Einstein condensates[END_REF][START_REF] Rica | A remark on the critical speed for vortex nucleation in the nonlinear Schrödinger equation[END_REF][START_REF] Sasaki | Bénard-von Kármán Vortex Street in a Bose-Einstein Condensate[END_REF][START_REF] Pinsker | Transitions and excitations in a superfluid stream passing small impurities[END_REF][START_REF] Singh | Superfluidity and relaxation dynamics of a laser-stirred twodimensional Bose gas[END_REF][START_REF] Pigeon | Critical velocity in resonantly driven polariton superfluids[END_REF][START_REF] Müller | Critical velocity for vortex nucleation and roton emission in a generalized model for superfluids[END_REF][START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF], we investigate the condition of existence of the superflow without restricting our study to an impenetrable obstacle potential nor to a quartic interaction Hamiltonian in order to get closer to recent experiments with an atomic Bose-Einstein condensate by Kwon et al. [START_REF] Kwon | Critical velocity for vortex shedding in a Bose-Einstein condensate[END_REF] and with a paraxial superfluid of light by Eloy et al. [START_REF] Eloy | Experimental observation of turbulent coherent structures in a superfluid of light[END_REF]. The article is structured as follows. In Sec. II, we detail the equations modeling the hydrodynamics of the superfluid and provide two representative examples [START_REF] Kwon | Critical velocity for vortex shedding in a Bose-Einstein condensate[END_REF][START_REF] Eloy | Experimental observation of turbulent coherent structures in a superfluid of light[END_REF] of systems described by these equations.

In Sec. III then, we derive analytical results for the corresponding critical velocity in the case where the obstacle potential is penetrable first, in Sec. III A, and then when it is impenetrable, in Sec. III B. These results are compared with numerics and discussed in Sec. IV. We eventually conclude and give perspectives to the present work in Sec. V. Details about the numerical calculation of the critical velocity are provided in the Appendix.

II. MODEL

Many two-dimensional nonlinear wave systems display superfluidity or an analogue of it when transported past obstacles (see below for two representative examples). These are often described by a complex wave function ψ(r, t) whose dependence on position r = (x, y) = (r cos θ, r sin θ) and time t is ruled by a nonlinear partial differential equation of the form

i ∂ψ ∂t = - 1 2 ∇ 2 ψ + U (r)1 U ψ + ϵ(ρ)ψ, (1) 
where ρ(r, t) = |ψ(r, t)| 2 is the density associated with ψ(r, t). In this generalization of the two-dimensional nonlinear Schrödinger equation to arbitrary local nonlinearity ϵ(ρ)ψ [the nonlinear Schrödinger equation is obtained for ϵ(ρ) = ±ρ, i.e., for the quartic interaction Hamiltonian ± d 2 r |ψ(r, t)| 4 /2], ∇ denotes the del operator with respect to position and U (r) is the potential of a static obstacle to the system's flow. This potential is assumed to be repulsive [U (r) > 0] and localized with typical width σ [U (r) → 0 as r/σ → ∞], in such a way that the indicator 1 U equals 1 or 0 depending on whether U (r) is penetrable or not, respectively [the condition for penetrability of U (r) will be rigorously defined in Sec. III A]. This distinction is based on the following heuristic reasoning. When U (r) is penetrable, the superfluid occupies all the space and there is no reason to do anything about the obstacle potential in Eq. [START_REF] Leggett | Superfluidity[END_REF]. When U (r) is on the contrary impenetrable, the superfluid can only occupy the region r ≳ σ where U (r) is negligible, in such a way that the system's dynamics can be described by Eq. ( 1) without any obstacle potential but with appropriate conditions for the wave function at the obstacle's boundary r ∼ σ. Finally, we assume that ϵ(0) = 0, ϵ(ρ) > 0, and (∂ϵ/∂ρ)(ρ) > 0 to prevent the system from developing modulational instabilities [e.g., ϵ(ρ) = ρ in the case of the nonlinear Schrödinger equation].

For example, Eq. ( 1) is well known [START_REF] Pitaevskii | Bose-Einstein Condensation and Superfluidity[END_REF] to rule the dynamics of the two-dimensional reduction ψ[r = (x, y), t] of the condensate wave function of a dilute ultracold atomic Bose gas with three-dimensional s-wave scattering length a > 0 in a very steep one-dimensional harmonic potential ℏ 2 z 2 /(2mℓ 4 ), where ℏ is the reduced Planck constant, m the atomic mass, and ℓ the harmonic length. Due to this trapping potential, the atoms almost live in the r-plane and interact with each other via a Hartree-Fock potential ϵ(ρ) = gρ ν scaling as a positive power of the twodimensional number density ρ(r, t) = |ψ(r, t)| 2 when ρa 2 is much smaller [START_REF] Petrov | But larger than (a/ℓ) 2 exp[-(2π) 1/2 ℓ/a] to prevent the gas from entering the two-dimensional analogue of the Tonks-Girardeau regime. In this ultradilute regime, one can still describe the atoms in terms of a macroscopic wave function ψ(r, t) but with a Hartree-Fock interaction potential of the form ϵ(ρ) = 4π(ℏ 2 /m)ρ/|ln(ρℓ 2 )[END_REF] or much larger than a/ℓ. In the first regime, mg/ℏ 2 = (8π) 1/2 a/ℓ and ν = 1, and in the second one, ℓ 2/3 mg/ℏ 2 = (3π/ √ 2) 2/3 (a/ℓ) 2/3 and ν = 2/3 [START_REF] Muñoz Mateo | Effective mean-field equations for cigar-shaped and disk-shaped Bose-Einstein condensates[END_REF]. In this context, Eq. ( 1) reads [START_REF] Pitaevskii | Bose-Einstein Condensation and Superfluidity[END_REF] 

iℏ ∂ψ ∂t = - ℏ 2 2m ∇ 2 ψ + U (r)1 U ψ + ϵ(ρ)ψ, (2) 
where the obstacle potential U (r) is usually generated by means of a focused laser beam crossing the quasi-twodimensional condensate perpendicularly [START_REF] Desbuquois | Superfluid behaviour of a two-dimensional Bose gas[END_REF][START_REF] Kwon | Critical velocity for vortex shedding in a Bose-Einstein condensate[END_REF][START_REF] Stießberger | Critical velocity of superfluid flow past large obstacles in Bose-Einstein condensates[END_REF][START_REF] Sasaki | Bénard-von Kármán Vortex Street in a Bose-Einstein Condensate[END_REF][START_REF] Pinsker | Transitions and excitations in a superfluid stream passing small impurities[END_REF][START_REF] Singh | Superfluidity and relaxation dynamics of a laser-stirred twodimensional Bose gas[END_REF][START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF]. We rigorously map Eq. ( 2) to Eq. ( 1) within the dimensionless variables r = r/ξ,

t = µt/ℏ, ψ(r, t) = ψ(r, t)/ρ 1/2 , Ũ (r) = U (r)/µ, ρ = ρ/ρ and ε(ρ) = ϵ(ρ) µ = ρν ν , (3) 
from which we eventually remove the tildes for readability. In these definitions, the proper units ξ = ℏ/(ms) and µ = ms 2 with

s = ρ m ∂ϵ ∂ρ (ρ) = νg ρν m (4) 
are respectively the healing length, the chemical potential, and the speed of sound of the quasi-two-dimensional condensate at a typical number density ρ which we choose to be the uniform number density of the system in the absence of obstacle, i.e., when U (r) = 0. Equation ( 1) is also encountered in nonlinear optics to describe paraxial propagation of monochromatic light in nonlinear dielectrics [START_REF] Boyd | Nonlinear Optics[END_REF]. In this context, its resemblance with Eq. [START_REF] Balibar | The Discovery of Superfluidity[END_REF] [see Eq. ( 5) below] has long been used to investigate quantum hydrodynamic phenomena with classical light [START_REF] Coullet | Optical vortices[END_REF][START_REF] Pomeau | Diffraction non linéaire[END_REF][START_REF] Wan | Dispersive superfluidlike shock waves in nonlinear optics[END_REF][START_REF] Leboeuf | Superfluid Motion of Light[END_REF] and has led to the research field of paraxial superfluids of light [START_REF] Vocke | Role of geometry in the superfluid flow of nonlocal photon fluids[END_REF][START_REF] Michel | Superfluid motion and drag-force cancellation in a fluid of light[END_REF][START_REF] Carusotto | Superfluid light in bulk nonlinear media[END_REF][START_REF] Larré | Optomechanical signature of a frictionless flow of superfluid light[END_REF][START_REF] Fontaine | Observation of the Bogoliubov Dispersion in a Fluid of Light[END_REF][START_REF] Rodrigues | Turbulence excitation in counterstreaming paraxial superfluids of light[END_REF]. A recent experiment [START_REF] Eloy | Experimental observation of turbulent coherent structures in a superfluid of light[END_REF] has been done in a medium whose optical response to two lasers results in a refractive index of the form n 0 + n 1 (r) + n 2 I/(1 + I/I sat ). In this expansion, the middle contribution is defocusing [n 1 (r) < 0] and induced by the first laser, of low intensity. The last one, which reproduces quite well the saturation of the optical nonlinearity [START_REF] Kivshar | Optical Solitons: From Fibers to Photonic Crystals[END_REF] observed in photorefractive crystals [START_REF] Eloy | Experimental observation of turbulent coherent structures in a superfluid of light[END_REF], is also defocusing (n 2 < 0) but induced by the second laser, of large intensity I(r, z) = n 0 ε 0 cρ(r, z)/2. In this equation, ε 0 and c are the vacuum permittivity and speed of light, respectively, and ρ(r, z) = |ψ(r, z)| 2 , where ψ(r, z) denotes the slowly varying envelope of the complex-valued electric field ψ(r, z) exp[i(kz -ωt)] of the second laser, of angular frequency ω and carrier wave number k = n 0 ω/c along the z axis. Defining U (r) = -(ω/c)n 1 (r) and ϵ(ρ) = -(ω/c)n 2 I/(1 + I/I sat ), the equation for the electric-field amplitude ψ(r, z) reads [START_REF] Boyd | Nonlinear Optics[END_REF] 

i ∂ψ ∂z = - 1 2k ∇ 2 ψ + U (r)1 U ψ + ϵ(ρ)ψ, (5) 
whose formal analogy with Eq. ( 2) is transparent. Equation ( 5) is cast into Eq. ( 1) within the dimensionless variables defined in the previous paragraph, except that here t = µz,

ε(ρ) = 1 + 1 ρsat 2 ρ 1 + ρ/ρ sat , (6) 
ξ = 1/(ks), µ = ks 2 , and

s = ρ k ∂ϵ ∂ρ (ρ) = |n 2 |ε 0 cρ/2 1 + ρ/ρ sat , (7) 
where ρ sat = 2I sat /(n 0 ε 0 c) and ρsat = ρ sat /ρ. It is worth noting that by analogy with Eq. ( 2), we will make use of the terminologies "speed of sound" for s and "chemical potential" for µ although the former has no dimension and the latter is homogeneous to the inverse of a length in the present optical context. We now express the solution ψ(r, t) of the generic dimensionless equation [START_REF] Leggett | Superfluidity[END_REF] in the polar form ψ(r, t) = ρ 1/2 (r, t) exp[iϕ(r, t)] (the so-called Madelung representation [START_REF] Pitaevskii | Bose-Einstein Condensation and Superfluidity[END_REF]), which makes it possible to cast Eq. (1) into the standard hydrodynamic equations of atomic superfluids at zero temperature. These read [START_REF] Pitaevskii | Bose-Einstein Condensation and Superfluidity[END_REF] 

∂ρ ∂t + ∇ • (ρv) = 0, ∂v ∂t + ∇ v 2 2 + U (r)1 U + ϵ(ρ) - 1 2 ∇ 2 √ ρ √ ρ = 0, (8) 
where v(r, t) = ∇ϕ(r, t) is the velocity field of the superfluid expressed in units of the speed of sound ( 4) or [START_REF] Landau | The Theory of Superfluidity of Helium II[END_REF] if one refers to the examples of superfluids described above. The first of Eqs. [START_REF] Feynman | Chapter II: Application of Quantum Mechanics to Liquid Helium[END_REF] for the density ρ(r, t) is nothing but the continuity equation while the second one for the velocity v(r, t) is Newton's second law of motion in Eulerian specification. We are specifically interested in the solutions of Eqs. (8) that are typical of a superfluid flow, i.e., a flow which is (i) steady and (ii) devoid of any hydrodynamic disturbance far away from the obstacle [START_REF] Frisch | Transition to dissipation in a model of superflow[END_REF]:

(i) ρ = ρ(r) and v = v(r); (ii) ρ(r) = ρ ∞ = const and v(r) = v ∞ = const at
infinity where U (r) = 0, and we choose ρ ∞ = 1 in adequacy with the definition of the dimensioned density ρ given above, as well as v ∞ = (v ∞ , 0) with v ∞ > 0 (asymptotic flow from left to right) for the sake of concreteness.

As such, ρ(r) and v(r) verify the following differential system:

∇ • (ρv) = 0, v 2 2 + U (r)1 U + ϵ(ρ) - 1 2 ∇ 2 √ ρ √ ρ = v 2 ∞ 2 + ϵ(1), (9) 
from which one sees that the condition of existence of its solutions bears on v ∞ once the potentials U (r) and ϵ(ρ) are fixed. It is this constraint on v ∞ we seek to determine in the present work. We will show that to have superfluidity, v ∞ must be smaller than a critical speed v c specific to the U (r) and ϵ(ρ) considered. Analytical results for this critical velocity for superfluid motion are derived in Sec. III and confronted to numerical simulations in Sec. IV.

It is worth noting that when U (r) → 0, linear-response theory applies [START_REF]origin (r → 0) where the density response function diverges algebraically and logarithmically, respectively[END_REF] and predicts that v c equals unity [START_REF] Astrakharchik | Motion of a heavy impurity through a Bose-Einstein condensate[END_REF], in agreement with Landau's criterion v c = min q ω q /q, where ω q = q(1 + q 4 /4) 1/2 is the dispersion relation of the elementary excitations of the superfluid far from the obstacle and in the comoving frame [START_REF] Pitaevskii | Bose-Einstein Condensation and Superfluidity[END_REF]. Thus, for an obstacle potential with arbitrary (so possibly large) amplitude, v c must necessarily be smaller than unity and we consequently restrict our study to the subsonic regime v ∞ < 1.

III. ANALYTICAL RESULTS

From now on, we consider that the typical width of the obstacle potential U (r) is very large: σ → ∞. In this case, the typical scale of variation of the superfluid density ρ(r) is of the order of σ [3], as a result of which one can neglect the dispersive term -∇ 2 ρ 1/2 /(2ρ 1/2 ) in the second of Eqs. [START_REF] Osheroff | Evidence for a New Phase of Solid He3[END_REF], which is a sort of hydraulic approximation [START_REF] Hakim | Nonlinear Schrödinger flow past an obstacle in one dimension[END_REF]. It is worth noting that the analytical treatment of this term is difficult in two dimensions, especially when σ is small. As far as we know, the only work in which this issue is tackled is Ref. [START_REF] Pinsker | Transitions and excitations in a superfluid stream passing small impurities[END_REF], where the critical velocity for superfluid motion past an impenetrable obstacle is perturbatively estimated up to first order in 1/σ 2 → 0. This result does not add much to the physics of zeroth order and we consequently restrict to the approximation explained above, as in most of the literature dealing with the superfluid transition in two dimensions, starting from the seminal work [START_REF] Frisch | Transition to dissipation in a model of superflow[END_REF]. In this hydraulic approach, the second of Eqs. ( 9) simplifies to an algebraic equation for the density ρ as a function of the norm v = |∇ϕ| of the velocity, and we are left with the following differential problem for the velocity potential ϕ(r):

∇ • [ρ(|∇ϕ|)∇ϕ] = 0, ϵ[ρ(v)] = ϵ(1) -U (r)1 U - v 2 -v 2 ∞ 2 , (10) 
with the following asymptotic condition:

ϕ| r/σ→∞ = v ∞ x = v ∞ r cos θ. (11) 
Finding the condition of existence of the superflow described by Eqs. ( 10) and ( 11) is facilitated in the hodograph plane [START_REF] Landau | Fluid Mechanics[END_REF] where the first of Eqs. [START_REF] Osheroff | New Magnetic Phenomena in Liquid He3 below 3 mK[END_REF], nonlinear, is transformed into the following linear equation:

ρ(v)v 2 ∂ 2 Φ ∂v 2 + ∂ ∂v [ρ(v)v]v ∂Φ ∂v + ∂ ∂v [ρ(v)v] ∂ 2 Φ ∂ϑ 2 = 0. ( 12 
)
In this equation, Φ(v) = v • r -ϕ(r) denotes the hodograph transform of ϕ(r) and ϑ is the angular coordinate of v = (v x , v y ) = (v cos ϑ, v sin ϑ) in polar representation. Focusing on the equation of the characteristic curves [START_REF] Landau | Fluid Mechanics[END_REF] of Eq. ( 12):

∂ ∂v [ρ(v)v]dv 2 + ρ(v)v 2 dϑ 2 = 0, (13) 
one then infers that there is no trajectory ϑ = ϑ(v) along which a possible wave discontinuity can propagate-a hallmark of superfluid motion-provided

∂ ∂v [ρ(v)v] > 0 ∀v, (14) 
which is the constraint for dϑ/dv to be complex-valued, i.e., for Eq. ( 12) to be elliptic. This condition for superfluidity has long been used to investigate the superfluid transition in two dimensions, starting from Ref. [START_REF] Frisch | Transition to dissipation in a model of superflow[END_REF]. Nevertheless, as far as we know, the reasoning leading to it has never really been made explicit in the superfluid literature, what we have tried to overcome in the present paragraph.

Using the identity ∂ρ/∂v = (∂ϵ/∂v)/(∂ϵ/∂ρ) and the second of Eqs. [START_REF] Osheroff | New Magnetic Phenomena in Liquid He3 below 3 mK[END_REF], it is easy to show that the left-hand side of inequality ( 14) equals ρ(r)[1 -v 2 (r)/s 2 (r)], where s(r) = {ρ(r)(∂ϵ/∂ρ)[ρ(r)]} 1/2 is the local speed of sound [START_REF]Reformulated in these terms, Eq. (12)[END_REF]. Thus, condition ( 14) is equivalent to v 2 (r) < s 2 (r) for all r, which is the local Landau criterion for superfluidity [START_REF] Hakim | Nonlinear Schrödinger flow past an obstacle in one dimension[END_REF] after removing the squares. This constraint is also equivalent to the same inequality with v(r) and s(r) respectively replaced with their maximum v max and minimum s min , the latter being reached at the minimum density ρ min given the interaction potentials ϵ(ρ) considered in this work. By relating ρ min to v max and v ∞ using the second of Eqs. [START_REF] Osheroff | New Magnetic Phenomena in Liquid He3 below 3 mK[END_REF] with U (r) replaced with its maximum U max since U (r) is repulsive, we thus come to the following superfluid condition in terms of v max , v ∞ , and U max :

v 2 max < ρ min ∂ϵ ∂ρ (ρ min ), ϵ(ρ min ) = ϵ(1) -U max 1 U - v 2 max -v 2 ∞ 2 . ( 15 
)
Constraint ( 15) changes from one interaction potential ϵ(ρ) to another. Hereafter, we explicit it in the case where ϵ(ρ) is given by Eq. ( 3):

1 + ν 2 v 2 max - ν 2 v 2 ∞ < 1 -νU max 1 U , (16) 
which is, for ν = 1 and 1 U = 0, the condition for superfluidity first established in Ref. [START_REF] Frisch | Transition to dissipation in a model of superflow[END_REF]. An explicit expression for (15) also exists in the case where ϵ(ρ) is given by Eq. ( 6) but it is cumbersome.

In order to find the critical asymptotic velocity v c for superfluidity, one needs to relate v max = max r |∇ϕ(r)| to v ∞ in [START_REF] Neely | Observation of Vortex Dipoles in an Oblate Bose-Einstein Condensate[END_REF], which requires to solve the first of Eqs. [START_REF] Osheroff | New Magnetic Phenomena in Liquid He3 below 3 mK[END_REF] for ϕ(r). The procedure obviously depends on the shape of the obstacle, which we choose to be represented by the circular potential barrier

U (r) = U 0 > 0 if r < σ 0 otherwise , (17) 
hence U max = U 0 in [START_REF] Neely | Observation of Vortex Dipoles in an Oblate Bose-Einstein Condensate[END_REF]. This simple model makes it possible to obtain results for v c that are both quantitative and qualitatively comparable to those specific to more realistic obstacle potentials like, e.g., the Gaussian potential

U (r) = U 0 exp(-r 2 /σ 2 ) (see discussion in Sec. IV).
Given the central symmetry of ( 17), Eqs. ( 10) and ( 11) will be naturally analyzed in the polar coordinates r and θ.

A. Penetrable obstacle

When ( 17) is penetrable (1 U = 1), we close Eqs. ( 10) and [START_REF] Raman | Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas[END_REF] with the following continuity equations at the boundary r = σ:

ϕ| r=σ -= ϕ| r=σ + , ρ(|∇ϕ|) ∂ϕ ∂r r=σ - = ρ(|∇ϕ|) ∂ϕ ∂r r=σ + . (18) 
While the first of Eqs. [START_REF] Kwon | Critical velocity for vortex shedding in a Bose-Einstein condensate[END_REF] imposes no phase jump for the superfluid wave function at r = σ, the second equation for the radial component of the current density ρ(r)∇ϕ(r) follows from the first of Eqs. [START_REF] Osheroff | New Magnetic Phenomena in Liquid He3 below 3 mK[END_REF] integrated along an arbitrary radial cut of a thin annulus of median radius σ → ∞.

We start by solving Eqs. [START_REF] Osheroff | New Magnetic Phenomena in Liquid He3 below 3 mK[END_REF], [START_REF] Raman | Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas[END_REF], and (18) by neglecting

v 2 (r) -v 2 ∞ 2 = (χ = v 2 ∞ ) 2 |∇ϕ(r)| 2 v 2 ∞ -1 ---→ χ→0 0 (19) 
in the right-hand side of the second of Eqs. [START_REF] Osheroff | New Magnetic Phenomena in Liquid He3 below 3 mK[END_REF]. This can be seen as an incompressible approximation for the superfluid since the dimensionless parameter χ defined in [START_REF] Miller | Critical Velocity for Superfluid Flow across the BEC-BCS Crossover[END_REF] is also expressed in terms of the dimensioned quantities of Sec. II as

χ = v 2 ∞ /s 2 = (m or k)v 2 ∞ κ
, where κ denotes the compressibility of the superfluid at the uniform density ρ [START_REF] Pitaevskii | Bose-Einstein Condensation and Superfluidity[END_REF]. In this approximation, the density ρ(r) = ρ 0 (r) is constant on either side of the obstacle's boundary r = σ:

ρ 0 (r) = ϵ -1 [ϵ(1) -U 0 ] = ρ 0 if r < σ 1 otherwise , (20) 
which makes the first of Eqs. [START_REF] Osheroff | New Magnetic Phenomena in Liquid He3 below 3 mK[END_REF] simplify to the following two-dimensional Laplace equation for ϕ(r) = ϕ 0 (r):

∇ 2 ϕ 0 = 0 ∀r ≶ σ. (21) 
It is worth noting that given Eq. ( 20), the positiveness of ϵ(ρ) imposes

U 0 < ϵ(1), (22) 
which can be considered as the condition for penetrability of the obstacle potential [START_REF] Desbuquois | Superfluid behaviour of a two-dimensional Bose gas[END_REF]. Given the general form of the solution of Eq. ( 21) in polar coordinates, which is

ϕ 0 (r, θ) = a 0 + b 0 ln r + ∞ k=1 R k (r)Θ k (θ) with R k (r) = a k r k + b k r -k , Θ k (θ) = c k cos(kθ) + d k sin(kθ)
, and a 0,k , b 0,k , c k , d k = const, solving Eq. ( 21) with the asymptotic condition [START_REF] Raman | Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas[END_REF] and the boundary conditions (18) becomes an easy task. One finds

ϕ 0 (r) = v ∞ r cos θ ×        2 1 + ρ 0 if r < σ 1 + 1 -ρ 0 1 + ρ 0 σ 2 r 2 otherwise , (23) 
from which one infers that v max,0 = max r |∇ϕ 0 (r)| is reached everywhere in the disk of radius σ [see Fig. 1(a) for visualization] and reads

v max,0 = 2 1 + ρ 0 v ∞ , (24) 
where ρ 0 , the superfluid density inside the obstacle potential, is a function of U 0 defined in Eq. [START_REF] Amo | Superfluidity of polaritons in semiconductor microcavities[END_REF]. Inserting ( 24) into ( 15) yields an inequality on v ∞ and U 0 from which it is possible to deduce the critical velocity as a function of U 0 . For example, when ϵ(ρ) is given by Eq. ( 3), one has

ρ 0 = (1-νU 0 ) 1/ν , v max,0 = 2v ∞ /[1+(1-νU 0 ) 1/ν ]
, and ( 16) can be rearranged in the form v ∞ < v c,0 with

v c,0 = 1 -νU 0 4(1 + ν/2)/[1 + (1 -νU 0 ) 1/ν ] 2 -ν/2 . (25) 
A closed-form expression for v c,0 also exists in the case where ϵ(ρ) is given by Eq. ( 6) but it is cumbersome. In Fig. 1(b), we plot these v c,0 's as a function of U 0 /ϵ(1) < 1 for ν = 1 and 2/3 when ϵ(ρ) is given by Eq. (3), and for ρ sat = 1 when ϵ(ρ) is given by Eq. ( 6). As expected, all curves converge to unity, the Landau critical speed for superfluidity, when U 0 /ϵ(1) → 0. On the other hand, they all drop to zero when U 0 /ϵ(1) → 1, which can be explained as follows. In the penetrable regime U 0 /ϵ(1) < 1, the maximum of the norm of the velocity field is reached and thus the superfluid transition takes place inside the obstacle potential where the superfluid density drops to zero when U 0 /ϵ(1) → 1, so does the corresponding local speed of sound. Since this speed of sound is an upper bound for the critical asymptotic velocity for superfluidity, it is then normal for the latter to vanish in this limit. However, superfluidity is not irretrievably lost from entry to the impenetrable regime U 0 /ϵ(1) > 1 because the fluid can always go around the obstacle from the north and the south (see Sec. III B). This contrasts with the one-dimensional geometry [START_REF] Huynh | Critical velocity for superfluidity in the one-dimensional mean-field regime: From matter to light quantum fluids[END_REF] where the fluid is, in this impenetrable regime and in the hydraulic approximation, cut into two disconnected parts. Coming back to the present situation, the crossing from below of the critical frontiers displayed in Fig. 1(b) is typically marked by the nucleation of a rarefaction wave [START_REF] Pinsker | Transitions and excitations in a superfluid stream passing small impurities[END_REF][START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF] known as Jones-Roberts soliton [START_REF] Jones | Motions in a Bose condensate. V. Stability of solitary wave solutions of non-linear Schrodinger equations in two and three dimensions[END_REF][START_REF] Meyer | Observation of Two-Dimensional Localized Jones-Roberts Solitons in Bose-Einstein Condensates[END_REF] inside the obstacle [START_REF]This is maybe what is observed[END_REF].

The results above, obtained in the incompressible approximation χ = 0, can be refined by accounting for the velocity 23) for the interaction potential (3) with ν = 1 and for the obstacle potential [START_REF] Desbuquois | Superfluid behaviour of a two-dimensional Bose gas[END_REF] with U0/ϵ(1) = 0.5, the boundary of which is materialized by the circle of proper radius σ. (b) Critical asymptotic velocity for superfluidity vc,0 in the incompressible approximation χ = 0 and in the penetrable regime U0/ϵ(1) < 1 when ϵ(ρ) is given by Eq. ( 3) with ν = 1 (solid curve), by Eq. ( 3) with ν = 2/3 (dashed curve), and by Eq. ( 6) with ρsat = 1 (dotted curve). For each curve, any point (U0, v∞) below corresponds to a superfluid flow (shaded region below the solid curve for instance).

term [START_REF] Miller | Critical Velocity for Superfluid Flow across the BEC-BCS Crossover[END_REF] in the second of Eqs. [START_REF] Osheroff | New Magnetic Phenomena in Liquid He3 below 3 mK[END_REF] and by searching for the velocity potential in the Janzen-Rayleigh form [START_REF] Janzen | Beitrag zu einer theorie der stationären strömung kompressibler flüssigkeiten[END_REF][START_REF] Rayleigh | On the flow of compressible fluid past an obstacle[END_REF] 

ϕ(r) = n k=0 ϕ k (r)χ k + o(χ n ), (26) 
where ϕ 0 (r) is given in Eq. ( 23), tends to zero, and n ⩾ 0 is the order of the expansion. Solving Eqs. ( 10), [START_REF] Raman | Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas[END_REF], and ( 18) order by order using Eq. ( 26), one obtains v max in the form

v max = n k=0 v max,k χ k + o(χ n ), (27) 
where v max,0 is given in Eq. ( 24) and the other v max,k 's are also functions of v ∞ and U 0 . Expanding (15) up to order n in χ using [START_REF] Josserand | Dynamique des superfluides : nucléation de vortex et transition de phase du premier ordre[END_REF] and rewriting χ as v 2 ∞ , one eventually gets (15) as a constraint on v ∞ and U 0 only, which can be in principle expressed in the form v ∞ < v c,n with v c,n = v c,n (U 0 ) being the critical asymptotic velocity for superfluidity at order n in the Janzen-Rayleigh expansion [START_REF] Frisch | Transition to dissipation in a model of superflow[END_REF]. In the case of the interaction potentials ϵ(ρ) considered in Fig. 1(b), an accuracy of (1-2)% is obtained for this critical speed from order n = 2, as Tab. I shows for the median obstacle amplitude U 0 = ϵ(1)/2. To be quantitative, we provide below the recurrence relations between the ϕ k (r)'s of the Janzen-Rayleigh expansion (26) when ϵ(ρ) is given by Eq. ( 3): 

(1 -νU 0 )∇ 2 ϕ k+1 = 1 2v 2 ∞ k j=0 ∇ϕ k-j • ∇(v 2 ) j + ν∇ 2 ϕ k-j (v 2 ) j - ν 2 ∇ 2 ϕ k , ( 28 
)
ϕ k | r=σ -= ϕ k | r=σ + , (29) 
ϵ(ρ) (3), ν = 1 (3), ν = 2/3 (6), ρsat = 1 vc,0[U0 = ϵ(1)
- ν 2 h 1/ν h h i i! ∞ ℓ=1 i ℓ ! (1 -νU 0 ) 1/ν-h × ((v 2 ) 0 -1) h ∞ ℓ=1 (v 2 ) ℓ (v 2 ) 0 -1 i ℓ ∂ϕ j ∂r r=σ - -((v 2 ) 0 -1) h ∞ ℓ=1 (v 2 ) ℓ (v 2 ) 0 -1 i ℓ ∂ϕ j ∂r r=σ + = 0, ( 30 
)
where (v 2 ) k = k j=0 ∇ϕ k-j • ∇ϕ j and the indices of the summation in Eq. ( 30) are such that h

+ ∞ ℓ=1 ℓi ℓ + j = k with ∞ ℓ=1 i ℓ = i.

B. Impenetrable obstacle

When ( 17) is impenetrable [1 U = 0 and U 0 > ϵ(1)], the superfluid only occupies the region r > σ and we just need to supplement Eq. ( 11) with one boundary condition to close the differential problem for ϕ(r). We choose this condition in the form ∂ϕ ∂r r=σ

= 0, ( 31) 1).

ϵ(ρ) (3), ν = 1 (3), ν = 2/3 (
An accuracy of (1 -2)% for vc is reached from order n = 3.

which corresponds to the usual no-slip boundary condition of classical hydrodynamics: The flow velocity at the boundary of a rigid body is tangential [START_REF] Landau | Fluid Mechanics[END_REF]. Interestingly, Eqs. ( 10), [START_REF] Raman | Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas[END_REF], and ( 31) do not involve U 0 , in such a way that the corresponding critical velocity for superfluidity does not depend on this parameter. We employ exactly the same method as in Sec. III A to solve Eqs. ( 10), [START_REF] Raman | Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas[END_REF], and [START_REF] Rica | A remark on the critical speed for vortex nucleation in the nonlinear Schrödinger equation[END_REF]. Focusing on (3) for instance, this yields the following results for the counterparts of Eqs. ( 25), [START_REF] Josserand | Vortex shedding in a model of superflow[END_REF], and [START_REF] Huepe | Scaling laws for vortical nucleation solutions in a model of superflow[END_REF][START_REF] Stießberger | Critical velocity of superfluid flow past large obstacles in Bose-Einstein condensates[END_REF], respectively:

v c,0 = 2 8 + 3ν , ( 32 
)
∇ 2 ϕ k+1 = 1 2v 2 ∞ k j=0 ∇ϕ k-j • ∇(v 2 ) j + ν∇ 2 ϕ k-j (v 2 ) j - ν 2 ∇ 2 ϕ k , (33) 
∂ϕ k ∂r r=σ = 0. ( 34 
)
It is worth noting that when ν = 1, one recovers the celebrated v c,0 = (2/11) 1/2 = 0.42 [START_REF] Landau | Theory of the Superfluidity of Helium II[END_REF] first established in Ref. [START_REF] Frisch | Transition to dissipation in a model of superflow[END_REF]. Table II shows the accuracy of the Janzen-Rayleigh method in determining the critical speed for superfluid motion past the impenetrable obstacle for the three interaction potentials of Fig. 1(b). In this configuration, the breakdown of superfluidity manifests by the nucleation of quantized vortices with opposite circulations at the north and south poles (r, θ) = (σ, ±π/2) of the obstacle [START_REF] Frisch | Transition to dissipation in a model of superflow[END_REF][START_REF] Pinsker | Transitions and excitations in a superfluid stream passing small impurities[END_REF].

IV. COMPARISON WITH NUMERICS AND DISCUSSION

In Ref. [START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF], the authors numerically studied the critical velocity for two-dimensional superfluidity past an obstacle represented by a Gaussian potential U (r) = U 0 exp(-r 2 /σ 2 ) of arbitrary maximum amplitude U 0 > 0. The superfluid was described by the nonlinear Schrödinger equation ( 1) with a nonlinear interaction potential ϵ(ρ) of the form (3) with ν = 1. They observed, for wide enough potentials, that the critical velocity reaches a minimum around U 0 /ϵ(1) = 1. This is similar to what we have found analytically in Sec. III, although the smallest observed value of the critical speed was not zero.

To compare these results to our analytical results obtained for [START_REF] Desbuquois | Superfluid behaviour of a two-dimensional Bose gas[END_REF], we have performed similar simulations in the case of a cylindrical potential. We have used a finite-difference numerical scheme to determine the limit of the superfluid region where stationary solutions exist (details concerning the simulation method are presented in the Appendix). To perform the simulations, we have used the smoothedout cylindrical potential (A.3) with a radius σ = 10 and a shoulder of width w = 1, which is different from the very wide cylindrical potential of sharp boundary used in the analytical approach. Another difference is that the simulation takes into account the full Hamiltonian whereas the analytical approach neglects a dispersive term in the hydrodynamic equations of the superfluid.

The comparison between our numerical and analytical results is shown in Fig. 2(a) for ϵ(ρ) given by Eq. ( 3) with ν = 1. The solid curve v c,2 = v c,2 (U 0 ) in the penetrable regime U 0 /ϵ(1) < 1 is obtained from a Janzen-Rayleigh expansion of the velocity potential to the second order whereas the dashed line v c,3 = const in the impenetrable regime U 0 /ϵ(1) > 1 is deduced from the same method but to the third order. The agreement between the numerical and analytical predictions is very good for both small and large U 0 /ϵ(1). A minimum critical speed at the limit U 0 /ϵ(1) = 1 between the penetrable and impenetrable regimes is also observed.

Nevertheless, as observed in Ref. [START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF], the minimum value of the critical velocity is well above the zero limit found analytically in the dispersionless approximation -∇ 2 ρ 1/2 /(2ρ 1/2 ) → 0, with a minimum which is around v c,min ≃ 0.28. Despite this difference, the important result is that, with both approaches, we observe two different branches of solutions in the penetrable-and impenetrableobstacle regions, corresponding to a breakdown of superfluidity that happens inside or outside the obstacle. In the numerical calculations, we find that these two branches are connected smoothly around U 0 /ϵ(1) = 1 contrarily to the abrupt jump observed in the analytical approach. This smoothing of the transition between the two regimes, leading to a nonzero minimal critical velocity, is probably due to the dispersive term -∇ 2 ρ 1/2 /(2ρ 1/2 ) in the second of Eqs. [START_REF] Osheroff | Evidence for a New Phase of Solid He3[END_REF] and/or to the continuous behavior of the potential (A.3) around r = σ.

Physically, this minimum can be easily explained within a local-density description of the superfluid, which is valid in the wide-obstacle limit σ → ∞ considered in this work. When the obstacle is penetrable, U 0 /ϵ(1) < 1 [impenetrable, U 0 /ϵ(1) > 1], superfluidity is locally broken inside (outside) the obstacle at a local speed of sound s in = [ρ in (∂ϵ/∂ρ)(ρ in )] 1/2 (s out = [ρ out (∂ϵ/∂ρ)(ρ out )] 1/2 ). Now, the density is hole-shaped where the obstacle is, i.e., ρ in < ρ out , hence s in < s out for the nonlinear potentials ϵ(ρ) considered here. This explains why the curve v c = v c (U 0 ) straightens when the threshold U 0 /ϵ(1) = 1 is crossed from the left: The point of emission of the excitation responsible for the breakdown of superfluidity inside the obstacle is shifted towards the exterior (at the boundary of the obstacle in our configuration) where the density is not as depleted as in the interior. 3) with ν = 1. We compare the numerical results (circles) with the analytical ones obtained using a Janzen-Rayleigh expansion of the velocity potential to the second order in the penetrable regime U0/ϵ(1) < 1 (solid curve) and to the third order in the impenetrable regime U0/ϵ(1) > 1 (dashed line). The numerical and analytical results accurately coincide at low and large U0/ϵ(1) but differ around U0/ϵ(1) = 1. (b) Critical asymptotic velocity for superfluidity vc as a function of U0/ϵ(1) for three different nonlinear potentials ϵ(ρ): (3) with ν = 1 [circles; same as in panel (a)], (3) with ν = 2/3 (squares), and ( 6) with ρsat = 1 (triangles). In all cases, we observe a minimum of the critical velocity for U0/ϵ(1) < 1. The dashed lines represent the analytical critical velocities vc,3 referenced in Tab. II. For clarity, we do not show the analytical curves vc,2 = vc,2(U0) for U0/ϵ(1) < 1.

In Fig. 2(b), we compare the numerical results for the three nonlinear potentials ϵ(ρ) considered in Fig. 1(b), for the same cylindrical potential (A.3) with a radius σ = 10 and a shoulder of width w = 1. The behavior is similar in all cases and a minimum for v c is always observed for a value of U 0 slightly below ϵ(1), around U 0 /ϵ(1) ≃ 0.7. The minimal value of each critical velocity ranges from v c ≃ 0.28 for (3) with ν = 1, up to v c ≃ 0.32 for (6) with ρ sat = 1. Finally, the numerical results compare favorably to the analytical ones at low and large U 0 /ϵ(1), as shown in Fig. 2(b) but only in the impenetrable regime U 0 /ϵ(1) > 1 for the sake of lisibility.

V. CONCLUSION

We have theoretically investigated the condition of existence of a two-dimensional superflow past an obstacle without restricting our study to an impenetrable obstacle potential nor to a quartic interaction Hamiltonian in order to get closer to recent experiments with an atomic Bose-Einstein condensate [START_REF] Kwon | Critical velocity for vortex shedding in a Bose-Einstein condensate[END_REF] and a paraxial superfluid of light [START_REF] Eloy | Experimental observation of turbulent coherent structures in a superfluid of light[END_REF]. Building atop previous analytical works [START_REF] Frisch | Transition to dissipation in a model of superflow[END_REF][START_REF] Rica | A remark on the critical speed for vortex nucleation in the nonlinear Schrödinger equation[END_REF][START_REF] Pinsker | Transitions and excitations in a superfluid stream passing small impurities[END_REF][START_REF] Pigeon | Critical velocity in resonantly driven polariton superfluids[END_REF], our approach of the equations modeling the hydrodynamics of the superfluid relies on an analogue of the hydraulic approximation [START_REF] Hakim | Nonlinear Schrödinger flow past an obstacle in one dimension[END_REF], the hodograph method [START_REF] Landau | Fluid Mechanics[END_REF], and Janzen-Rayleigh expansions of the velocity potential [START_REF] Janzen | Beitrag zu einer theorie der stationären strömung kompressibler flüssigkeiten[END_REF][START_REF] Rayleigh | On the flow of compressible fluid past an obstacle[END_REF]. To validate it, we have confronted it to imaginary-time numerical simulations inspired from Ref. [START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF].

In strong contrast to the one-dimensional geometry [START_REF] Huynh | Critical velocity for superfluidity in the one-dimensional mean-field regime: From matter to light quantum fluids[END_REF] (see also bibliography therein), the critical velocity for twodimensional superfluidity is a nonmonotonic function of the typical amplitude of the obstacle potential [START_REF] Kwon | Critical velocity for vortex shedding in a Bose-Einstein condensate[END_REF][START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF]. When the obstacle is penetrable, the breakdown of superfluidity manifests by the emission of a rarefaction wave [START_REF] Pinsker | Transitions and excitations in a superfluid stream passing small impurities[END_REF][START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF] inside the obstacle and the corresponding critical speed decreases with the potential's amplitude. When the potential is on the contrary impenetrable, the superfluid transition is pushed back to the obstacle's boundary where quantized vortices with opposite circulations [START_REF] Frisch | Transition to dissipation in a model of superflow[END_REF][START_REF] Pinsker | Transitions and excitations in a superfluid stream passing small impurities[END_REF] are nucleated at a critical speed independent of the potential's amplitude. At the frontier between the penetrable and impenetrable regimes, the critical velocity displays a minimum easily explainable within a local-density description of the superfluid.

As a first perspective to the present work, it is natural to raise the question of the determination of the critical velocity for superfluidity past a narrow obstacle, which has not yet been analytically tackled in two dimensions, as far as we know. Moreover, it could be interesting to investigate this quantity in the presence of several obstacles or even a disordered environment. In the latter case, the critical speed should become a random variable [START_REF] Albert | Breakdown of the superfluidity of a matter wave in a random environment[END_REF] whose statistical properties are so far completely unknown in two dimensions.

Appendix: Numerical calculation of the critical velocity Following the method proposed in Ref. [START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF] for a similar problem with a Gaussian-shaped obstacle potential, we have used an imaginary-time numerical method to find superfluid stationary solutions when those exist.

In a reference frame where the obstacle is not moving, far away from the obstacle, a superfluid stationary solution of the dimensionless equation ( 1) should behave as

ψ(r, t) = exp i v ∞ x - v 2 ∞ 2 + µ t = A(x, t) (A.1)
for a homogeneous fluid flowing in the x-direction at constant velocity v ∞ > 0. We then look for solutions of the form ψ(r, t) = A(x, t)φ(r, t) where the auxiliary function φ should be independent of time t and should tend towards 1 far from the obstacle if a stationary solution exists. Notice that ρ = |ψ| 2 = |φ| 2 . We rewrite Eq. ( 1) in terms of φ, which gives

i ∂φ ∂t = Hφ = - 1 2 ∇ 2 -iv ∞ ∂ ∂x + U (r)1 U + ϵ(ρ) -µ φ. (A.2)
Starting from an initial ansatz φ(r, 0), we propagate φ in imaginary time τ using -∂φ/∂τ = Hφ and monitor if φ converges towards a stationary solution at long τ . One should notice than no trivial imaginary-time dependence remains as the energy has been shifted to zero by the addition of the µ-term in Eq. (A.2). As shown in Ref. [START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF], when φ does not tend towards a stationary solution, hydrodynamic perturbations that move perpendicularly to the flow of the superfluid are emitted around the obstacle. The observation of these emissions then shows the absence of a superfluid stationary solution, which can be monitored through the behavior of the rotational of the current, for example. On the contrary, in a regime where a stationary solution exists, we do not observe these perturbations and |Hφ| decreases continuously towards zero.

To perform the imaginary-time evolution of φ, we have used an explicit finite-difference scheme [START_REF] Cerimele | Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: An application to trapped Bose-Einstein condensates[END_REF][START_REF] Chiofalo | Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm[END_REF][START_REF] Minguzzi | Numerical methods for atomic quantum gases with applications to Bose-Einstein condensates and to ultracold fermions[END_REF] which is conditionally stable for small enough time steps. We have not used a cylindrical potential as in Eq. ( 17) but a smoothed version of it, of the form

U (r) = U 0 2 1 + tanh σ -r w , (A.3)
which is more amenable to our numerical scheme. Preliminary simulations have showed that a radius σ = 10 is large enough to study the hydraulic approach investigated in Sec. III. We have used a value of w = 1 to avoid numerical difficulties, which means that we have not studied cases where the potential changes abruptly compared to the healing length ξ = 1. This is an important difference between the cases studied analytically and numerically.

We have typically used rectangular systems of sizes L x = 400 and L y = 100 with a space step δ x = 0.25 and an imaginary-time step δ τ = 0.01. As φ goes towards a uniform solution φ = 1 far away from the obstacle, we have used periodic boundary conditions. The wave function ψ can be calculated from φ using Eq. (A.1) and used to evaluate quantities of interest such as currents. The linear size of the system in x allows us to increment v ∞ by steps δ v = 2π/L x ≃ 0.016. We have performed simulations to maximal imaginary times of order τ max = 10000. In this limit, the largest value of |Hφ| in the rectangular grid is generally of order 10 -5 . To validate our approach, we have reproduced the results obtained in Ref. [START_REF] Kwak | Minimum critical velocity of a Gaussian obstacle in a Bose-Einstein condensate[END_REF] for a Gaussian potential U (r) = U 0 exp(-r 2 /σ 2 ).

For given values of U 0 , we have done simulations for different values of v ∞ and observed if a stationary solution is reached or not. This has allowed us to determine a transition interval with a precision which is, at best, δ v . One should notice that a sort of critical slowing-down happens close to the transition between the nonstationary and stationary regimes: As v ∞ is decreased towards the transition value, the imaginary-time interval before the emission of some perturbation increases and this emission may not be observed in our finite-time window. We have defined the nonsuperfluid regime as the one where we observe the emission of several perturbations.
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 1 FIG. 1. (a)Colormap of the norm of the velocity field ∇ϕ0(r) normalized to its maximum value vmax,0 in the incompressible approximation χ = 0, obtained from Eq. (23) for the interaction potential (3) with ν = 1 and for the obstacle potential[START_REF] Desbuquois | Superfluid behaviour of a two-dimensional Bose gas[END_REF] with U0/ϵ(1) = 0.5, the boundary of which is materialized by the circle of proper radius σ. (b) Critical asymptotic velocity for superfluidity vc,0 in the incompressible approximation χ = 0 and in the penetrable regime U0/ϵ(1) < 1 when ϵ(ρ) is given by Eq. (3) with ν = 1 (solid curve), by Eq. (3) with ν = 2/3 (dashed curve), and by Eq. (6) with ρsat = 1 (dotted curve). For each curve, any point (U0, v∞) below corresponds to a superfluid flow (shaded region below the solid curve for instance).
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 32 FIG. 2. (a)Critical asymptotic velocity for superfluidity vc as a function of U0/ϵ(1) for a nonlinear potential ϵ(ρ) of the form (3) with ν = 1. We compare the numerical results (circles) with the analytical ones obtained using a Janzen-Rayleigh expansion of the velocity potential to the second order in the penetrable regime U0/ϵ(1) < 1 (solid curve) and to the third order in the impenetrable regime U0/ϵ(1) > 1 (dashed line). The numerical and analytical results accurately coincide at low and large U0/ϵ(1) but differ around U0/ϵ(1) = 1. (b) Critical asymptotic velocity for superfluidity vc as a function of U0/ϵ(1) for three different nonlinear potentials ϵ(ρ): (3) with ν = 1 [circles; same as in panel (a)], (3) with ν = 2/3 (squares), and (6) with ρsat = 1 (triangles). In all cases, we observe a minimum of the critical velocity for U0/ϵ(1) < 1. The dashed lines represent the analytical critical velocities vc,3 referenced in Tab. II. For clarity, we do not show the analytical curves vc,2 = vc,2(U0) for U0/ϵ(1) < 1.

TABLE II .

 II Same as Tab. I in the impenetrable regime U0 > ϵ(

				6), ρsat = 1
	vc,0	0.42(6)	0.44(7)	0.49(1)
	vc,1	0.39(0)	0.40(7)	0.44(2)
	vc,2	0.38(0)	0.39(6)	0.42(9)
	vc,3	0.37(5)	0.39(1)	0.42(3)
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