Chahrazed Boudjemila
email: chahrazed.boudjemila@imt-atlantique.fr

Fabien Dagnat
email: fabien.dagnat@imt-atlantique.fr

Salvador Martínez
email: salvador.martinez@imt-atlantique.fr

Towards evolving secured multi-model systems with model federation

Keywords: Model-based system engineering, security, model federation, model evolution

Towards evolving secured multi-model systems with model federation

Chahrazed Boudjemila, Fabien Dagnat, Salvador

I. INTRODUCTION

Model-based systems engineering (MBSE) is a complex system's development paradigm that promotes the use of models as principal artefacts along all its different phases (requirements, design, analysis, verification and validation) in order to obtain improvements in productivity and quality. In MBSE approaches, systems are often composed of a collection of interdependent and heterogeneous models created by using various modeling languages and/or tools (e.g., SysML, UML, BPMN, etc.). This multiplicity and heterogeneity represent a challenge when models evolve as they may easily become inconsistent. Hence, mechanism to deal with the evolution of models are required.

Correctly managing evolution is even more crucial when we deal with security requirements. Indeed, one important area of concern within complex systems is cybersecurity. In that sense, and in order to provide to MBSE the means to deal with security since early development phases (in contrast to the common practice of adding security features This work is partially funded by Région Bretagne. later in the development process), several approaches adopt a security by design perspective and integrate security aspects into modeling languages (e.g., UMLsec [START_REF] Bürger | Restoring security of long-living systems by co-evolution[END_REF], SysML-Sec [START_REF] Roudier | Sysml-sec: A model driven approach for designing safe and secure systems[END_REF], and secBPMN [START_REF] Salnitri | Designing secure business processes with secbpmn[END_REF] among others). Such security aspects need to be taken into account when models evolve in order to avoid potential security issues. While many existing approaches deal with co-evolution and consistency for at least a couple of artifacts, most of them either do not deal with security aspects [START_REF] Kebaili | Towards leveraging tests to identify impacts of metamodel and code co-evolution[END_REF]- [START_REF] Jongeling | Towards consistency checking between a system model and its implementation[END_REF] or do it only for a limited type of models and/or technology [START_REF] Bürger | Restoring security of long-living systems by co-evolution[END_REF], [START_REF] Bürger | A framework for semi-automated co-evolution of security knowledge and system models[END_REF]- [START_REF] Peldszus | Security Compliance in Model-driven Development of Software Systems in Presence of Long-Term Evolution and Variants[END_REF]. In this sense, the focus of this paper is on the management of the evolution of multi-model systems w.r.t. their security. Two main challenges arise when managing the evolution in this scenario: 1) the semantic alignment between the security information present in different models; and 2) the discovery, management and efficient exploitation of the often implicit dependencies between models w.r.t. the security requirements of the system.

In order to tackle this problem, we propose here to leverage on the model federation paradigm which promotes the reification of the dependencies between heterogeneous models [START_REF] Golra | Addressing modularity for heterogeneous multi-model systems using model federation[END_REF]. Reified dependencies in model federation have customizable semantics and may carry behaviours. We propose thus the creation of a security-oriented model federation in which the security dependencies between models are reified and equipped with security rules. When a model changes, dependencies related with the change are used to (re) evaluate these security rules and determine whether the given change impacts the security requirements of the system. The main contribution of this paper is an initial methodology for building such security-oriented model federations. We demonstrate the feasibility of our approach with a prototype implementation and its application to a case study based on the iTrust [START_REF] Meneely | Appendix b: itrust electronic health care system case study[END_REF] system.

The remainder of this paper is structured as follows. Section II gives a brief background about security by design approaches and the model federation paradigm. In Section III, we present the details of our methodology for building security oriented model federations. We describe the application of our methodology to a case study based on the iTrust system in Section IV. Related work is discussed in Section V. Finally, we present the conclusion and outline future work in Section VI.

II. BACKGROUND

We devote this section to a brief introduction to the securityby-design and model federation paradigms.

A. Security by design

Security by design is a system design paradigm in which system security requirements are taken into account from the beginning of the design phase. Its main objective is to identify and address potential security vulnerabilities and risks [START_REF] Mohanty | Security and privacy by design is key in the internet of everything (ioe) era[END_REF] of the system under development as early as possible.

In a MBSE scenario, many different modeling languages and paradigms are used to describe systems. Some of the more popular ones such as UML, SysML and BMPN do not include security information by default, and thus extensions mechanism are required in order to use them in a security by design framework.

In the following we briefly describe two of such extensions, UMLsec [START_REF] Bürger | Restoring security of long-living systems by co-evolution[END_REF], [START_REF] Bürger | A framework for semi-automated co-evolution of security knowledge and system models[END_REF] and SecBPMN [START_REF] Salnitri | Designing secure business processes with secbpmn[END_REF]. We focus in these two extensions as the case study we describe in Section IV rely on UML and BPMN models, but many other approaches exist. UMLSec is an extension of the UML standard. It provides a UML profile which adds security properties in the form of stereotypes (e.g., encrypted) tagged values and application constraints. A tool using these stereotypes to analyze the security of the system is also part of the approach.

SecBPMN [START_REF] Salnitri | Designing secure business processes with secbpmn[END_REF] is an extension of BPMN. Concretely, it contains the language SecBPMN-ml which contributes eight security annotations (related to security properties such as confidentiality or accountability). Annotations have a graphical syntax and have to be linked with an existing element of a BPMN model. Annotations also contain attributes.

B. Model Federation

The model federation approach has as its main objective the reification of a set of dependencies among a group of models [START_REF] Golra | Addressing modularity for heterogeneous multi-model systems using model federation[END_REF], [START_REF] Golra | Continuous requirements engineering using model federation[END_REF]. One notable feature of the model federation approach is that federated models i.e., the models that participate in a given federation, can independently evolve in their original technical environment while adapters are used in order to connect them to the federation.

A federation model is not simply static, it possesses dynamic behaviors. The purpose of defining a federation is then twofold: first, it gathers descriptive parts reifying dependencies; second, it coordinates behaviors that use the reified dependencies. Note that a federation serves an intention (or purpose) which defines its objective (e.g., keep the synchronization in a network of models) and thus not all dependencies need to be reified but only those that would serve its intention. Note as well that the federation model is itself a model and can be manipulated as such.

III. APPROACH

This section describes our approach to build securityoriented model federations that have as intention to support the consistent evolution of secured models.

The proposed approach focuses on the reification of dependencies between the participating models even when the models correspond to different modeling languages and are built using different design tools. With our approach, users can detect if the models remain consistent in the context of security after one or many changes on any model. To do so, users can define their own security rules depending on their needs and the requirements of the system. These security rules are attached to various links (which reify dependencies) according to their semantics.

Our methodology involves two phases: (1) Designing the security model federation and (2) Using the security model federation to monitor evolution. Note that our methodology may be applied independently of the overall system development process. It can come before the actual system design, concurrently with it, or after a first version of the system is built.

Figure 1 describes the process of our methodology, how the model federation technique is adapted to link the system models and how it is applied. The rest of the section describes in more details these steps. Nevertheless, the elements of each meta-model may be explicitly or implicitly dependent. The challenge is to establish a link between such elements from heterogeneous meta-models presenting dependent information. At this level, it is assumed that the team designing the system is aware of the various meta-models used and this step consists in identifying the dependency between them. Among all the dependencies that may be found, our methodology addresses only those related to security whether they directly concern security or inconsistencies that may cause a security issue. Notice that this step requires collaboration and may need security experts to identify the related elements. b) Establish the links: In this step, each identified dependency is refined by creating links between dependent modeling elements. Following, the model federation approach, each model remains independent and a new model: the security model federation is created. The elements of this security model federation must be designed using the tool chosen to support the approach and then linked to the initial modeling elements. We give details about such a tool in Section IV. This step is a modeling step where the modeling elements reify links, and must follow the usual modeling process. c) Define security-oriented federation: According to the security requirements of the system and the security information added to the different elements of the system models, the team creates a set of security rules expressing the consistency that must be maintained. All these security rules are expressed using the modeling elements identified in the previous step and must be attached to them, so that when changes occur only the related rules need to be evaluated. These security rules define specific constraints that must hold to guarantee a security consistency and therefore they form a premise of the security of the developed system.

B. Using the security model federation

We have presented above a methodology to build Securityoriented model federations. Its main objective is to help identifying inconsistencies related with security when the involved models evolve. To do so, these model federations are used as follows.

1) Detect changes: The first step in the use of securityoriented model federations is the detection of model changes. In our case, and relying on the federation, we can view any changes made on the system models. Such changes may, or may not, lead to a security inconsistency. 2) Analyze changes: First, we need to select the edited, deleted or/and added elements. Then, check whether these elements are related to other elements by reified links. If so, verify if those links contain security rules. If this is the case, we evaluate these rules in order to identify those that have been violated (if any) and report on the detected inconsistency, including the rule and the impacted elements.

IV. CASE STUDY

To evaluate our methodology, we carry out a case study using the iTrust open-source system [START_REF] Meneely | Appendix b: itrust electronic health care system case study[END_REF]. We select iTrust as our case study since it has been previously used in relevant research works dealing with security critical software/systems. We focus on its security requirements: privacy, integrity, authentication, authorization.

The iTrust Medical Application was launched by Williams Laurie in 2005 at the University of North Carolina. The objective of this project is to assist software engineering students in handling a complex system adapted to the reality. This project enables them to understand the importance of security and privacy requirements [START_REF] Bürger | A framework for semi-automated co-evolution of security knowledge and system models[END_REF]. It is a fully functional system with suitable documentation1 including requirements specified as UML use case diagrams. In the following we illustrate the application of the methodology described in Section III of the iTrust system.

A. Designing the security model federation for iTrust 1) Design the iTrust system: To model the iTrust system we rely on: available models in literature [START_REF] Bürger | A framework for semi-automated co-evolution of security knowledge and system models[END_REF], the iTrust public documentation, and finally, the source code available on GitHub. 2 . Among all the possible aspects and models of the systems we focused on the following models: deployment model, data model (UML class diagram), access control model and BPMN model. We used the Papyrus tool to build the deployment model which shows how iTrust is installed in a hospital, and the Data model that defines the structure, organizes system information and actions to control data in a database for the iTrust system. Additionally, we used BMPN2 to model iTrust processes and a custom EMF access-control metamodel for authorization policies.

To capture security concerns in the aforementioned models, for simplicity we opt to define UML Profiles. These profiles allow us to annotate models with security requirements. We reuse the annotations described in UMLsec and secBMPN. In further versions of this case study, we will directly use UMLsec and secBMPN models so that we can also reuse their analysis tools. 2) Build the security-oriented model federation a) Identify the dependencies: We analyze the different meta-models to identify security related dependencies.

As an example, the Pool/Lane element in the BPMN model is linked to artifacts, nodes or/and devices in the deployment model. b) Establish the links: To establish links, we implement the model federation by relying on OpenFlexo, a mature model-federation framework. This framework provides us the infrastructure required to connect multiple models while keeping each model in its technology space. Openflexo [START_REF]Addressing modularity for heterogeneous multi-model systems using model federation[END_REF], [START_REF] Golra | Bridging the gap between informal requirements and formal specifications using model federation[END_REF] offers a Federation Model Language (FML) engine with an integrated model design environment which permits the design of models and their behaviour. Also, offers some mature technology adapters to connect external models to Openflexo. Among others we can find connectors to BPMN, excel, XML, EMF and OWL. The main structural element in FML is the Virtual Model which may be assimilated to a model in other more classical frameworks. For our case study, we create a Virtual Model to serve as an interaction model, this is, a model capturing dependencies between model elements in different models. This allows us to establish links between elements in the models participating in our security-oriented federation (e.g., BMPN and deployment models). Practically, this is achieved by the creation of Flexo Concepts (which can be seen as metaclasses) in the aforementioned interaction model. To enable these concepts to access information on external models (e.g., models not directly defined in FML), Openflexo uses model slots which serve as technological connectors. For example, to link the Pool element of the BPMN model with the Artifact element of the Deployment model, we create a concept called "PoolToArtifact" as shown in listing 1. Two technology adapters (one for BPMN models and one for Deployment models) are used. In order to illustrate the use of the iTrust security-oriented model federation we describe here an evolution scenario related with a deployment change. Concretely, we propose an evolution scenario in which an artifact is moved from a trusted device to a non trusted one, which implies communications to occur through an encrypted channel (in UMLsec, a channel with an encrypted annotation).

1) Detect changes: As mentioned above, change detection relies on the model federation. There is nothing specific to the iTrust security-oriented model federation. 2) Analyze changes: Once the change in the deployment model is detected, it needs to be analyzed. Intra model consistency rules are validated. However, artifacts are linked to Pools and Lanes in the BPMN model, and a security consistency rule is attached to this link. This rules needs to be re-evaluated. Figure 3 shows that this rule is violated. The violation is caused by the communication flow between Tasks with Pool that is not annotated "encrypted".

Summarizing, the security-oriented model federation for the iTrust system helped us to: 1) detect that changes occurred in the deployment model; 2) Analyze the change to determine its impact in other models and on the security of the system. Among others, we can find UMLsec [START_REF] Bürger | Restoring security of long-living systems by co-evolution[END_REF], SysML-Sec [START_REF] Roudier | Sysml-sec: A model driven approach for designing safe and secure systems[END_REF], and secBPMN [START_REF] Salnitri | Designing secure business processes with secbpmn[END_REF] which add security to UML, SysML and BMPN respectively. Our approach is complementary to these contributions when they are used in a multi-model scenario by dealing with their consistent evolution.

A plethora of works deal with consistency management in multi-model scenarios [START_REF] Torres | A systematic literature review of cross-domain model consistency checking by model management tools[END_REF], however, very few of them are specially tailored to security. Focused on evolution and security, in [START_REF] Peldszus | Security Compliance in Model-driven Development of Software Systems in Presence of Long-Term Evolution and Variants[END_REF] Sven Peldzus propose an approach on top of UMLsec to study the evolution of system artifacts (conceptual level to program level) by using inter-artifact tracing and graph transformation techniques to synchronize models. Object Constraint Language (OCL) predicates are used to verify intramodel consistency w.r.t security. Similarly, in [START_REF] Bürger | Restoring security of long-living systems by co-evolution[END_REF], [START_REF] Bürger | A framework for semi-automated co-evolution of security knowledge and system models[END_REF], [START_REF] Peldszus | Ontology-driven evolution of software security[END_REF] the authors study the consistent evolution of the environment according to the security requirements of the system. They use SiLift to detect changes and a set of Security Maintenance Rules (SMR) to semi-automatically restore system security.

Our approach is more focused on multi-modeling and heterogeneity by supporting an arbitrary number and type of artifacts inter-artifact consistency rules. We believe that (parts of) their approach may be integrated into ours to enhance it. As an example, their SMRs may be used as behaviours in our links.

Similar to our approach albeit not dealing with evolution, in [START_REF] Zhao | A language-based multi-view approach for combining functional and security models[END_REF] the authors propose a model-based approach that enables the composition of heterogeneous artifacts into a consistent system model that can then be used for verification and simulation. They focus on the combination of functional and security views at the meta-model level. Their approach is based in Transformation Rules Expressions (TRE) that are used to build a combination between various metamodels and derive model level transformations. In contrast to their approach, we use model federation to establish relations between different modeling languages without the need for a combined metamodel.

VI. CONCLUSIONS & FUTURE WORK

We have presented here an approach to support the evolution of secured models (i.e., models including security concerns) in a multi-model MBSE scenario by leveraging on the model federation paradigm. We have presented a methodology to create security-oriented model federations and applied it to a case study based on the iTrust system.

As a future work, we plan to enrich our approach by including: 1) additional types of models at different abstraction levels; 2) explore automation potential for some steps of our methodology; and 3) improve the validation and tool support.

Fig. 1 .

 1 Fig. 1. Except of the security-oriented model federation methodology

Fig. 2 .

 2 Fig. 2. Model federation with OpenFlexo Figure 2 illustrates the structure of the securityoriented model federation created for the iTrust system.The main structural element in FML is the Virtual Model which may be assimilated to a model in other more classical frameworks. For our case study, we create a Virtual Model to serve as an interaction model, this is, a model capturing dependencies between model elements in different models. This allows us to establish links between elements in the models participating in our security-oriented federation (e.g., BMPN and deployment models). Practically, this is achieved by the creation of Flexo Concepts (which can be seen as metaclasses) in the aforementioned interaction model. To enable these concepts to access information on external models (e.g., models not directly defined in FML), Openflexo uses model slots which serve as technological connectors. For example, to link the Pool element of the BPMN model with the Artifact element of the Deployment model, we create a concept called "PoolToArtifact" as shown in listing 1. Two technology adapters (one for BPMN models and one for Deployment models) are used.

14 } 1 . 4 isEncrypeted = false; 5 } 6 8 11 isEncrypeted

 14145611 Listing FlexoConcept linking Pool to Artifact with FML c) Define security-oriented federation: Regarding the security requirements of the iTrust system, for now we have defined security rules concerning the transmission of data, who access it and how this relates to changes of deployment. For example, we have attached the security rule in Listing 2 to the concept "PoolToArtifact". The objective of this security rule is to verify whether the communication flow between tasks have the same security annotation as the communication path relating Device/Node where the artifact is deployed. 1 public checkSecurityConsistency() { 2 boolean isEncrypeted = true; 3 if (!artifactInter.deployaccess.deviceDep. comPath.secNotationDeploy.equals("encrypted")) { List<Lane> lanes = select Lane from poolInter; 7 for (Lane lane : lanes) { List<Task> tasks = select Task from lane; 9 for (Task task : tasks) { 10 if (!task.comPath.secureNotation.equals("encrypted")) { rule B. Using the iTrust security-oriented model federation

Fig. 3 .

 3 Fig. 3. Security rule violated after deployment model evolution

http://agile.csc.ncsu.edu/iTrust/wiki/doku.php

https://github.com/ncsu-csc326/iTrust2