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∗IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Digital Systems, F-59000 Lille, France
{aymeric.koenig, benjamin.allaert, emmanuel.renaux}@imt-nord-europe.fr

Abstract—Design models are essential for many tasks in soft-
ware engineering, such as consistency checking, code generation
and design-to-code tracing. Unfortunately, many UML class
diagrams are stored as images, which limits their use and
evolution. It is therefore important to identify the semantic
elements of design models from images. Although a number of
studies focus on the recognition of a UML class diagram, very few
address semantic analysis, which is a relatively complex task. In
this paper, we propose a framework for training a learning model
to categorise and locate semantic elements in class diagram from
an image. A large set of annotated design models is proposed and
made available online. Qualitative and quantitative evaluations
have been carried out on two subsets of data, giving accuracy
scores of 92.59% and 94.11% respectively. Evaluations highlight
the ability of the proposed learning model to generalise to a wide
range of examples.

Index Terms—Deep learning, Computer vision, object recog-
nition, UML design, class diagram

I. INTRODUCTION

The UML class diagram design process is a way of model-
ing and conceptualizing a complex idea. However, the concep-
tualization process is often carried out by several collaborators,
using a variety of supports, e.g., discussion, drawing or post-
it notes. Although this facilitates exchanges, a transcript step
in UML modeling software is often necessary to preserve
a standardized written track that can be interpreted by all.
This is at the expense of a significant investment of time. In
many cases, UML class models and their evolutions are rarely
retrieved during the life of a project.

With the rise of neural networks, and their ability to
generalize complex problems, it is conceivable to propose
systems for interpreting and modeling UML class diagrams
from a non-standardized source. Many recent studies focus
on classifying UML diagrams according to their type (i.e.,
class, sequence, activity, etc), without focusing in depth on
UML concepts [2]–[4]. However, to correctly interpret a UML
class diagram, it is important to perform several tasks: 1)
component detection, e.g., classes and type of relationships; 2)
class content extraction, e.g., name, attributes and operations;
3) relationships between classes. To train a learning model to
perform these tasks, annotated datasets are required. However,
the great variability of perspectives of class diagram (i.e.,
conceptual, specification or implementation) and graphical
format, depending on the tools used or the nature of the
diagrams, e.g., manuscript, pdf or post-it, tends to increase
the complexity of dataset creation and the annotation task.

Fig. 1. Overview of the proposed framework. A) A web scraping step is used
to retrieve UML class diagrams from a large number of Git repositories [1].
B) Each class diagram is annotated using an annotation tool developed for
this study. C) A neural network is trained on the annotated data to identify the
various components that make up a UML class diagram passed in parameter.
D) All the classes and relationships are categorised and located on the diagram.

In this paper, we focus on the task of detecting and
recognizing classes and type of relationships in a UML class
diagram. Our proposed framework is illustrated in Fig. 1, and
is based on two main contributions:

• A new annotated learning dataset based on a public
data collection [1] are proposed to train a learning-based
model to recognize classes and the six relationship types:
Association, Inheritance, Aggregation, Composition, De-
pendency and Realization in a class diagram in image
format. A scraping approach, combined with a pre-trained
learning model proposed by Ho-Quang et al. [5], is
used to extract only UML class diagrams from a large
collection of diagrams.
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• A new learning-based approach is proposed, for inter-
preting various UML diagrams, i.e., designed by several
modeling tools, in image format. The system is evaluated
according to several metrics as the intersection over union
(IoU) and the score-F1 to verify its accuracy.

This paper is structured as follows: Section II presents
a litterature on the various existing datasets for analyzing
UML class diagrams, and on the learning-based approach
used to interpret these diagrams. The proposed framework
for designing the dataset, and to create the learning model
is explained in Section III. Section IV contains the various
evaluations carried out to validate the effectiveness of the
proposed learning model. A discussion and a conclusion is
given in Section V.

II. RELATED WORK

Interpreting a UML class diagram is a complex task that re-
quires consideration of several elements, such as its graphical
components, textual content and relational structure. In the
literature, two points are generally addressed: 1) intelligent
system design relying on feature extraction techniques to
analyze the content of a UML diagram; 2) dataset design to
train and evaluate these systems.

A. Categorise and localize semantic elements

Among semantic analysis methods focusing on detecting
the elements that compose a UML diagram, there are few
handcrafted vision-based techniques. Mennesson et al. [6] use
Hough transform method with an SVM classifier to encode
the geometry of elements such as classes and relations. Other
approaches focus on textual content analysis. Perianez-Pascual
et al. [7] outlines different strategies that can be applied to
improve the recognition quality of OCR engines for DSL
expressions. In their study, the authors agree that OCR can
be coupled with visual semantic analysis to facilitate the
interpretation of UML diagrams. Torres et al. [8] offer a
uniform approach that is independent of the particularities of
template notation, based on OCR techniques. For this pur-
pose, they select graphical models from various domains that
typically combine textual and graphical elements. Based on
image descriptors and OCR methods, Chen et al. [4] propose a
system for detecting the various elements within a UML class
diagram, while interpreting the content of classes. Finally,
several works focus on the hierarchy of structural elements
within the class diagram. Babur et al. [9] propose representing
metamodels in a vector space model, and applying hierarchical
clustering techniques to compare and visualize them as a tree
structure. Strüber el al. [10] transpose class diagrams into
graphical form to group them into clusters of interest, thus
facilitating their interpretation. Although these methods have
proved effective on UML class diagrams of low complexity,
where the structure follows a certain graphical standard and
relationships do not cross, they do not generalize to more
complex data.

Recently, a few works have used deep learning approaches
to analyze class diagrams thanks to their ability to generalize
more easily. Bnouni et al. [3] combine two types of CNN

architectures: Mobilenet and VGG16 and demonstrates that
the synergy between them improves the performance of the
learning model. Wang et al. [2] propose a method based
on a convolutional neural network (CNN), combined with a
graph in the attention module to aggregate features, so that
the network can capture more important features. The authors
justify the poor performance of their system by the lack of
training data. To overcome the lack of training data, Gosala et
al. [11] uses transfer learning and artificial data augmentation
techniques. Although these recent techniques have been shown
to be effective for class diagram classification, it remains to
be proven for more complex tasks such as semantic analysis
of a diagram. To our knowledge, there is currently no neural
network-based method for efficiently performing semantic
analysis on a class diagram. This is partly due to the lack
of training data and the complexity of the task.

B. Datasets

Several datasets are available for training and evaluating
systems to interpret UML diagrams. As observed in Table I,
the majority of existing datasets are designed to train learning
models to recognize diagram type without focusing on diagram
content. Hebig et al. [1] currently offer the largest database
with a total of 93,607 UML diagrams. Although the dataset is
public, no annotation is provided on the diagrams. Moreover,
the dataset corresponds to a compilation of git repositories,
where it is necessary to apply scraping and filtering operations
in order to retrieve the desired data. According to the various
users of this dataset, around 32,000 diagrams correspond
to class diagrams, although the exact number is not known
because this information is not included in the metadata. It
should be noted that since the dataset was published, many
repositories are no longer maintained, which means that access
to all diagrams is not guaranteed. Ho-Quang et al. [5] and
Shcherban et al. [12] both propose different datasets containing
UML diagrams, where the aim is to be able to identify
the type of diagram from several categories. In addition to
providing no further annotation, only a small subset of the
data corresponds to UML class diagrams, which is difficult
to exploit for training neural networks for semantic analysis.
Karasneh et al. [13] use a dataset containing rich annotations
on the elements, content and structure of UML class diagrams.
However, the dataset is very small, and the data is not made
available. Although there are several datasets available for

TABLE I
LIST OF DATASETS PROPOSED IN THE LITERATURE FOR TRAINING AND

EVALUATING SYSTEMS TO INTERPRET UML DIAGRAMS.

[1] [12] [5] [13] Proposed

Number of diagrams 93,607 1,300 3,231 N/A 14,500
Class diagram ∼ 32,000 700 650 10 14,500

Type ✗ ✓ ✓ ✗ ✓
Structure ✗ ✗ ✗ ✓ ✗
Elements ✗ ✗ ✗ ✓ ✓
Content ✗ ✗ ✗ ✓ ✗

Availability ✓ ✓ ✓ ✗ ✓
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training systems to interpret the content of a UML class
diagram, only a small amount of data is actually usable at
present for semantic analysis task.

III. FRAMEWORK

The NEURAL-UML (iNtelligent rEcognition of strUctuRAl
eLements in UML class diagram) framework proposes a strat-
egy for training and evaluating systems for interpreting UML
diagrams using deep neural networks. One of the major con-
tributions of this paper is the implementation of a strategy for
intelligently collecting and clustering relevant UML diagrams
from the various repositories provided in the Lindholmen
dataset [1]. Then, the collected data are annotated using a
specially developed annotation tool to design a dataset that
can be easily exploited by the scientific community. The code
implementation for reproducing the dataset and performing a
semantic analysis of a class diagram is available online. 1 The
metadata from sets A and B in Table II, used to train and
evaluate the learning model, are grouped in two respective
folders. For set A, the metadata contains the url links for each
image, and the coordinates and labels of the various elements
contained in the diagrams. For Set B, the metadata is in the
same format, with the exception of the url links. In this folder,
simply download and move the dataset given by Shcherban et
al. [12] into the folder. For both sets, code is provided to
load the metadata and display annotations on the images. All
the instructions and commands required to run the code and
reproduce the experiments are included in the repository.

A. Collecting UML diagrams

To design a comprehensive dataset adapted for semantic
analysis, a restructuring of the Lindholmen dataset [1] was
proposed. Firstly, a scraping method was applied to the 93,607
web repositories in order to harvest only those files corre-
sponding to UML diagrams. Several links no longer existing,
implied a significant reduction of the initial data number. In
addition, most of the UML diagrams are not class diagrams. In
order to retain only the class diagrams, the pre-trained learning
model proposed by Ho-Quang et al. [5] was applied. The result
is a subset of 13,800 unannotated class diagrams (Set A). Some
elements, such as classes or associations, are represented more
than others in class diagrams. Annotating all class diagrams
leads to a significant imbalance in annotations. This class
imbalance can lead to problems of over-fitting. If the model
encounters the same class too often, it will favor that class
when learning to maximize its overall performance. However,
other poorly represented classes will be neglected and will not
be learned or detected by the model. For this reason, only a
subset was annotated to overcome this problem. To assess the
ability of the proposed approach to generalize well to class
diagrams, a second dataset was studied. The second dataset
corresponds to the subset of 700 class diagrams proposed by
Ho-Quang et al. [5], on which a manual annotation has been
performed (set B). This choice is related to the fact that this
dataset is easily accessible and the quality of provided data is
good.

1Code repository: https://gitlab.univ-lille.fr/emmanuel.renaux/neural-uml

TABLE II
NUMBER OF MANUAL ANNOTATIONS PERFORMED ON THE TWO CLASS

DIAGRAM DATA SUBSETS.

Class Asso. Inher. Aggre. Compos. Depend. Realiz.

Set A 1,776 1,777 1,230 1,608 1,433 1,629 1,172
Set B 5,968 1,551 2,839 552 523 353 211

Total 7,744 3,328 4,069 2,160 1,956 1,982 1,383

The dataset used in the proposed framework accounts for
a total of 14,500 class diagrams. Of these, seven elements
are annotated: classes, association, inheritance, aggregation,
composition, dependency and realization. The number of an-
notations obtained for sets A and B is given in Table II. Set
A contains 13,800 class diagrams out of the 32,000 existing
diagrams in the Lindholmen dataset [1], after filtering out
corrupted url links and unusable diagrams. Only 1,318 were
annotated to obtain the annotations presented in Table 2.
Indeed, as the annotation task is relatively long (between 10
to 60 seconds depending on the complexity of the diagram),
and the number of annotated data sufficiently exhaustive and
balanced, annotating all the diagrams doesn’t seem essential.
However, further enrichment of the dataset with other inter-
esting annotations, such as notes or interfaces, is not excluded
in the future. More complex annotations, such as structural
relationships between classes, or textual content, can also
enrich existing metadata. Set B contains 700 class diagrams,
corresponding to all the data contained in the dataset provided
by Shcherban et al. [12]. All annotations were made by hand,
by three annotators. Despite having only one annotator per
diagram to guarantee a large number of annotations, a visual
check was carried out by at least one other annotator.

B. Annotation tool
To annotate the data, a tool was designed specifically for

this purpose. The tool enables all class diagrams to be browsed
and visualized in image format, as illustrated in Fig. 2. The
tool consists of two parts: a viewer and a manager. In order
to guarantee the accuracy of annotations and adapt to the
highly variable size of diagrams, the viewer allows users to
scroll through the image using directional arrows. For each
image, the annotator can annotate the elements contained in
the diagram, from among the various possible relationships.
Right-click to assign a relationship to the cursor position in
the image. Left-click to delimit the class bounding box. Once
an image has been annotated, it is possible to move on to other
images, or go back to check or modify annotations. The tool
saves each modification in real time, enabling the annotation
process to be resumed at any time. As for annotations, every
coordinate is saved, along with the associated label in csv
format for easy data import and export. The tool is multi-
platform: Windows, Unix and Mac.

C. Learning data processing
Several strategies are used to make it easier to learn the

model, and thus improving the accuracy of classification and
localization of elements within a class diagram.

https://gitlab.univ-lille.fr/emmanuel.renaux/neural-uml
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Fig. 2. Annotation tool for class diagrams in two parts. Left, the viewer for
browsing the image and viewing annotations. Right, the manager for selecting
the type of relationship to assign to the mouse click, and for swapping images.

a) Dealing with the variable dimension of the diagram:
Learning-based approaches, such as neural networks, generally
require the images used as model inputs to be of the same
dimension, to guarantee consistency in the dimension of the
feature vectors. In this case, a normalization step is applied to
resize the images. In some works, as proposed by Gosala et
al. [11], the image sizing parameter plays a significant role in
model performance. This step is empirical and computationally
time-consuming. In addition, image resizing has consequences
for data quality, where a compression effect tends to degrade
important information such as text, or small details. In the
proposed framework, YOLOv8 [14] is used for its ability
to adapt to image size, but also for its accuracy and speed
of execution. YOLOv8 learning architecture overcomes the
normalization step by including multi-scale detection in the
convolution layers. The architecture is well suited to the
analysis of UML class diagrams, as the dimensions of classes
and relationships vary greatly from one modeling tool to
another. To perform this detection, YOLO uses three different
scales to adapt to different object sizes, using 32, 16 and 8
divisors. Thus, for a 416 x 416 image, YOLO performs a first
detection on a 13 x 13 image, a second detection on a 26 x 26
image and a third detection on a 52 x 52 image, as illustrated
in Fig. 3.

b) Dealing with unbalanced data: As mentioned in
Section III-A, the elements contained in the UML diagrams
of set A used to train the model, are not all annotated in
order to avoid a major imbalance in the categories. It is
therefore not possible to send complete images to YOLO,
where some elements are not annotated. This would prevent
the learning model from converging. Indeed, in the case where
some diagrams are partially annotated while others are fully
annotated, an element is considered to belong to class A on
one diagram and to class B on another. In this context, the
model is unable to interpret the exact class of this element
if it is classified differently from one image to another. This
is equivalent to an element being incorrectly annotated. To
overcome this problem, each class diagram is split into a
subset of patches located on each annotated element. For
example, if the diagram contains two classes and a navigable
relationship between these classes, then three patches are

Fig. 3. How YOLO works to analyse images on several levels of scale, and
thus identify objects of varying size in the images.

created: two patches corresponding to the classes and one
patch corresponding to the navigable relationship. To create
these patches, an enclosing window is created around the
annotated element.

c) Avoid handling non-essential data: Information con-
tained in diagrams, such as text, manual annotations or
elements that are not considered to be learnable, can be
considered as a reject class for the learning model. In this
study, metadata do not contain elements such as interfaces
or notes. Consequently, when the model is trained, these
elements are considered as belonging to the ”background”
class, which contains all the elements to be excluded during
the inference stage. The same applies to text outside classes.
On the other hand, text within a class can have an impact on
the recognition rate of a class. This is because, during learning,
the model focuses on the overall structure of a class, and
often on the structuring elements (i.e., border, corner, number
of vertical and horizontal strokes). If the name of a class
always has a particular feature, e.g., being bold or capitalized,
the model will interpret this information as important in its
decision-making. On the other hand, if the structure of the
classes is similar from one diagram to another, but the textual
content always varies, then the model will consider that this
information is not redundant, and therefore not essential. This
is why, if you want to deal with information other than
element structure, it’s essential to take this need into account
when designing the apprentice model. In the current study, the
YOLO architecture is not suited to interpreting textual content,
and tends to ignore it in the learning phase.

D. Implementation details

The architecture of object detectors is divided into three
parts: the backbone, the neck and the head, as illustrated in
Fig. 4. The backbone is crucial for extracting valuable features
from input images, typically using a convolutional neural
network (CNN) trained on large-scale image classification
tasks. In this study, the architecture is pre-trained on COCO
[15]. The backbone captures hierarchical features at different
scales. Lower-level features (such as edges and textures) are
extracted in previous layers, and higher-level features (such as
object parts and semantic information) are removed in deeper
layers. The neck is an intermediate component that connects
the spine to the head. The YOLO model works through these
different steps:
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Fig. 4. Overview of the learning method. A) The class diagrams of set A are divided into small patches to obtain clusters of images for each type of structural
element. B) The data is injected into a YOLOv8 architecture in order to train the model to recognise these elements in a class diagram. C) Once trained, the
learning model takes as input a class diagram of any dimension and predicts both the category of the elements and their localization.

Residual blocks: The first step starts by dividing the original
image of the class diagram (A) into NxN grid cells of equal
shape, where N in our case is 4 shown on the image on the
right. Each cell in the grid is responsible for localizing and
predicting the class of the object that it covers, along with the
probability/confidence value.

Bounding box regression: The next step is to determine the
bounding boxes which correspond to rectangles highlighting
all the objects in the image. We can have as many bounding
boxes as there are objects within a given image. YOLO
determines the attributes of these bounding boxes using a
single regression module in the following format, where Y
is the final vector representation for each bounding box. Y =
[pc, bx, by, bh, bw, c1, c2, ..., c7] where pc corresponds to
the probability score of the grid containing an object. bx, by
are the x and y coordinates of the center of the bounding box
with respect to the enveloping grid cell. bh, bw correspond to
the height and the width of the bounding box with respect to
the enveloping grid cell. c1, c2, ..., c7 correspond to the seven
element classes selected in this study.

Metrics: Most of the time, a single object in an image can
have multiple grid box candidates for prediction, even though
not all of them are relevant. The goal of the IOU (a value
between 0 and 1) is to discard such grid boxes to only keep
those that are relevant. YOLO computes the IOU of each grid
cell which is the Intersection area divided by the Union Area.
Finally, it only takes into account predictions whose IOU is
greater than a fixed threshold.

In this article, the latest version of YOLO is used. As
a state-of-the-art model, YOLOv8 builds on the success of

previous versions, introducing new features and enhancements
to increase performance, flexibility and efficiency. YOLOv8
supports a full range of visionary AI tasks, including detection,
segmentation, pose estimation, tracking and classification.
YOLO is based on the idea of segmenting an image into
smaller images. The image is split into a square grid of
dimensions S × S. The cell in which the center of an object
resides, is the cell responsible for detecting that object. Each
cell will predict B bounding boxes and a confidence score for
each box. The default for this architecture is for the model
to predict two bounding boxes. The classification score will
be from 0.0 to 1.0, with 0.0 being the lowest confidence
level and 1.0 being the highest; if no object exists in that
cell, the confidence scores should be 0.0, and if the model
is completely certain of its prediction, the score should be
1.0. These confidence levels capture the model’s certainty
that there exists an object in that cell and that the bounding
box is accurate. Each of these bounding boxes is made up
of 5 numbers: the x position, the y position, the width, the
height, and the confidence. The coordinates (x, y) represent
the location of the center of the predicted bounding box, and
the width and height are fractions relative to the entire image
size. The confidence represents the IOU between the predicted
bounding box and the actual bounding box, referred to as the
ground truth box. The IOU stands for Intersection Over Union
and is the area of the intersection of the predicted and ground
truth boxes divided by the area of the union of the same
predicted and ground truth boxes. In addition to outputting
bounding boxes and confidence scores, each cell predicts the
class of the object. This class prediction is represented by a
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one-hot vector length C, the number of classes in the dataset.
Thus, each prediction from a grid cell will be of shape C +
B x 5, where C is the number of classes and B is the number
of predicted bounding boxes. B is multiplied by 5 because it
includes (x, y, w, h, confidence) for each box. Because there
are S × S grid cells in each image, the overall prediction of
the model is a tensor of shape S × S × (C + B x 5).

Compared with older versions of YOLO, YOLOv8 is an
anchor-free model. This means it directly predicts the centre
of an object instead of the offset from a known anchor box.
Anchor boxes are a predefined set of boxes with specific
heights and widths, used to detect classes of objects with the
desired scale and aspect ratio. They are chosen according to
the size of the objects in the training dataset and are arranged
in a mosaic over the image during detection. The network
generates probabilities and attributes such as background,
aperture angle and offsets for each tiled box, which are used
to adjust the anchor boxes. Multiple anchor boxes can be
defined for different object sizes, serving as fixed starting
points for estimating bounding boxes. The anchor-free analysis
of YOLOv8 tends to directly predict the centre of an object
instead of the offset from a known anchor box. The advantage
of anchor-free detection is that it is more flexible and efficient,
as it does not require the manual specification of anchor boxes,
which can be difficult to choose and can lead to suboptimal
results in previous YOLO models such as v1 and v2.

Another interesting feature for our case study has been intro-
duced since version 7 of the model. YOLOv7 also introduces
a new multi-scale training strategy, which involves training
the model on images at several scales and then combining
the predictions. In addition, YOLOv7 incorporates a new
technique called ’Focal Loss’, designed to address the problem
of class imbalance that often arises in object detection tasks.
Focal Loss gives greater weight to data that is more complex
to encode for the model, and reduces the influence of data that
is less complex to interpret or more redundant. This involves
influencing the learning of the model by forcing it to focus on
certain details at the expense of others. This technique helps
the model to converge when there is a strong imbalance of
classes, or when learning is conditioned by expert knowledge.

IV. EXPERIMENTATION

In this section, we present an evaluation for the semantic
analysis of a class diagram using the proposed NEURAL-
UML framework. Using the set A and B as input to a
neural network, we perform an evaluation of the model predict
element types for seven cases, including the classes and the
six relationship types: Association, Inheritance, Aggregation,
Composition, Dependency and Realization. That is, for a
given class diagram, the aim is to classify and locate all the
structuring elements contained in the image.

A. Evaluation protocol

In order to evaluate the decision making model, a k-fold
cross validation is used, with k = 5. This protocol aims to
check the good performance of the model when faced with
unknown data. The performance of the model is measured by

Fig. 5. K-fold Cross-validation, with k = 5. Set A is divided into three parts:
Train, Validation and Test at each iteration. Only set A is used to train the
model. Set B is used only to test the model inference, in a single iteration.

the mean accuracy over all k-folds, as well as the standard
deviation. As shown in Fig. 5, in this scenario the method
consist to divide the dataset into five folds. The model uses
the first fold in the first iteration to test the model (test). It
uses the other datasets to train the model. The second fold
helps to test the dataset (validation) and the others support the
training process (train). The same process is repeated until the
test set uses each of the five folds. In this study, an extension
of classical k-fold cross-validation is applied. Instead of the
divisions being completely random, we apply stratified cross-
validation, which consists of ensuring that the ratio between
the target classes is the same in each fold as in the entire data
set.

To learn the model, cross-validation is applied only to the
set A. Set B is used only to assess the capacity of the model
to generalise to unknown data, with different formats to the
data used for training. In this scenario, all the data is grouped
together in a unique test fold. Only the inference of the model
is evaluated, and no training is carried out on these data.

B. Performances metrics

To determine and compare the predictive performance of
the proposed model, three most common evaluation metrics
are used: Intersection over Union (IoU), F1 score, and k-fold
cross-validation accuracy metrics.

a) Intersection over Union (IoU): The union intersection
is a popular metric for measuring the localization accuracy and
calculating the localization errors in object detection models.
To calculate the intersection between the predicted bounding
boxes and the ground truth bounding boxes, the area of inter-
section between the two corresponding bounding boxes for the
same object must be calculated. Next, the total area covered
by the two bounding boxes, also known as the ”Union”, and
the area of overlap between them, known as the ”Intersection”,
is calculated. The intersection divided by the union gives the
ratio of the overlap to the total area, which provides a good
estimate of how close the prediction bounding box is to the
original bounding box. The IoU threshold α decide whether
the prediction is True Positive (TP), False Positive (FP), or
False Negative (FN). The Fig. 6 illustrate predictions with the
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Fig. 6. An example of computing Intersection over Unions for various
bounding boxes on a UML class diagram, where α threshold is set at 0.5.

IoU threshold α set at 0.5. The decision of making a detection
as True Positive or False Positive completely depends on the
requirement. The first prediction is True Positive as the IoU
α threshold is 0.5. If the threshold is set at 0.97, it becomes a
False Positive. Similarly, the second prediction shown above
is False Positive due to the threshold but can be True Positive
if the threshold set at 0.20. Theoretically, the third prediction
can also be a True Positive, if the threshold is lowered to 0.

b) F1 score: F1 score is an evaluation metric that as-
sesses the predictive skill of a model by elaborating on its
class-wise performance rather than an overall performance as
done by accuracy. F1 score combines two competing metrics-
precision and recall scores of a model. F1 score can be
interpreted as a harmonic mean of the precision and recall,
where an F1 score reaches its best value at 1 and worst score
at 0. It is calculated from a confusion matrix. A confusion
matrix represents the predictive performance of a model on a
data set.

Based on the True Positive (TP), False Positive (FP), and
False Negative (FN), for each labeled class, two parameters:
precision and recall are calculated.

Recall gives the percentage of positives correctly predicted
by the model. In other words, it is the number of well-predicted
positives (True Positives) divided by the total number of
positives (True Positives + False Negatives). Its mathematical
form is as follows:

Recall =
TP

TP + FN
. (1)

The higher it is, the more the model maximises the number
of True Positives. However, this does not mean that the model
does not make mistakes. When the recall is high, it means that
it will not miss any positives. However, this does not give any
information about its predictive quality on negatives.

Precision is a measure of the number of positive predictions
made. It is the number of correctly predicted positives (True
Positives) divided by the total number of predicted positives

(True Positives + False Positives). In mathematical form, this
gives :

Precision =
TP

TP + FP
(2)

The higher it is, the more the model minimises the number
of False Positives. When the accuracy is high, this means that
the majority of the positive predictions made by the model are
well-predicted positives.

Although they are useful, neither precision nor recall can
fully evaluate the model. Taken separately, these two metrics
are useless. If the model predicts ’positive’ all the time, recall
will be high. On the other hand, if the model never predicts
”positive”, precision will be high. The F1 Score provides
a good assessment of the performance of the model. It is
calculated as follows:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall

=
2 ∗ TP

2 ∗ TP + FP + FN

(3)

c) K-fold cross validation accuracy: The most common
way to measure the predictions made by the model match
the observed data is by using the mean squared error (MSE),
which is calculated as:

MSE = (1/n) ∗
∑

(yi − f(xi))
2 (4)

where n is the total number of observations, yi correspond
to the response value of the ith observation and f(xi) is the
predicted response value of the ith observation. The closer
the model predictions are to the observations, the smaller the
MSE will be. Typically, the test is performed on a subset
of the dataset. It gives an idea of a model’s performance on
data it has never seen before. However, the disadvantage of
using only one test set is that the MSE can vary considerably
depending on the observations used in the training and test
sets. One way to avoid this problem is to fit a model several
times using a different training and testing set each time, then
calculating the test MSE to be the average of all of the test
MSE’s. This general method is known as cross-validation and
a specific form of it is known as k-fold cross-validation, as
illustrated in Fig. 5. The dataset is randomly divided into k
groups, or ”folds”, of roughly equal size. One of the groups
is used as a test set and the others as a training set. The MSE
is then calculated from these two subsets of data. The process
is repeated k times, each time using a different set as the test
set. The overall test accuracy being the average of the k test
MSEs and is calculated as follows:

MSE = (1/k) ∗
∑

MSEi (5)

where k in the number of folds and MSEi is the test MSE on
the ith iteration. The standard deviation calculated from the
k-fold accuracies obtained ensures that the model generalizes
well when trained on different folds.
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C. Quantitative results

Applying the proposed learning model to the set A, using
stratified k-fold cross-validation (k=5), we obtained an average
accuracy of 92.59% over seven categories. Considering the
performance given in the confusion matrix Fig. 7, the model
performs well on all categories. Among the errors observed,
the categories corresponding to the {Inheritance-Realization}
relationships are the least well classified. The model some-
times tends to confuse classes with relationships. This can be
explained by the fact that the annotations often overlap, given
their close proximity in the class diagram.

As for the evaluation on the set B, by only performing

Fig. 7. Confusion matrix on the set A consisting of 10,625 annotations divided
into 7 categories. The results correspond to the average precision obtained in
each fold, as well as the standard deviation for each category.

Fig. 8. Confusion matrix on the set B consisting of 11,997 annotations divided
into 7 categories. The results correspond to the precision obtained on all the
data for each category.

inference with the model trained exclusively on set A, the
results observed are very positive, with an average accuracy
of 94.11%. The confusion matrix in Fig. 8 shows that the
model generalises perfectly from one set to another. It is
important to note that there is less confusion between classes
and relationships. The majority of errors observed concern
the {Inheritance-Realization} and {Navigable-Dependency}
relationships. This can be explained by their close similarity
in their graphical representation in the class diagram.

The results observed on both datasets A and B are very
positive and highlight the ability of the proposed model to
correctly classify the seven structural elements included in a
class diagram. In addition, the two annotated datasets respond
perfectly to the need to develop new models to facilitate the
emergence of automatic classification and interpretation of
class diagrams.

D. Qualitative results

In addition to the quantitative study, a qualitative study
was carried out to examine the capacity of the model to
localise predictions. Two metrics were used: the IoU and
the F1 score. For set A, the calculated IoU is 85%. The
F1 score is calculated according to the distance between the
centroid of the region corresponding to the ground truth and
the centroid of the predicted region. The distance between
centroids corresponds to the tolerance threshold that defines
whether a prediction is considered a true positive or a false
positive. This distance is estimated in pixels. As shown in
Fig. 9, the model quickly achieves good accuracy with a
relatively small deviation of just 2 pixels from the ground truth.
The Aggregation and Composition relationships are easier for
the model to locate. This is due to their easily identifiable
symbol in the class diagram. On the other hand, the Navigable
relationship remains the most complex to localize. The model
tends to localize this relationship to within 8 pixels of its
exact position. Compared with the other relationships, this

Fig. 9. Localization accuracy of structural elements in set A as a function of
the distance tolerance between predicted and real Localization.
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Fig. 10. Localization accuracy of structural elements in set B as a function
of the distance tolerance between predicted and real Localization.

can be explained by the highly variable graphical style of the
Navigable relationship in the various class diagrams analysed.

The same qualitative study was carried out on set B. The
IoU calculated was 87.95%. Fig. 10 shows the F1 score
according to the distance between the predicted centroids
and the ground truth centroids. Although the model is more
accurate, the results follow the same trend as in the previous
study. The performance for the navigable relationship is better
on this dataset. This may be due to the fact that the graphical
style of the class diagrams is more standardised, which reduces
the appearance of complex formats.

V. DISCUSSION AND CONCLUSION

UML notation is used throughout the software development
process as a common representation. Thanks to this lingua
franca, it is possible to hold a design meeting, build a shared
model of the problem and propose a design plan. However, as
the UML tools are perceived as heavy to use and the UML
language difficult to learn, designers prefer to write the UML
manually using a pencil and a sheet of paper or a whiteboard
and in an informal manner. In practice, UML diagrams are
often simply photographed and stored as images, which limits
their use and evolution.

In this article, we presented an experiment using the ad-
vances in the field of deep learning to recognise UML class
diagrams. We propose a framework for training a learning
model to categorise and locate semantic elements in class dia-
gram from an image. The performance (Set A- IoU: 85%,ACC:
92.59% ; Set B- IoU: 87.95%, ACC: 94.11%) obtained by
the proposed model highlights the capacity of the model to
generalise to a large dataset.

One of the main contributions of this paper is the imple-
mentation of a sourcing strategy to gather and group relevant
UML diagrams from the different repositories available on the
web. The other contribution is the annotation tool that allows
to annotate the collected data. This tool has been specially

developed for creating a dataset and can be easily exploited
by the scientific community. Finally, the aim of the paper is to
allow reproduction of the data set and to carry out a semantic
analysis of a class diagram.

In view of the performance achieved by the proposed
approach, we can expect UML practice to evolve towards a
more flexible software design method. There is still work to
be done to improve the accuracy of recognising diagrams from
modelling tools and then to tackle freehand diagrams. The next
step is to use this semantic extraction to think about usage in
software design. In particular, precision can be improved by
cross-referencing with the theme of the project, its lexical field
and the overall context of the IT project (Jira, Kanban board...).
And if we go even further, we can imagine a recommendation
engine that helps the designer to draw up a model of a software
using augmented reality, without being a UML expert and
using a simple whiteboard.
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