

Keystone seabird may face thermoregulatory challenges in a warming Arctic

Melissa Grunst, Andrea Grunst, David Grémillet, Akiko Kato, Sophie Gentès,

Jérôme Fort

▶ To cite this version:

Melissa Grunst, Andrea Grunst, David Grémillet, Akiko Kato, Sophie Gentès, et al.. Keystone seabird may face thermoregulatory challenges in a warming Arctic. Scientific Reports, 2023, 13 (1), pp.16733. 10.1038/s41598-023-43650-5 . hal-04254786

HAL Id: hal-04254786 https://hal.science/hal-04254786v1

Submitted on 25 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Keystone seabird may face thermoregulatory challenges in a warming Arctic
2	
3	Melissa L. Grunst ^{a*} , Andrea S. Grunst ^a , David Grémillet ^{b,c} , Akiko Kato ^d , Sophie Gentès ^a , Jérôme
4	Fort ^a
5	
6	^a Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe
7	de Gouges, FR-17000 La Rochelle, France
8	^b CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
9	^c Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
10	^d Centre d'Etudes Biologiques de Chizé, CEBC, UMR 7372 CNRS-La Rochelle Université, France
11	*Correspondance: mgrun002@ucr.edu
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

27 Abstract

28 Climate change affects the Arctic more than any other region, resulting in evolving weather, vanishing 29 sea ice and altered biochemical cycling, which may increase biotic exposure to chemical pollution. We 30 tested thermoregulatory impacts of these changes on the most abundant Arctic seabird, the little auk (Alle 31 alle). This small diving species uses sea ice-habitats for foraging on zooplankton and resting. We 32 equipped eight little auks with 3D accelerometers to monitor behavior, and ingested temperature recorders 33 to measure body temperature (T_b). We also recorded weather conditions, and collected blood to assess 34 mercury (Hg) contamination. There were nonlinear relationships between time engaged in different 35 behaviors and T_b. T_b increased on sea ice, following declines while foraging in polar waters, but changed 36 little when birds were resting on water. T_b also increased when birds were flying, and decreased at the 37 colony after being elevated during flight. Weather conditions, but not Hg contamination, also affected T_b. 38 However, given our small sample size, further research regarding thermoregulatory effects of Hg is 39 warranted. Results suggest that little auk T_b varies with behavior and weather conditions, and that loss of 40 sea ice due to global warming may cause thermoregulatory and energic challenges during foraging trips at 41 sea.

42 Keywords: Body temperature; behavior; plasticity; environmental variation; climate change; biologging;
43 activity patterns; dovekie

44

45 Introduction

46 Global climate change is proceeding at unprecedented rates¹, posing physiological and bioenergetic

47 challenges for organisms²⁻⁴. Among direct effects of shifting weather regimes on animals,

48 thermoregulatory challenges are particularly important⁵⁻⁹. Organisms are increasingly facing challenging

49 thermal environments in the form of elevated temperatures, extreme heat events and stochasticity¹. In

50 addition, other environmental conditions, such as wind patterns and humidity affect heat exchange with

- 51 the environment^{10,11}, and may evolve under climate change¹. Organisms are also facing shifts in resource
- 52 distributions and changes in habitat structure, which may force changes in activity patterns and create

53 thermoregulatory challenges that disrupt energy balance. For example, modified vegetation structure may 54 not only affect the resource base, but also limit availability of shade, and scope for behavioral 55 thermoregulation¹². Furthermore, in the Arctic, which is warming ~4 times faster than other regions^{1,13}, 56 advanced melting and decreased extent of sea ice may mean longer commutes to favorable foraging 57 areas¹⁴ and loss of an important resting substrate that provides thermal relief at sea¹⁵. 58 Compounding the challenges of climate change, organisms simultaneously face other environmental 59 challenges, some of which are also linked to ecosystem engineering by humans. For example, anthropogenic activities have increased exposure to chemical contaminants, such as mercury¹⁶, and global 60 warming has potential to exacerbate this threat¹⁷⁻¹⁹. Mercury (Hg) is a prevalent contaminant that reaches 61 62 even remote polar regions via a repeated process of condensation and evaporation, persists in cold environments, and biomagnifies up marine food chains^{16,20,21}. The methylated form, methylmercury 63 64 (MeHg) is especially bioavailable and harmful to wildlife²². Exposure of animals to MeHg may be exacerbated by climate change²³. For instance, conversion of inorganic Hg to MeHg is potentiated in 65 warming oceans²⁴. Hg contamination may interfere with body temperature (T_b) regulation via endocrine 66 disruption²⁵, notably affecting production of thyroid hormones, which are central to thermoregulation²⁶. In 67 68 addition, Hg contamination could affect patterns of thermoregulation through effects on detoxification 69 costs and resting metabolic rate²⁷⁻²⁹. Although few data specific to Hg are available, both hypo- and 70 hyperthermic responses can occur in response to contamination³⁰. Hypothermic responses are proposed to 71 reflect an adaptive detoxification mechanism through which toxicity is reduced through facultative 72 reduction in $T_b^{30,31}$. Modification in T_b due to contaminant exposure could limit thermoregulatory 73 adjustments in responses to global climate change, making it more difficult for animals to conserve water 74 and energy. 75 In this study, we used a suite of advanced techniques to evaluate potential for shifting environmental

conditions and Hg contamination to affect activity-specific T_b regulation in a keystone Arctic seabird, the little auk (or dovekie, *Alle alle*). We fit eight free-ranging birds with internal T_b loggers, which were

78 ingested by focal individuals, and recorded abdominal temperature as a proxy of core T_b through time.

Birds were simultaneously equipped with miniaturized triaxial (3D) accelerometers that recorded body acceleration, allowing classification of activity budgets. We used data from an onsite weather station to gain insight into links between weather conditions and T_b . Finally, we obtained blood samples to assess whether Hg contamination could affect T_b and limit adaptive plasticity, although given our small sample size, we lack the power to draw strong conclusions regarding effects of Hg contamination.

84 We generated a suite of predictions based on our knowledge of the behavior, morphology and 85 energetics of the little auk. In general, we predicted that environmental conditions and activity would 86 interact to affect mean levels and variation in core T_b . More specifically, little auks have a high wing 87 loading, resulting in extremely high energetic costs of flight³². Thus, we predicted that T_b would increase 88 when birds were flying relative to during other activities, and that this increase would be magnified under 89 conditions that reduce heat exchange between the body and environment or increase flight costs. In 90 contrast, endothermic animals diving into cold polar waters face thermal challenge due to the high 91 thermal conductance of water^{33,34}. As a result, diving animals often allow T_b to fall below normothermic 92 levels, which may facilitate aerobic dive capacity and limit energetic costs of heat loss to the 93 environment^{34,35}. Thus, we predicted that T_b would decline over the course of foraging episodes, and 94 subsequently increase when birds were resting on sea ice. However, we recognized the potential that 95 regional heterothermy, that is, variation in peripheral temperatures, especially in the appendages, might 96 buffer changes in core T_b during diving, resulting in relative stability³⁵. We also predicted that variation in 97 $T_{\rm b}$ might increase in the context of thermal challenge, which in the Arctic is most commonly experienced 98 in the context of cold stress, especially during resting periods, but which could also involve heat stress, 99 especially during activity. Finally, we predicted that higher blood Hg concentrations might affect 100 thermoregulatory capacity. Thus, higher Hg concentrations could be linked to either higher mean T_b, 101 perhaps reflecting increased metabolic rates to support detoxification costs, or lower $T_{\rm b}$, perhaps 102 reflecting suppression of thyroid hormones. In addition, elevated blood Hg could be linked to greater 103 variation in T_b, especially in the context of thermal stress. By adopting a multifaceted approach and

evaluating specific predictions, we grant insight into how thermoregulatory dynamics may shift givenconcomitant exposure to multiple environmental stressors.

106

107 Materials and Methods

108 **Study system:** Our study took place at a breeding population of little auks situated at Ukalegarteq (Kap 109 Höegh), East Greenland (70°44'N, 21°35'W). Little auks (~150 g) are the most abundant seabird in the 110 high Arctic and breed in large colonies³⁶. Both males and female incubate a single egg, and contribute 111 equally to provisioning of the chick^{37,38}. Little auks forage on copepods, and return to the colony from 112 foraging sites at sea with prey items stored in a specialized gular pouch, which are then regurgitated for the chick³⁸. Upon return to the colony, little auks can be captured and recaptured at or near the nesting 113 114 sites in rock crevasses, facilitating fitting and retrieval of accelerometers and deployment of T_{b} loggers. 115 Mean blood Hg levels in little auks at Ukaleqarteq in recent years fall into the low risk range for toxicological effects. However, past research documents negative effects on reproduction^{39,40} and body 116 117 condition¹⁴, suggesting that despite relatively low Hg levels there may be other effects on physiology and 118 thermoregulation. Fieldwork adhered to the ASAB/ABS guidelines for use of animals in behavioral 119 research, and was conducted in accordance with Greenlandic law. The Government of Greenland, 120 Ministry of Environment and Nature, and Department of Fisheries, Hunting and Agriculture, approved 121 research procedures and provided ethical clearance (permit: 2020-1006). The methodology and results of 122 this study are reported in accordance with ARRIVE guidelines.

123

124 **Deployment of T_b loggers and accelerometers**: During July 2020, we captured eight little auks outside 125 nesting crevasses using a combination of lassos and noose carpets. We fit each bird with a T_b logger 126 (BodyCap Anipill Core Body Temperature Ingestible Tablet; BMedical; $\pm 0.2^{\circ}$ C; 1.7g; 17.7 × 8.9 mm; 127 ~1% of mass), a data logging system for gastrointestinal temperature recording. These capsules are 128 designed for use in birds, and have been used by a number of past studies on wild and free-ranging 129 species^{41,42}. Birds spontaneously ingested T_b loggers placed within the beak. Loggers recorded abdominal

130 temperature every minute for periods of ca. 30h. We remotely downloaded data from loggers via 131 telemetry when the bird was within ~1 m. T_b loggers are assumed to be eliminated through defecation or 132 regurgitation, and are not recovered. Focal individuals were simultaneously equipped with miniaturized 133 triaxial accelerometers (Axy 4, Technosmart, 3g, ~2% of mass), to record body acceleration. We attached 134 accelerometers to the central breast at the level of the sternum using Tesa® tape. Accelerometers recorded 135 data at a frequency of 50 Hz (50 readings per second). We marked birds with color rings to facilitate 136 identification and recapture within ~4 days, upon which we retrieved the accelerometer. Deployment 137 dates fell within nine days during the mid-late chick rearing phase [July 22-30]. All birds were breeding 138 adults, but sex was not determined for this study, as the remaining volume of blood was conserved for 139 other physiological assays. The thermoregulatory physiology of male and female little auks during the 140 nestling stage is likely to be similar, as the sexes are monomorphic in coloration, overlap extensively in 141 size (males may be slightly larger), and share equally in breeding duties^{37,38}. Nevertheless, we recognize 142 lack of knowledge of sex as a limitation to our work. A portable HOBO H21-USB weather station at the 143 study site recorded weather conditions (every 1-min), including ambient temperature (T_a ; °C), relative 144 humidity (RH; %) and wind speed (V; m/s). Conditions measured at the weather station were taken as a 145 proxy of environmental conditions at both the breeding site and at-sea foraging grounds (as a caveat, little 146 auks can forage up to ~100 km from the colony⁴³).

147

148 Analysis of accelerometry and T_b data: We used Igor Pro 8.04 (64-bit; WaveMetrics) to classify data on 149 triaxial acceleration into behavioral states (see details in¹⁵). In brief, we used k-clustering analysis applied 150 to acceleration axes, followed by application of a custom-written script, which utilized output from the 151 clustering analysis and surface temperature data. Behavioral states identified were: flying, diving, on the 152 water surface, on sea ice, and at the colony. We proceeded to determine whether time spent on the water 153 was part of a foraging bout (i.e. inter-dive interval), or represented time resting on the water. To this end, 154 we determined the dive bout ending criterion, using R package diveMove⁴⁴, which applies the methods of ⁴⁵ and ⁴⁶ for identification of behavioral bouts. Using the standard method of classification, based on 155

156 absolute duration of behavioral bouts (i.e. inter-dive intervals), the bout ending criteria derived was 307.1 157 seconds. Consequentially, we ended diving bouts if time spent on the water exceeded this value, and 158 classified these intervals as time resting on the water. Time resting on the water additionally encompassed 159 intervals of time on the water that were not between dives. We combined time engaged in diving and 160 inter-dive intervals into a single behavioral category, representing active foraging. Thus, final behavioral 161 categories were: actively foraging (hereafter also "diving"), flying, at the colony, on sea ice, and resting 162 on the water. For each T_b measurement, we determined the corresponding behavioral state by aligning 163 time stamps from the $T_{\rm b}$ and behavioral (accelerometer) data in Microsoft Excel 16.16.27.

164

165 **Mercury contamination: sampling and analysis:** We obtained ~0.2-0.5 ml blood samples from the 166 brachial vein after recapture of birds to retrieve accelerometers, which minimized stress during the 167 experimental period. Blood samples were centrifuged for 10 min at 3500 rpm to separate plasma from red 168 blood cells (RBCs), which were stored in 70% ethanol. After evaporation of ethanol, RBCs were freeze 169 dried for 48 hrs and homogenized prior to analysis for total Hg (hereafter Hg) concentrations. Total Hg 170 serves as a proxy for highly toxic MeHg, since most of the Hg in bird blood, feathers and eggs is MeHg⁴⁷. 171 Samples were analyzed in duplicate using an Advanced Mercury Analyser spectrophotometer (Altec AMA 254) at the Institute Littoral Environnement et Sociétés (LIENSs)⁴⁸. The standard deviation 172 173 between duplicates was <10%. We used TORT-3 as a standardized reference material (CRM; Lobster 174 Hepatopancreas Tort-3; NRC, Canada; $[Hg] = 0.292 \pm 0.022 \ \mu g^{-1} dry weight (dw))$ and performed a 175 blank before initiating measurements on samples. The limit of detection for Hg and mean ± SD of Tort-3 measurements were 0.005 μ g g⁻¹ dw and 0.302 \pm 0.004 μ g g⁻¹ dw (N = 8; replicates), respectively. 176 177

178 Statistical analysis

179 We conducted statistical analyses in R 3.6.1⁴⁹. We used generalized additive mixed effect models

180 (GAMMs) in R package $mgcv^{50,51}$ to assess whether T_b varied with behavior, environmental conditions,

181 or time of day. For this model, we used each observation of T_b. We used the corAR1 correlation structure in package nlme to account for temporal autocorrelation⁵², included individual ID and behavioral bout 182 183 (nested within individual ID) as random effects, and incorporated two non-linear smooth terms. The first 184 non-linear smooth term tested for non-linear variation between T_b and time in each behavioral state. To 185 this end, we used a cubic regression spline (specified as bs="cr") with the degree of smoothness set to k =186 50 (which minimized AICc and increase the R^2 relative to models with lower k). We used the "by" call 187 within the smoothing function to test for unique non-linear relationships within each behavioral state. For 188 the second non-linear smooth term, we used a cyclic cubic regression spline (specified as bs="cc") to test 189 for variation in T_b with time of day. We also included two-way interactions between behavioral state and: 190 (1) T_a , (2) RH, (3) wind speed, and (5) Hg concentrations. We removed interactions with P-values > 191 0.059 from models, followed by elimination of main effects above P > 0.05. We standardized continuous 192 predictor variables to a mean of zero and standard deviation of one to facilitate interpretation of main 193 effects when including interactions in models⁵³. We used package emmeans⁵⁴ for pairwise comparisons 194 between interaction terms (function emtrends) and differences in T_b between behavioral states (function 195 emmeans).

196 To more thoroughly explore differences in how T_b changes with time when birds are engaged in 197 different behaviors, we calculated change in T_b (deltas) for each behavioral bout as: $\Delta T_b = T_{b,end} - T_{b,start}$; 198 where $T_{b,end} = T_b$ at the last time point recorded in that behavioral state and $T_{b,start} = T_b$ at the first time 199 point recorded. We used a linear mixed effects model in nlme to compare ΔT_b across behavioral states, 200 while including the length of the time interval in the model. We extracted and plotted predicted values 201 from models using function ggpredict within the ggeffects package⁵⁵. In addition, to evaluate modulators 202 of the effect of time of day on T_b, we constructed GAMMs predicting T_a and RH from time of day, using 203 the same random structure as above.

We also assessed whether between minute variation in T_b differed between behavioral states by
 calculating the absolute value of the difference between subsequent measurements of T_b, and constructing

206 models with the same structure described for mean T_b . Values could not be calculated for time points at 207 the beginning of behavioral intervals, so these rows were dropped from the analysis.

208

209 **Results**

210 **Predictors of little auk T**_b across behavioral states: Mean \pm SD T_b of little auks was 41.0 \pm 0.55°C and 211 showed significant, but low magnitude differences between behaviors (Table 1; see Table S1 for full 212 GAMM, including non-significant effects). Estimated marginal means (EMM \pm SE [95% CI]) for T_b were 213 significantly lower for diving $(40.7 \pm 0.092 \ [40.5, 40.8] \ ^\circ\text{C})$ relative to in other behaviors (P < 0.001 in all 214 cases; Table S1 for pairwise comparisons), but did not differ between flying $(41.55 \pm 0.092 \ [41.4, 41.7]$ 215 °C), at the colony $(41.4 \pm 0.089 \ [41.2, 41.6] \ ^{\circ}C)$, on sea ice $(41.4 \pm 0.088 \ [41.2, 41.6] \ ^{\circ}C)$, or on the water 216 $(41.4 \pm 0.105 \ [41.2, 41.6]^{\circ}C)$ (Table S2 for pairwise comparisons). 217 The minimum adequate model predicting $T_{\rm b}$ included non-linear relationships with time spent in each

of the behaviors, with the exception of time spent on the water surface, for which the relationship was non-significant (Table 1). T_b decreased with the amount of time spent diving up to ~19 minutes, from

220 ~41.5 to 40.6 °C, after which predicted T_b plateaued (Fig. 1a). There was also a more gradual decrease in

221 T_b after birds arrived at the colony up to ~90 min, from 41.9 to 40.9°C (Fig. 1a). On the other hand, T_b

increased the longer birds spent flying to ~15 minutes, from ~41.3 to 41.6°C°, before leveling off or

223 declining slightly (Fig. 1a). T_b also displayed an increase for the initial 30 minutes when birds were on the

sea ice, from ~40.8 to 41.4 °C, after which T_b leveled off or declined slightly (Fig. 1a). Figure 2 shows a

225 trace of T_b through time for one focal individual. See Fig. S1-S7 for other birds.

226 The overall ΔT_b for diving was negative, with the 95% CI not overlapping zero (EMM ± SE [95% CI]

 $227 = -0.312 \pm 0.026$ [-0.374, -0.251] °C), and was lower than all other ΔT_b (Table S3 for pairwise

228 comparisons). The ΔT_b for flying and on sea ice were positive, with Cis not overlapping zero (EMM \pm SE

229 $[95\% \text{ CI}] = 0.146 \pm 0.029 [0.077, 0.215] \text{°C}; 0.335 \pm 0.045 [0.228, 0.443] \text{°C})$, and were higher than all

230 other ΔT_b , with ΔT_b for sea ice also greater than that of flying (Table S3 for pairwise comparisons). The

231 overall ΔT_b for at the colony and on the water were negative, and positive, respectively, but did not

significantly differ from each other or zero (Estimate marginal mean \pm SE = -0.074 \pm 0.044 [-0.179,

233 0.031] °C; 0.0002 ± 0.038 [-0.089, 0.089] °C, respectively).

Table 1. Minimum adequate GAMM for body temperature $(T_b; °C)$ in little auks as a function of behavioral state, weather conditions, and time.

Parametric coefficients					
Variables	$\beta \pm SE$	t	P>(/t/)	F	P (>F)
Intercept	40.6 ± 0.464	87.414	< 0.001		
Flying ^a	0.922 ± 0.496	1.857	0.063	7.271	< 0.001
Colony	0.817 ± 0.462	1.767	0.077		
Ice	0.325 ± 0.469	0.692	0.489		
Water	0.686 ± 0.495	1.385	0.166		
Wind speed (m/s)	-0.016 ± 0.007	-2.407	0.016	5.792	0.016
Relative humidity (%)	0.063 ± 0.013	5.028	< 0.001	25.3	< 0.001
Flying \times wind	0.028 ± 0.010	2.836	0.004	2.345	0.052
Colony \times wind	0.020 ± 0.010	2.012	0.044		
Ice \times wind	0.021 ± 0.010	2.167	0.030		
Water \times wind	0.016 ± 0.011	1.405	0.159		
Approximate significance, Smoothed terms					
	edf	Ref.df	F	P(>F)	
s(Time behavior): Diving	9.434	9.434	67.2	< 0.001	
s(Time behavior): Flying	5.991	5.991	10.1	< 0.001	
s(Time in behavior): Colony	5.933	5.933	22.5	< 0.001	
s(Time in behavior): Ice	5.097	5.097	21.2	< 0.001	
s(Time in behavior): Water	2.110	2.110	0.738	0.446	
s(Time of day)	6.467	18.0	3.940	< 0.001	
R-adjusted	0.212	Ν	16405, 8		
^a Relative to diving					

Figure 1. Relationships between T_b (°C) of little auks predicted from the GAMM and (a) time within the
behavioral state (min), (b) wind speed (m/s), and (c) Relative humidity (%). Shaded regions show 95%
CIs.

248

With respect to environmental effects, there was a significant interaction between behavioral state and wind speed in predicting T_b (Table 1). T_b tended to increase with wind speed when birds were flying, but not in other behavioral states (Table 1; Fig. 1b; Table S4 for pairwise comparisons). In addition, T_b was positively related to RH (Table 1; Fig. 1c), independent of behavioral state (Table S1). T_a was unrelated to T_b , either independently, or in interaction with behavioral state (Table S1).

255

Figure 2. Body temperature (T_b) through time color coded with respect to behavioral state for one little auk (LIAK20EG19) from the Ukaleqarteq, East Greenland, population. Note rebounds in T_b when on sea ice following declines while diving in cold Arctic waters. T_b also generally increases with time flying and declines with time at the colony.

268

Figure 3. Relationship between T_b (°C) of little auks predicted from the GAMM and time of day. Shaded
 regions show 95% Cis.

272 **Predictors of between minute variation in T_b**: Mean \pm SD between minute variation in T_b ($|T_{b1}-T_{b1+1}|$) 273 of little auks was $0.09 \pm 0.11^{\circ}$ C (range: 0-1.5 °C), and showed low magnitude, significant variation 274 between behavioral states (Table 2; Table S5 for full model). The EMM (± SE) was highest when birds 275 were foraging at sea $(0.097 \pm 0.008 \ [0.080, 0.113] \ ^{\circ}C)$, followed by flying $(0.060 \pm 0.008 \ [0.044, 0.077] \ ^{\circ}C)$ °C), on the water $(0.055 \pm 0.011 \ [0.033, 0.078] \ ^{\circ}C)$, at the colony $(0.041 \pm 0.008 \ [0.024, 0.057] \ ^{\circ}C)$ and 276 277 on sea ice $(0.040 \pm 0.007 [0.025, 0.054] \circ C)$, but the only significant differences were between diving and 278 all other behavioral states (Table S6 for pairwise contrasts). There were significant non-linear 279 relationships between time in the behavioral state and between minute variation in $T_{\rm b}$ (Table 2); which 280 involved early decreases with time in the behavioral state for all behaviors, before leveling off (Fig. 4a). 281 This decrease was steepest when birds were resting on the water, diving, or in flight (all with a slope of \sim 282 -0.007°C min⁻¹ in the first ~15 min), and slightly more gradual at the colony (slope of ~ -0.004 °C min⁻¹ in 283 the first ~ 25 min) and on the sea ice (slope of ~ -0.002 in the first ~ 15 min) (Fig. 4a). 284

286

Figure 4. Between minute variation in little auk body temperature $(|T_{b1}-T_{b1+1}|)$ (°C) in different behavioral states as a function of a) time in behavioral state, b) wind speed, and c) ambient temperature (°C). Plots show predicted values from GAMMs, with shaded regions representing 95% CIs.

292 With respect to environmental effects, there was an interaction between wind speed and behavioral 293 state in predicting between minute variation in T_b (Table 2; Fig. 4b). Variation in T_b increased with wind 294 speed when birds were diving and flying but did not vary significantly with wind speed in the other 295 behavioral states (Table S7 for pairwise comparisons). There was a positive correlation between T_a and 296 variation in T_b (Table 2; Fig. 4c) independent of behavioral state (Table S5). When T_a was also in the 297 model, RH was unrelated to variation in T_b (Table S5). However, when T_a was removed, RH was 298 negatively related to variation in T_b ($\beta \pm SE = -0.006 \pm 0.002$, T = -3.42, P = 0.006), independent of 299 behavioral state (Table S5).

300 Between minute variation in T_b did not vary with time of day (Table S5).

Table 2. Minimum adequate GAMM predicting between minute variation in body temperature (|T_{b1}-

303	T_{b1+1}) (°C)) in little auks as a f	function of behavioral	state and weather	conditions.
000		, in mule dans db d	anetion of cena ford	i blace and meatier	contantiono.

Parametric coefficients					
Variable	$\beta \pm SE$	<i>t</i> -value	P(> t)	F	P (> F)
Intercept	0.155 ± 0.036	4.240	< 0.001		
Flying	-0.039 ± 0.053	-0.727	0.467	1.701	0.147
Colony	$\textbf{-0.076} \pm 0.037$	-2.069	0.039		
Ice	-0.090 ± 0.038	-2.366	0.018		
Water	$\textbf{-0.067} \pm 0.081$	-0.821	0.412		
Wind speed (m/s)	0.008 ± 0.002	3.372	0.001	11.373	< 0.001
Temperature (°C)	0.006 ± 0.002	3.882	< 0.001	15.074	< 0.001
Flying \times wind	0.0002 ± 0.004	0.077	0.939	5.023	< 0.001
Colony \times wind	$\textbf{-0.010} \pm 0.004$	-2.598	0.009		
Ice \times wind	-0.010 ± 0.004	-2.317	0.021		
Water × wind	-0.016 ± 0.005	-3.415	< 0.001		
Approximate significance, Smoothed terms					
	edf	Ref.df	F	<i>P</i> (> F)	
s(Time behavior):Diving	6.315	6.315	66.68	< 0.001	
s(Time behavior):Flying	6.688	6.688	50.26	< 0.001	
s(Time behavior):Colony	11.58	11.58	15.75	< 0.001	
s(Time behavior):Ice	5.150	5.150	16.97	< 0.001	
s(Time behavior):Water	3.348	3.348	40.46	< 0.001	
R ² -adjusted	0.234	Ν	15136, 8		

Mercury contamination: There was no significant relationship between Hg contamination and T_b (Table S1) or between minute variation in T_b (Table S5). The mean \pm SE of Hg concentrations in RBCs was $1.290 \pm 0.031 \ \mu g \ g^{-1} \ dw$ [range: 1.030-1.746 $\ \mu g \ g^{-1} \ dw$], which assuming 79% blood moisture content is equivalent to $0.271 \pm 0.007 \,\mu\text{g g}^{-1}$ ww [range: 0.216-0.367 $\mu\text{g g}^{-1}$ ww], and falls within the low risk range for toxicological effects (0.2–1.0 µg g⁻¹ ww⁴⁷; calculated for whole blood, but comparable to levels in RBCs). Table 3 lists the Hg concentrations in RBC of each focal bird in dw and ww equivalents.

Table 3. Hg concentrations μ g g⁻¹ in dw and ww measured in the RBCs of focal birds breeding at

Ukaleqarteq, East Greenland.				
	Focal individual	[Hg] µg g ⁻¹ dw, ww		
	LIAK20EG09	1.030, 0.216		
	LIAK20EG12	1.350, 0.284		
	LIAK20EG14	1.038, 0.218		
	LIAK20EG17	1.334, 0.280		
	LIAK20EG19	1.216, 0.255		
	LIAK20EG24	1.075, 0.226		
	LIAK20EG25	1.746, 0.366		
	LIAK20EG28	1.527, 0.321		

316

318 **Discussion**

319 By employing advanced biologging approaches, we demonstrate that the T_b of a free-ranging seabird is 320 sensitive to variation in activity patterns and environmental conditions, and suggest thermoregulatory 321 challenges that may arise under climate change scenarios. In particular, results suggest that the evolving 322 nature of the Arctic cryosphere, especially sea ice extent and coverage, may not only alter foraging 323 conditions for little auks^{14,56,57}, but also affect thermoregulatory dynamics during foraging trips at sea. 324 There was no evidence that Hg contamination modifies the T_b of little auks, but our results regarding 325 potential toxicological effects on thermoregulatory capacity are limited by a small sample size. Thus, 326 further research is called for in this area. 327 Changes in T_b with activity were generally as expected. T_b declined while little auks were foraging in 328 cold waters. This decline may facilitate aerobic capacity and limit heat loss, but also reflects 329 thermoregulatory challenge^{34,58,59}. In addition, declines in T_b while foraging, and high variability in T_b , 330 may arise from ingestion of cold prey. Indeed, ingestion-linked declines in $T_{\rm b}$ have been used to identify feeding events⁶⁰, but our data lacked resolution to achieve this end. In another Alcid, Brünnich's 331

332 guillemots (*Uria lomvia*), T_b declined over sequential diving bouts³⁵. However, this decline occurred

during periods of resting on the water. During dives themselves, T_b increased and the peripheral temperature declined³⁵. This pattern contrasts to T_b declines during diving observed in some penguin species^{59,61,62}, and may reflect peripheral vasoconstriction and high wing beat frequency that generates heat³⁵. Our data could not separate changes in T_b during dives and inter-dive intervals. Thus, a similar dynamic could be occurring in little auks.

Also as expected, T_b was highest when little auks were flying although the estimated marginal mean was not significantly different than when birds were on sea ice, at the colony, or on the water.

Furthermore, T_b increased during flight before leveling off, reflecting heat generated by intense physical activity. Indeed, little auks have high wing loadings and flight costs (~7.24 × BMR³²), which is expected to generate substantial amounts of heat and elevate T_b .

343 T_b was also high when little auks arrived at the colony. T_b then declined before leveling off. This 344 decrease in $T_{\rm b}$ may reflect decreases following commuting flights between foraging sites and the colony, 345 with a decline in diet-induced thermogenesis (i.e. heat production associated with digestion, also referred 346 to as specific dynamic action⁶³), also potentially contributing. T_b of little auks at the colony was also 347 relatively invariable, which could suggest that the colony serves as a thermal refuge for little auks. During 348 the current study, we did not detect evidence that little auks were subject to thermal stress on land. The 349 upper critical temperature (UCT) of little auks is $\sim 20^{\circ}C^{64}$, a temperature not reached during the relatively 350 cool 2020 breeding season. However, an air temperature of 20 °C was exceeded twice during July 2021, 351 and captured birds were observed to rapidly exhibit sign of overheating (unpublished data). The operative 352 temperature of little auks may be further elevated by solar radiation off the rocks, especially given their 353 black plumage coloration⁹. Thus, with ongoing climate change, heat stress at the colony may eventually 354 pose a threat, especially in the context of stress from predation pressure, which can activate flight-fight 355 responses, or social interactions, which have been shown to elevate T_b in a range of animal species⁶⁵⁻⁶⁷. 356 Indeed, due to their Arctic habitat and amphibious live style, little auks have evolved a low thermal 357 conductance, which conserves heat and energy under cold conditions, but creates a challenge for heat 358 dissipation⁶⁴.

359 As predicted, little auks' T_b increased substantially on sea ice following declines during diving 360 episodes, before leveling off, suggesting that loss of sea ice as a resting substrate may elevate 361 thermoregulatory costs, negatively affecting energy balance. T_b was initially low when little auks first 362 emerged on the sea ice, which could reflect that birds exit the water when T_b falls below a threshold, 363 triggering birds to cease foraging activity³⁵. For the first 30 minutes, T_b on sea ice increased by an average 364 of ca. 0.02° C min⁻¹, while during foraging T_b dropped by an average of ca. -0.05° C min⁻¹ for the first 19 365 minutes. Thus, the rate of T_b loss while foraging was greater than the rate of gain on ice, but given that the 366 average ice bout lasted ca. 25 min and the average foraging bout ca. 9 min, time spent on ice would allow 367 for recovery of T_b . On the other hand, there was no significant relationship between time resting on the 368 water and T_b , and although positive, the ΔT_b of birds resting on water surface was not significantly 369 different than zero, suggesting little potential for recovery of T_b after foraging bouts. Furthermore, the 370 lowest variation in T_b occurred when birds were on sea ice, and the highest during diving behavior, 371 suggesting that resting on sea ice plays an important role in allowing birds to restore and maintain 372 normothermic temperatures after thermally challenging foraging bouts.

373 In the context of climate change, sea ice loss may have energetic and thermoregulatory implications, as 374 birds are forced to instead rest on the water, which has $\sim 25 \times \text{higher thermal conductivity than air}^{33,68}$. In 375 auks, compression of air space in feathers while diving reduces insulative properties, further facilitating 376 heat exchange with the environment⁶⁹. The costs of resting both in the air and on the water may be 377 reduced by warming temperatures⁷⁰. However, the thermal neutral zone, outside of which metabolic rate 378 must be elevated to maintain T_b, has been shown to be considerably narrower for seabirds resting on the 379 water relative to when resting in air, with metabolic rate also increasing more steeply below the lower 380 critical temperature (LCT) in some species⁷¹. For example, in Brünnich's guillemot, the LCT in air and water are 2 and 16°C, respectively^{71,72}, and the rate of increase in metabolic rate below the LCT is 381 382 substantially greater in water than in air (0.60 versus 0.17 W \times kg⁻¹ °C⁻¹)⁷¹. Similarly, in another small 383 diving seabird, the Cassin's auklet (*Ptychoramphus aleuticus*), the LCT in air and water were 16 and

384 21°C, respectively, and resting metabolic rate was 25% higher in water than in air⁷³. Although,

comparable data for the little auk is unavailable, these species are in the same family (Alcidae) as the little
auk, and share a similar ecology.

387 At the Ukalegarteg study site, even in an exceptionally warm year (2021) with very low sea ice 388 coverage (mean \pm SE: 0.04 \pm 0.02 %), sea surface temperature within the foraging range (mean \pm SE: 5.89 ± 0.38 °C)¹⁵ remained well below the LCTs in water reported for other Alcids (see above). Thus, 389 390 even in warming oceans, little auks resting on the water may need to elevate their metabolic rate relative 391 to when resting on ice, which, *in lieu* of compensatory changes, could elevate daily energy expenditure⁷⁴, 392 induce birds to return to the colony sooner, limiting time for energy acquisition, or force higher feeding 393 rates. In addition, we recently demonstrated that high SST is associated with elevated daily energy 394 expenditure in Ukaleqarteq little auks, a phenomenon associated with increased flight costs, as birds appeared to fly further to reach foraging grounds⁷⁵. Longer flights may be motivated by the higher quality 395 396 of lipid-rich copepods associated with colder ocean temperatures, but also by the opportunity to use sea ice as a resting substrate^{15,75}. Loss of sea ice as a substrate for resting, foraging, and movement has 397 398 demonstrated effects on energy balance in many sea ice-dependent species⁷⁶⁻⁷⁸. For instance, polar bears 399 (Ursus maritimus) and narwhal (Monodon monoceros) show 3-4 fold increases in locomotory costs in 400 association with sea ice declines⁷⁸.

401 T_b of little auks was also sensitive to environmental conditions. However, mean T_b was not related to 402 T_a. It is possible that a non-linear relationship could exist between T_a and T_b, which we could not capture 403 given our modeling approach. On the other hand, variation in T_b increased with T_a across behavioral 404 states, which could indicate that these cold-adapted bird face increasing challenges maintaining stable $T_{\rm b}$ 405 at higher temperatures, although, again, ambient temperature did not exceed the UCT of little auks in this 406 study. T_b also increased with RH across behavioral states. As RH rises, capacity for evaporative heat 407 dissipation decreases, resulting in increases in T_b or elevated thermoregulatory costs to maintain optimal 408 T_b^{79,80}. In contrast, T_b tended to increase with wind speed when birds were in flight and decreased with

409 wind speed when birds were diving. High winds have been associated with increased energetic costs of 410 flight for many avian species with a flapping flight mode⁸¹, whereas T_b while foraging in cold waters 411 could be further reduced by high winds via enhanced thermal conductance and heat loss. As for mean T_{b} , 412 wind speed and behavioral state interacted to predict between minute variation in T_b . Specifically, 413 between minute variation in T_b increased with wind speed when birds were flying and diving, while 414 varying little with wind speed in the other behavioral states. A possible explanation for these results is 415 that little auks have difficulty maintaining thermal stability when foraging in turbulent seas and flying in 416 challenging conditions induced by higher winds. In the context of climate change, results suggest that 417 alterations in RH and T_a may have implications for T_b regulation that are independent of behavioral state. 418 On the other hand, changes in wind patterns may have especially high costs during active periods, with 419 increases in storm events associated with climate change potentially elevating energy expenditure. As a 420 caveat, weather conditions measured at the colony were taken as a proxy of conditions experienced by 421 birds across behavioral states. Thus, given that little auks can forage up to ~ 100 km from the colony, 422 results regarding effects of weather conditions on T_b should be interpreted with caution. Unfortunately, 423 we did not have access to off-shore weather data on a fine temporal scale, and since birds were not GPS-424 tracked, we also had no way of knowing their precise locations during foraging trips. 425 We found no evidence for a relationship between Hg contamination and T_b. However, our effective 426 sample size for testing the relationship was low. In addition, little auks have lower Hg levels than many 427 seabirds species that feed at higher trophic levels. Thus, our results regarding the relationship between Hg 428 contamination and T_b are preliminary, and further research is needed in this area, perhaps utilizing a 429 different species with higher contamination levels. To our knowledge, there is currently no study 430 documenting a link between Hg concentrations and T_b in free-ranging animals. However, laboratory 431 studies have demonstrated hypothermic responses to Hg exposure, for instance, in the mouse (Mus 432 musculus)⁸². Hypothermic responses to contamination are hypothesized to reduce the toxicity of the chemical in the body³⁰, but could create challenges for survival in dynamic thermal environments. We 433

434 also observed weak, non-significant negative relationships between Hg levels and variation in T_b , which 435 is inconsistent with the hypothesis that contaminated bird have more difficulty maintaining stable T_{b} . 436 Finally, there was a non-linear, bimodal relationship between time of day and T_b. The highest values 437 occurred in late morning and at night and the lowest in early morning and late afternoon. The pattern in T_b 438 observed did not parallel daily cyclicity in T_a and RH, suggesting that it cannot be explained solely by 439 diel variation in weather patterns. However, despite the fact that little auks in our population breed under 440 24-hrs of daylight, the pattern may reflect a combination of the timing of maximum solar radiation 441 exposure, diel activity patterns, and/or underlying circadian rhythmicity in T_b independent of activity. A 442 past study on little auks found a regular rhythm of population attendance at the population level, perhaps 443 linked to variation in predation pressure, which provides some foundation for expecting that T_b could also 444 display cyclic variation. However, this same study found little circadian rhythm in activity of individual 445 little auks⁸³. In contrast to mean T_b, between minute variation in T_b did not correlate with time of day. 446 **Conclusions:** T_b of little auks fluctuated according to behavioral state and environmental conditions, 447 which likely aids animals in optimizing energy balance while performing essential behaviors in complex 448 environments. Although this plasticity is predicted to facilitate energy balance in the face of climate 449 change, the dynamic nature of T_b regulation also suggests that changing environmental conditions may 450 significantly alter energy balance, or the behavioral and energetic strategies that must be adopted to 451 achieve energetic homeostasis. Our data suggests that little auks use sea ice as a thermal refuge, resting on 452 this substrate to allow T_b to rebound after submersion in cold water and ingestion of cold prey items. If 453 sea ice decreases due to warming temperature, thermoregulatory costs are forecast to increase as birds are 454 instead required to rest on the water surface, which may force restructuring of foraging strategies. No 455 relationship was found between T_b of little auks and Hg concentrations, but our results are preliminary, 456 and we call for more research on the effects of chemical contaminations on $T_{\rm b}$, especially in interaction 457 with other environmental stressors.

458

459

460 **Data availability**:

- 461 The datasets generated during the current study are publicly available via the Zenodo community of
- 462 European Commission Funded Research (OpenAIRE) online data repository
- 463 (<u>http://doi.org/10.5281/zenodo.7220883</u>).
- 464

465 **References**

- ¹IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
- 467 Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V.,
- 468 Zhai, P., Pirani, A., Connors, S.L., Péan, C., *et al.* (eds.). Cambridge University Press (2021).
- ²Humphries, M. M. Bioenergetic Prediction of Climate Change Impacts on Northern Mammals.
- 470 *Integrative and Comparative Biology*, **44**, 152–162. https://doi.org/10.1093/icb/44.2.152 (2004).
- ³Helmuth, B. From cells to coastlines: How can we use physiology to forecast the impacts of climate
 change? J. Exp. Biol., 212, 753–760. https://doi.org/10.1242/jeb.023861 (2009).
- ⁴Dillon, M. E., Wang, G., & Huey, R. B. Global metabolic impacts of recent climate warming. *Nature*,
 474 467, 704–706. https://doi.org/10.1038/nature09407 (2010).
- ⁵Boyles, J. G., Seebacher, F., Smit, B., & McKechnie, A. E. Adaptive Thermoregulation in Endotherms
 May Alter Responses to Climate Change. *Int. Comp. Biol.*, **51**, 676–690.
- 477 https://doi.org/10.1093/icb/icr053 (2011).
- 478 ⁶Cook, T. R., Martin, R., Roberts, J., Häkkinen, H., Botha, P., *et al.* Parenting in a warming world:
- 479 Thermoregulatory responses to heat stress in an endangered seabird. *Conserv. Physiol.*, 8, coz109.
 480 https://doi.org/10.1093/conphys/coz109 (2020).
- ⁷Choy, E. S., O'Connor, R. S., Gilchrist, H. G., Hargreaves, A. L., Love, *et al.* Limited heat tolerance in a
 cold-adapted seabird: Implications of a warming Arctic. *J. Exp. Biol.*, **224**, jeb242168.
- 483 https://doi.org/10.1242/jeb.242168 (2021).

⁸O'Connor, R. S., Le Pogam, A., Young, K. G., Robitaille, F., Choy, *et al.* (2021). Limited heat tolerance
in an Arctic passerine: Thermoregulatory implications for cold-specialized birds in a rapidly

486 warming world. *Ecol. Evol.*, **11**, 1609–1619. https://doi.org/10.1002/ece3.7141 (2021).

- 487 ⁹O'Connor, R. S., Le Pogam, A., Young, K. G., Love, O. P., Cox, C. J., et al. Warming in the land of the
- 488 midnight sun: Breeding birds may suffer greater heat stress at high- versus low-Arctic sites. *Proc.*

489 *Roy. Soc. B*, **289**, 20220300. https://doi.org/10.1098/rspb.2022.0300 (2022).

⁴⁹⁰ ¹⁰Wolf, B. O., & Walsberg, G. E. Thermal Effects of Radiation and Wind on a Small Bird and

491 Implications for Microsite Selection. *Ecology*, **77**, 2228–2236. https://doi.org/10.2307/2265716
492 (1996).

¹¹Freeman, M. T., Czenze, Z. J., Schoeman, K., & McKechnie, A. E. Adaptive variation in the upper
limits of avian body temperature. *Proc. Natl. Acad. Sci.*, **119**, e2116645119.

495 https://doi.org/10.1073/pnas.2116645119 (2022).

- ¹²Kearney, M., Shine, R., & Porter, W. P. The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming. *Proc. Natl. Acad. Sci.*, **106**, 3835–3840.
- 498 https://doi.org/10.1073/pnas.0808913106 (2009).
- 499 ¹³Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., *et al.* The Arctic has
- 500 warmed nearly four times faster than the globe since 1979. *Commun. Earth Environ.*, **3**, 168.
- 501 https://doi.org/10.1038/s43247-022-00498-3 (2022).
- ¹⁴Amélineau, F., Grémillet, D., Harding, A. M. A., Walkusz, W., Choquet, R., *et al.* Arctic climate change
 and pollution impact little auk foraging and fitness across a decade. *Sci. Rep.*, 9, 1014.
- 504 https://doi.org/10.1038/s41598-018-38042-z (2019).
- ¹⁵Grunst, A. S., Grunst, M. L., Grémillet, D., Kato, A., Bustamante, P., *et al.* Mercury Contamination
- 506 Challenges the Behavioral Response of a Keystone Species to Arctic Climate Change. *Environ*.
- 507 *Sci. Technol.*, **57**, 2054-2063. https://doi.org/10.1021/acs.est.2c08893 (2023).
- ¹⁶AMAP, 2021. AMAP Mercury Assessment. Summary for Policy-makers. Arctic Monitoring and
- 509 Assessment Programme (AMAP), Tromsø, Norway. 16 pp. (2021).

¹⁷Jenssen, B. M. Endocrine-Disrupting Chemicals and Climate Change: A Worst-Case Combination for
 Arctic Marine Mammals and Seabirds? *Environ. Health Persp.*, **114**, 76–80.

512 https://doi.org/10.1289/ehp.8057 (2006).

- 513 ¹⁸Hooper, M. J., Ankley, G. T., Cristol, D. A., Maryoung, L. A., Noyes, P. D., *et al.* Interactions between
- 514 chemical and climate stressors: A role for mechanistic toxicology in assessing climate change

515 risks. *Environ. Toxicol. Chem.*, **32**, 32–48. https://doi.org/10.1002/etc.2043 (2013).

- ¹⁹Grunst, A. S., Grunst, M. L., & Fort, J. Contaminant-by-environment interactive effects on animal
- 517 behavior in the context of global change: Evidence from avian behavioral ecotoxicology. *Sci. Tot.*518 *Environ.*, **879**, 163169. https://doi.org/10.1016/j.scitotenv.2023.163169 (2023).
- ²⁰Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. The chemical cycle and bioaccumulation of
 mercury. *Ann. Rev. Ecol. System.*, **29**, 543–566. https://doi.org/10.1146/annurev.ecolsys.29.1.543
 (1998).
- ²¹Jonsson, S., Mastromonaco, M. N., Wang, F., Bravo, A. G., Cairns, W. R. L., *et al.* Arctic

523 methylmercury cycling. *Sci. Tot. Environ.*, **850**, 157445.

- 524 https://doi.org/10.1016/j.scitotenv.2022.157445 (2022).
- ²²Whitney, M. C., & Cristol, D. A. Impacts of Sublethal Mercury Exposure on Birds: A Detailed Review.
- In P. de Voogt (ed.), *Rev. Environ. Contam. Toxicol.*, 244, 113-163. Springer International
 Publishing. https://doi.org/10.1007/398 2017 4 (2017).
- ²³Mckinney, M. A., Pedro, S., Dietz, R., Sonne, C., Fisk, A. T., *et al.* A review of ecological impacts of
 global climate change on persistent organic pollutant and mercury pathways and exposures in
 arctic marine ecosystems. *Curr. Zool.*, **61**, 617–628. https://doi.org/10.1093/czoolo/61.4.617
- 531 (2015).
- ²⁴Cossa, D. Methylmercury manufacture. *Nat. Geosci.*, **6**, 810–811. https://doi.org/10.1038/ngeo1967
 (2013).

534	²⁵ Rice, K. M., Walker, E. M., Wu, M., Gillette, C., & Blough, E. R. Environmental Mercury and Its Toxic
535	Effects. J. Prevent. Med. Pub.Health, 47, 74-83. https://doi.org/10.3961/jpmph.2014.47.2.74
536	(2014).
537	²⁶ Wada, H., Cristol, D. A., McNabb, F. M. A., & Hopkins, W. A. Suppressed adrenocortical responses
538	and thyroid hormone levels in birds near a mercury-contaminated river. Environ. Sci. Technol.,
539	43 , 6031–6038. https://doi.org/10.1021/es803707f (2009).

- 540 ²⁷Calow, P. Physiological costs of combating chemical toxicants: Ecological implications. *Comp.*541 *Biochem. Physiol. C*, 100, 3–6. https://doi.org/10.1016/0742-8413(91)90110-F (1991).
- 542 ²⁸Gerson, A. R., Cristol, D. A., & Seewagen, C. L. Environmentally relevant methylmercury exposure

543 reduces the metabolic scope of a model songbird. *Environ. Pollut.*, **246**, 790–796.

544 https://doi.org/10.1016/j.envpol.2018.12.072 (2019).

²⁹Seewagen, C. L., Elowe, C. R., Gerson, A. R., Groom, D. J. E., Ma, Y., *et al.* Short-term mercury
exposure disrupts muscular and hepatic lipid metabolism in a migrant songbird. *Sci. Rep.*, **12**,

547 11470. https://doi.org/10.1038/s41598-022-15680-y (2022).

- ³⁰Leon, L. R. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress
 and toxicant exposure. *Toxicol. App. Pharmacol.*, 233, 146–161.
- 550 https://doi.org/10.1016/j.taap.2008.01.012 (2008).
- ³¹Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., *et al.* The toxicology of
 climate change: Environmental contaminants in a warming world. *Environ. Int.*, **35**, 971–986.
 https://doi.org/10.1016/j.envint.2009.02.006 (2009).
- ³²Ste-Marie, E., Grémillet, D., Fort, J., Patterson, A., Brisson-Curadeau, É., *et al.* Accelerating animal
 energetics: High dive costs in a small seabird disrupt the dynamic body acceleration–energy
- 556 expenditure relationship. J. Exp. Biol., 225, jeb243252. https://doi.org/10.1242/jeb.243252
- 557 (2022).

³³Grémillet, D., Kuntz, G., Woakes, A. J., Gilbert, C., Robin, J.-P., *et al.* Year-round recordings of

behavioural and physiological parameters reveal the survival strategy of a poorly insulated diving

- 560 endotherm during the Arctic winter. J. Exp. Biol., **208**, 4231–4241.
- 561 https://doi.org/10.1242/jeb.01884 (2005).
- ³⁴Favilla, A. B., & Costa, D. P. Thermoregulatory Strategies of Diving Air-Breathing Marine Vertebrates:
 A Review. *Front. Ecol. Evol.*, **8**, 555509. https://doi.org/10.3389/fevo.2020.555509 (2020).
- ³⁵Niizuma, Y., Gabrielsen, G. W., Sato, K., Watanuki, Y., & Naito, Y. Brünnich's guillemots (Uria
- 565 lomvia) maintain high temperature in the body core during dives. *Comp. Biochem.Physiol. A*,

566 **147**, 438–444. https://doi.org/10.1016/j.cbpa.2007.01.014 (2007).

- ³⁶Egevang, C., Boertmann, D., Mosbech, A., & Tamstorf, M. P. Estimating colony area and population
- size of little auks Alle alle at Northumberland Island using aerial images. *Polar Biol.*, 26, 8–13.
 https://doi.org/10.1007/s00300-002-0448-x (2003).
- ³⁷Wojczulanis-Jakubas, K., Jakubas, D., & Stempniewicz, L. Sex-specific parental care by incubating
 little auks (Alle alle). *Ornis Fenn.*, **86**, 140–148 (2009).
- ³⁸Montevecchi, W. A. & Stenhouse, I. J. (2020). Dovekie (*Alle alle*), version 1.0. In Birds of the World

573 (Billerman, S. M., ed.) Cornell Lab of Ornithology, Ithaca, NY,

- 574 USA. https://doi.org/10.2173/bow.doveki.01 (2020).
- ³⁹Fort, J., Robertson, G. J., Grémillet, D., Traisnel, G., & Bustamante, P. Spatial Ecotoxicology:
- 576 Migratory Arctic Seabirds Are Exposed to Mercury Contamination While Overwintering in the
- 577 Northwest Atlantic. *Environ. Sci. Technol.*, 48, 11560–11567. https://doi.org/10.1021/es504045g
 578 (2014).
- ⁴⁰Carravieri, A., Lorioux, S., Angelier, F., Chastel, O., Albert, C., *et al.* Carryover effects of winter
- 580 mercury contamination on summer concentrations and reproductive performance in little auks.
 581 *Environ. Pollut.*, **318**, 120774. https://doi.org/10.1016/j.envpol.2022.120774 (2023).
- ⁴¹Tattersall, G. J., Roussel, D., Voituron, Y., & Teulier, L. Novel energy-saving strategies to multiple
- 583 stressors in birds: The ultradian regulation of body temperature. *Proc. Roy. Soc. B*, 283,
- 584 20161551. https://doi.org/10.1098/rspb.2016.1551 (2016).

585	⁴² Gauchet, L., Jaeger, A., & Grémillet, D. Using facial infrared thermography to infer avian body
586	temperatures in the wild. Mar. Biol., 169, 57. https://doi.org/10.1007/s00227-022-04041-y
587	(2022).

- ⁴³Amélineau, F., Grémillet, D., Bonnet, D., Le Bot, T., & Fort, J. Where to Forage in the Absence of Sea
 Ice? Bathymetry As a Key Factor for an Arctic Seabird. *PLOS ONE*, **11**, e0157764.
- 590 https://doi.org/10.1371/journal.pone.0157764 (2016).
- ⁴⁴Luque, S.P. Diving Behaviour Analysis in R. *R News*, **7**, 8-14 (2007).
- ⁴⁵Sibly, R. M., Nott, H. M. R., & Fletcher, D. J. Splitting behaviour into bouts. *Anim. Behav.*, **39**, 63–69.
 https://doi.org/10.1016/S0003-3472(05)80726-2 (1990).
- ⁴⁶Mori, Y., Yoda, K., & Sato, K. Defining dive bouts using a sequential difference analysis. *Behaviour*,
 138, 1451–1466. https://doi.org/10.1163/156853901317367690 (2001).
- ⁴⁷Chastel, O., Fort, J., Ackerman, J. T., Albert, C., Angelier, F., *et al.* Mercury contamination and
 potential health risks to Arctic seabirds and shorebirds. *Sci. Tot. Environ.*, **844**, 156944.
- 598 https://doi.org/10.1016/j.scitotenv.2022.156944 (2022).
- ⁴⁸Bustamante, P., Lahaye, V., Durnez, C., Churlaud, C., & Caurant, F. Total and organic Hg
- 600 concentrations in cephalopods from the North Eastern Atlantic waters: Influence of geographical
- 601 origin and feeding ecology. *Sci.Tot. Environ.*, **368**, 585–596.
- 602 https://doi.org/10.1016/j.scitotenv.2006.01.038 (2006).
- ⁴⁹R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
 Computing, Vienna, Austria. https://www.R-project.org/. (2019).
- ⁵⁰Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of
- 606 semiparametric generalized linear models: Estimation of Semiparametric Generalized Linear
- 607 Models. J. Roy. Stat. Soc. B, **73**, 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).
- ⁵¹Wood, S. N. Generalized Additive Models: An Introduction with R (2nd edition). Chapman and
- 609 Hall/CRC. (2017).

- ⁵²Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team. Nlme: Linear and Nonlinear Mixed
- 611 Effects Models. R package version 3.1-143. https://CRAN.R-project.org/package=nlme. (2019).
- ⁵³Schielzeth, H. Simple means to improve the interpretability of regression coefficients: *Interpretation of*
- 613 regression coefficients. Meth. Ecol. Evo., 1, 103–113. https://doi.org/10.1111/j.2041-
- 614 210X.2010.00012.x (2010).
- ⁵⁴Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.3.01.
 https://CRAN.R-project.org/package=emmeans (2019).
- ⁵⁵Lüdecke, D. ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. *J. Open Sour.*

618 Soft., **3**, 772. https://doi.org/10.21105/joss.00772 (2018).

- 619 ⁵⁶Kwasniewski, S., Gluchowska, M., Jakubas, D., Wojczulanis-Jakubas, K., Walkusz, W., et al. The
- 620 impact of different hydrographic conditions and zooplankton communities on provisioning Little
- 621 Auks along the West coast of Spitsbergen. *Prog. Oceanog.*, **87**, 72–82.
- 622 https://doi.org/10.1016/j.pocean.2010.06.004 (2010).
- 623 ⁵⁷Grémillet, D., Welcker, J., Karnovsky, N., Walkusz, W., Hall, M., *et al.* Little auks buffer the impact of
- 624 current Arctic climate change. *Marine Ecology Progress Series*, **454**, 197–206.
- 625 https://doi.org/10.3354/meps09590 (2012).
- ⁵⁸Kooyman, G. L., & Ponganis, P. J. The physiological basis of diving depth: Birds and Mammals.
- 627 *Annual Review of Physiology*, **60**, 19–32. https://doi.org/10.1146/annurev.physiol.60.1.19 (1998).
- ⁵⁹Williams, C. L., & Ponganis, P. J. Diving physiology of marine mammals and birds: The development
- 629 of biologging techniques. *Philos. Trans. Roy. Soc. B*, **376**, 20200211.
- 630 https://doi.org/10.1098/rstb.2020.0211 (2021).
- 631 ⁶⁰Wilson, R. P., Pütz, K., Grémillet, D., Culik, B. M., Kierspel, M., et al. Reliability of stomach
- 632 temperature changes in determining feeding characteristics of seabirds. J. Exp. Biol., 198, 1115–
- 633 1135. https://doi.org/10.1242/jeb.198.5.1115 (1995).

- 634 ⁶¹Bevan, R. M., Butler, P. J., Woakes, A. J., & Boyd, I. L. The energetics of Gentoo Penguins, *Pygoscelis*
- 635 *papua*, during the breeding season: *Penguin energy expenditure*. *Funct. Ecol.*, **16**, 175–190.
 636 https://doi.org/10.1046/j.1365-2435.2002.00622.x (2002).
- ⁶²Green, J. A., Butler, P. J., Woakes, A. J., & Boyd, I. L. (2003). Energetics of diving in macaroni
 penguins. *J. Exp. Biol.*, **206**, 43–57. https://doi.org/10.1242/jeb.00059 (2003).
- 639 ⁶³Dawson, W. R., & O'Connor, T. P. Energetic Features of Avian Thermoregulatory Responses. In C.
- 640 Carey (ed.), *Avian Energetics and Nutritional Ecology*. 85–124. Springer US.
- 641 https://doi.org/10.1007/978-1-4613-0425-8_4 (1996).
- 642 ⁶⁴Gabrielsen, G. W., Taylor, J. R. E., Konarzewski, M., & Mehlum, F. Field and Laboratory Metabolism

643 and Thermoregulation in Dovekies (*Alle alle*). *The Auk*, **108**, 71-78

- 644 http://doi.org.10.1093/auk/108.1.71 (1991).
- ⁶⁵Carere, C., Welink, D., Drent, P. J., Koolhaas, J. M., & Groothuis, T. G. G. Effect of social defeat in a
 territorial bird (Parus major) selected for different coping styles. *Physiol. Behav.*, **73**, 427–433.
 https://doi.org/10.1016/S0031-9384(01)00492-9 (2001).
- 648 ⁶⁶Dezecache, G., Zuberbühler, K., Davila-Ross, M., & Dahl, C. D. Skin temperature changes in wild
- 649 chimpanzees upon hearing vocalizations of conspecifics. *Roy. Soc. Open*, **4**, 160816.
- 650 https://doi.org/10.1098/rsos.160816 (2017).
- 651 ⁶⁷Knoch, S., Whiteside, M. A., Madden, J. R., Rose, P. E., & Fawcett, T. W. Hot-headed peckers:
- Thermographic changes during aggression among juvenile pheasants (*Phasianus colchicus*).
- 653 *Philos. Trans. Roy. Soc. B*, **377**, 20200442. https://doi.org/10.1098/rstb.2020.0442 (2022).
- ⁶⁸Enstipp, M. R., Grémillet, D., & Lorentsen, S.-H. Energetic costs of diving and thermal status in
- European shags (*Phalacrocorax aristotelis*). J. Exp. Biol., **208**, 3451–3461.
- 656 https://doi.org/10.1242/jeb.01791 (2005).
- ⁶⁹Oswald, S. A., & Arnold, J. M. Direct impacts of climatic warming on heat stress in endothermic
- 658 species: Seabirds as bioindicators of changing thermoregulatory constraints. Int. Zool., 7, 121–
- 659 136. https://doi.org/10.1111/j.1749-4877.2012.00287.x (2012).

- ⁷⁰Tremblay, F., Whelan, S., Choy, E. S., Hatch, S. A., & Elliott, K. H. Resting costs too: The relative
- importance of active and resting energy expenditure in a sub-arctic seabird. J. Exp. Biol., 225,
 jeb243548. https://doi.org/10.1242/jeb.243548 (2022).
- ⁷¹Croll, D. A., & McLaren, E. Diving metabolism and thermoregulation in common and thick-billed
 murres. J. Comp. Physiol. B, 163. https://doi.org/10.1007/BF00263602 (1993).
- ⁷²Gabrielsen, G. W., Mehlum, F., & Karlsen, H. E. Thermoregulation in four species of arctic seabirds. *J. Comp. Physiol. B*, **157**, 703–708. https://doi.org/10.1007/BF00691000 (1988).
- ⁷³Richman, S. E., & Lovvorn, J. R. Effects of Air and Water Temperatures on Resting Metabolism of
- Auklets and Other Diving Birds. *Physiol. Biochem. Zool.*, **84**, 316–332.
- 669 https://doi.org/10.1086/660008 (2011).
- ⁶⁷⁰ ⁷⁴Lovvorn, J. R., Grebmeier, J. M., Cooper, L. W., Bump, J. K., & Richman, S. E. Modeling marine
- protected areas for threatened eiders in a climatically changing Bering Sea. *Ecol. Appl.*, **19**, 1596–
 1613. https://doi.org/10.1890/08-1193.1 (2009).
- ⁷⁵Grunst, M. L., Grunst, A. S., Grémillet, D., Kato, A., Bustamante, P., *et al.* A keystone avian predator
 faces elevated energy expenditure in a warming Arctic. *Ecology*, e4034,
- 675 https://doi.org/10.1002/ecy.4034 (2023).
- ⁷⁶Post, E., Bhatt, U. S., Bitz, C. M., Brodie, J. F., Fulton, T. L., *et al.* Ecological Consequences of Sea-Ice
 Decline. *Science*, **341**, 519–524. https://doi.org/10.1126/science.1235225 (2013).
- ⁷⁷Laidre, K. L., Atkinson, S., Regehr, E. V., Stern, H. L., Born, E. W., *et al.* Interrelated ecological
 impacts of climate change on an apex predator. *Ecol. Appl.*, **30**. https://doi.org/10.1002/eap.2071
 (2020).
- ⁷⁸Pagano, A. M., & Williams, T. M. Physiological consequences of Arctic sea ice loss on large marine
 carnivores: Unique responses by polar bears and narwhals. *J. Exp. Biol.*, **224**, jeb228049.
- 683 https://doi.org/10.1242/jeb.228049 (2021).
- ⁷⁹Dawson, W. R. (1982). Evaporative losses of water by birds. *Comp. Biochem. Physiol. A*, **71**, 495–509.
- 685 https://doi.org/10.1016/0300-9629(82)90198-0 (1982).

- 686 ⁸⁰Gerson, A. R., Smith, E. K., Smit, B., McKechnie, A. E., & Wolf, B. O. The Impact of Humidity on
- Evaporative Cooling in Small Desert Birds Exposed to High Air Temperatures. *Physiol. Biochem. Zool.*, 87, 782–795. https://doi.org/10.1086/678956 (2014).
- ⁸¹Elliott, K. H., Chivers, L. S., Bessey, L., Gaston, A. J., Hatch, S. A, *et al.* Windscapes shape seabird
- 690 instantaneous energy costs but adult behavior buffers impact on offspring. *Mov. Ecol.*, 2, 17.
 691 https://doi.org/10.1186/s40462-014-0017-2 (2014).
- ⁸²Gordon, C. J., Fogelson, L., & Highfill, J. W. Hypothermia and hypometabolism: Sensitive indices of
 whole-body toxicity following exposure to metallic salts in the mouse. *J. Toxicol. Environ.*

694 *Health*, **29**, 185–200. https://doi.org/10.1080/15287399009531382 (1990).

- ⁸³Wojczulanis-Jakubas, K., Wąż, P., & Jakubas, D. Little auks under the midnight sun: Diel activity
- 696 rhythm of a small diving seabird during the Arctic summer. *Pol. Res.*, **39**, 3309.
- 697 https://doi.org/10.33265/polar.v39.3309 (2020).
- 698

699 Acknowledgements: We thank Valère Marsaudon for his help with data collection in East Greenland,

and members of Nanu travel for logistical support. We are grateful to Clément Bertin for aid in extracting

sea ice coverage data. M.L.G. and A.S.G. are supported by the European Union's Horizon 2020

programme (Marie Skłodowska-Curie grants 101025549, 896866). We acknowledge long-term support

- from the French Polar Institute (IPEV), through the ADACLIM program (388) administered by J.F. and
- 704 D.G. This work contributes to research projects ARCTIC-STRESSORS and ILETOP funded by the
- French National Research Agency (ANR-20-CE34-0006, ANR-16-CE34-0005), the international
- initiative ARCTOX (arctox.cnrs.fr) and the Excellence Chair ECOMM funded by the Region Nouvelle

707 708 Aquitaine.

Authors' contributions: M.L.G., A.S.G., D.G. and J.F. conceived the study and obtained funding for
fieldwork and laboratory analyses. M.L.G., A.S.G, S.G. and J.F. collected the data. M.L.G., A.S.G. and

- A.K. analysed the data. M.L.G. wrote the first draft of the manuscript. All authors read and approved the
- 712 manuscript.
- 713
- 714 **Conflict of Interest**: The authors have no conflicts of interest to declare.