
HAL Id: hal-04254748
https://hal.science/hal-04254748

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards evolving secured multi-model systems with
model federation

Chahrazed Boudjemila, Fabien Dagnat, Salvador Martínez

To cite this version:
Chahrazed Boudjemila, Fabien Dagnat, Salvador Martínez. Towards evolving secured multi-model
systems with model federation. MODELS 2023: 26th International Conference on Model-Driven
Engineering Languages and Systems - ME 2023: 16th Workshop on Models and Evolution, Oct 2023,
Vasteras, Sweden. �hal-04254748�

https://hal.science/hal-04254748
https://hal.archives-ouvertes.fr


Towards evolving secured multi-model systems with
model federation

Chahrazed Boudjemila, Fabien Dagnat, Salvador Martı́nez
IMT Atlantique, Lab-STICC, UMR 6285

Brest, France
Email: {chahrazed.boudjemila,fabien.dagnat,salvador.martinez}@imt-atlantique.fr

Abstract—In order to deal with the increasing complexity
of nowadays systems, model-based system engineering (MBSE)
promotes the use of models all along the engineering phases. In
this scenario, systems are often represented by a set of models,
conforming to different modeling languages and built with dif-
ferent tools. This multiplicity and heterogeneity are challenging
when models evolve as they may easily become inconsistent. This
is even more crucial when we deal with security requirements.
Indeed, being a critical property of systems, security has been
integrated in MBSE so that it can be dealt with since the early
phases of the project (in what is called ”security-by-design”).
Consequently, it needs to be taken into account as well when the
system evolves in order to avoid potential security issues.

In order to tackle this problem, we propose here to leverage on
the model federation paradigm, which promotes the reification
of the dependencies between heterogeneous models. Concretely,
we propose the creation of a security model federation. In this
federation, security related dependencies between the models
representing a system are reified and equipped with security
rules that can be (re)evaluated upon evolution scenarios in
order to determine whether a given change impacts security. We
provide an initial methodology for building such a federation
and demonstrate the feasibility of the approach with a prototype
implementation.

Index Terms—Model-based system engineering, security,
model federation, model evolution

I. INTRODUCTION

Model-based systems engineering (MBSE) is a complex
system’s development paradigm that promotes the use of
models as principal artefacts along all its different phases
(requirements, design, analysis, verification and validation) in
order to obtain improvements in productivity and quality. In
MBSE approaches, systems are often composed of a collection
of interdependent and heterogeneous models created by using
various modeling languages and/or tools (e.g., SysML, UML,
BPMN, etc.). This multiplicity and heterogeneity represent a
challenge when models evolve as they may easily become
inconsistent. Hence, mechanism to deal with the evolution of
models are required.

Correctly managing evolution is even more crucial when
we deal with security requirements. Indeed, one important
area of concern within complex systems is cybersecurity. In
that sense, and in order to provide to MBSE the means
to deal with security since early development phases (in
contrast to the common practice of adding security features

This work is partially funded by Région Bretagne.

later in the development process), several approaches adopt a
security by design perspective and integrate security aspects
into modeling languages (e.g., UMLsec [1], SysML-Sec [2],
and secBPMN [3] among others). Such security aspects need
to be taken into account when models evolve in order to avoid
potential security issues. While many existing approaches
deal with co-evolution and consistency for at least a couple
of artifacts, most of them either do not deal with security
aspects [4]–[6] or do it only for a limited type of models and/or
technology [1], [7]–[9]. In this sense, the focus of this paper
is on the management of the evolution of multi-model systems
w.r.t. their security. Two main challenges arise when managing
the evolution in this scenario: 1) the semantic alignment
between the security information present in different models;
and 2) the discovery, management and efficient exploitation
of the often implicit dependencies between models w.r.t. the
security requirements of the system.

In order to tackle this problem, we propose here to leverage
on the model federation paradigm which promotes the reifica-
tion of the dependencies between heterogeneous models [10].
Reified dependencies in model federation have customizable
semantics and may carry behaviours. We propose thus the
creation of a security-oriented model federation in which
the security dependencies between models are reified and
equipped with security rules. When a model changes, de-
pendencies related with the change are used to (re) evaluate
these security rules and determine whether the given change
impacts the security requirements of the system. The main
contribution of this paper is an initial methodology for building
such security-oriented model federations. We demonstrate the
feasibility of our approach with a prototype implementation
and its application to a case study based on the iTrust [11]
system.

The remainder of this paper is structured as follows. Sec-
tion II gives a brief background about security by design
approaches and the model federation paradigm. In Section III,
we present the details of our methodology for building security
oriented model federations. We describe the application of our
methodology to a case study based on the iTrust system in
Section IV. Related work is discussed in Section V. Finally, we
present the conclusion and outline future work in Section VI.



II. BACKGROUND

We devote this section to a brief introduction to the security-
by-design and model federation paradigms.

A. Security by design

Security by design is a system design paradigm in which
system security requirements are taken into account from the
beginning of the design phase. Its main objective is to identify
and address potential security vulnerabilities and risks [12] of
the system under development as early as possible.

In a MBSE scenario, many different modeling languages
and paradigms are used to describe systems. Some of the
more popular ones such as UML, SysML and BMPN do not
include security information by default, and thus extensions
mechanism are required in order to use them in a security by
design framework.

In the following we briefly describe two of such extensions,
UMLsec [1], [7] and SecBPMN [3]. We focus in these two
extensions as the case study we describe in Section IV rely on
UML and BPMN models, but many other approaches exist.
UMLSec is an extension of the UML standard. It provides
a UML profile which adds security properties in the form
of stereotypes (e.g., encrypted) tagged values and application
constraints. A tool using these stereotypes to analyze the
security of the system is also part of the approach.

SecBPMN [3] is an extension of BPMN. Concretely, it
contains the language SecBPMN-ml which contributes eight
security annotations (related to security properties such as
confidentiality or accountability). Annotations have a graphical
syntax and have to be linked with an existing element of a
BPMN model. Annotations also contain attributes.

B. Model Federation

The model federation approach has as its main objective
the reification of a set of dependencies among a group of
models [10], [13]. One notable feature of the model federa-
tion approach is that federated models i.e., the models that
participate in a given federation, can independently evolve in
their original technical environment while adapters are used
in order to connect them to the federation.

A federation model is not simply static, it possesses dy-
namic behaviors. The purpose of defining a federation is
then twofold: first, it gathers descriptive parts reifying depen-
dencies; second, it coordinates behaviors that use the reified
dependencies. Note that a federation serves an intention (or
purpose) which defines its objective (e.g., keep the synchro-
nization in a network of models) and thus not all dependencies
need to be reified but only those that would serve its intention.
Note as well that the federation model is itself a model and
can be manipulated as such.

III. APPROACH

This section describes our approach to build security-
oriented model federations that have as intention to support
the consistent evolution of secured models.

The proposed approach focuses on the reification of de-
pendencies between the participating models even when the
models correspond to different modeling languages and are
built using different design tools. With our approach, users can
detect if the models remain consistent in the context of security
after one or many changes on any model. To do so, users
can define their own security rules depending on their needs
and the requirements of the system. These security rules are
attached to various links (which reify dependencies) according
to their semantics.

Our methodology involves two phases: (1) Designing the
security model federation and (2) Using the security model
federation to monitor evolution. Note that our methodology
may be applied independently of the overall system develop-
ment process. It can come before the actual system design,
concurrently with it, or after a first version of the system is
built.

Figure 1 describes the process of our methodology, how
the model federation technique is adapted to link the system
models and how it is applied. The rest of the section describes
in more details these steps.

1

Dev2

Dev1

BPMN
Model

1- Designing secure system 

2

Dev1

2 - Build model federation

R2
Model

Federation

User

3

3 - Detect changes4 - Analyse changes

5
Security violation

Identify all security rules
violated and the elments

affected

Using the security model
federation

Designing the security
model federation 

Dev2

Deployment
Model

R1

R2
Model

Federation

R1

Evolution

R2
Model

Federation

R1

No violation

BPMN
Model

Deployment
Model

BPMN
Model

BPMN
Model Deployment

Model

Deployment
Model

Fig. 1. Except of the security-oriented model federation methodology

A. Designing the security model federation

1) System Design: The objective of this step is to create
the system models, including security aspects. For each
model, the responsible development team first identify
and analyze the system’s security requirements through-
out its life cycle. Next, they choose the appropriate meta-
model, tool and approach that enables them to specify
their needs and express security requirements in the early
phases of the software design.

2) Build the security model federation: This stage is divided
into three steps, with the global objective of linking
together all the models by federating them in a single
modeling environment. This is represented by the green
box (Model Federation) in Figure 1.
a) Identify the dependencies: While each type of meta-

model describes a specific kind of model which spec-
ifies a given aspect of the system, these meta-models



remain independent in their own technological space.
Nevertheless, the elements of each meta-model may be
explicitly or implicitly dependent. The challenge is to
establish a link between such elements from heteroge-
neous meta-models presenting dependent information.
At this level, it is assumed that the team designing
the system is aware of the various meta-models used
and this step consists in identifying the dependency
between them. Among all the dependencies that may
be found, our methodology addresses only those related
to security whether they directly concern security or
inconsistencies that may cause a security issue. Notice
that this step requires collaboration and may need
security experts to identify the related elements.

b) Establish the links: In this step, each identified depen-
dency is refined by creating links between dependent
modeling elements. Following, the model federation
approach, each model remains independent and a new
model: the security model federation is created. The
elements of this security model federation must be
designed using the tool chosen to support the approach
and then linked to the initial modeling elements. We
give details about such a tool in Section IV. This step
is a modeling step where the modeling elements reify
links, and must follow the usual modeling process.

c) Define security-oriented federation: According to the
security requirements of the system and the security
information added to the different elements of the
system models, the team creates a set of security rules
expressing the consistency that must be maintained. All
these security rules are expressed using the modeling
elements identified in the previous step and must be
attached to them, so that when changes occur only the
related rules need to be evaluated. These security rules
define specific constraints that must hold to guarantee a
security consistency and therefore they form a premise
of the security of the developed system.

B. Using the security model federation

We have presented above a methodology to build Security-
oriented model federations. Its main objective is to help iden-
tifying inconsistencies related with security when the involved
models evolve. To do so, these model federations are used as
follows.

1) Detect changes: The first step in the use of security-
oriented model federations is the detection of model
changes. In our case, and relying on the federation, we
can view any changes made on the system models. Such
changes may, or may not, lead to a security inconsistency.

2) Analyze changes: First, we need to select the edited,
deleted or/and added elements. Then, check whether these
elements are related to other elements by reified links.
If so, verify if those links contain security rules. If this
is the case, we evaluate these rules in order to identify
those that have been violated (if any) and report on

the detected inconsistency, including the rule and the
impacted elements.

IV. CASE STUDY

To evaluate our methodology, we carry out a case study
using the iTrust open-source system [11]. We select iTrust as
our case study since it has been previously used in relevant
research works dealing with security critical software/systems.
We focus on its security requirements: privacy, integrity,
authentication, authorization.

The iTrust Medical Application was launched by Williams
Laurie in 2005 at the University of North Carolina. The
objective of this project is to assist software engineering
students in handling a complex system adapted to the reality.
This project enables them to understand the importance of
security and privacy requirements [7]. It is a fully functional
system with suitable documentation 1 including requirements
specified as UML use case diagrams. In the following we
illustrate the application of the methodology described in
Section III of the iTrust system.

A. Designing the security model federation for iTrust

1) Design the iTrust system: To model the iTrust system we
rely on: available models in literature [7], the iTrust pub-
lic documentation, and finally, the source code available
on GitHub. 2.
Among all the possible aspects and models of the systems
we focused on the following models: deployment model,
data model (UML class diagram), access control model
and BPMN model. We used the Papyrus tool to build the
deployment model which shows how iTrust is installed in
a hospital, and the Data model that defines the structure,
organizes system information and actions to control data
in a database for the iTrust system. Additionally, we used
BMPN2 to model iTrust processes and a custom EMF
access-control metamodel for authorization policies.
To capture security concerns in the aforementioned mod-
els, for simplicity we opt to define UML Profiles. These
profiles allow us to annotate models with security require-
ments. We reuse the annotations described in UMLsec
and secBMPN. In further versions of this case study, we
will directly use UMLsec and secBMPN models so that
we can also reuse their analysis tools.

2) Build the security-oriented model federation
a) Identify the dependencies: We analyze the different

meta-models to identify security related dependencies.
As an example, the Pool/Lane element in the BPMN
model is linked to artifacts, nodes or/and devices in the
deployment model.

b) Establish the links: To establish links, we implement
the model federation by relying on OpenFlexo, a
mature model-federation framework. This framework

1http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
2https://github.com/ncsu-csc326/iTrust2

http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
https://github.com/ncsu-csc326/iTrust2


provides us the infrastructure required to connect mul-
tiple models while keeping each model in its technol-
ogy space. Openflexo [14], [15] offers a Federation
Model Language (FML) engine with an integrated
model design environment which permits the design of
models and their behaviour. Also, offers some mature
technology adapters to connect external models to
Openflexo. Among others we can find connectors to
BPMN, excel, XML, EMF and OWL.

Interaction Virtual Model
"Federation Model"

DATA
Model

Deployment
Model

Access
Control
Model

BPMN
Model

EMFModel
Slot

EMFModel
Slot

EMFModel
Slot

BMPNModel
Slot

Concept

Concept

TM

Fig. 2. Model federation with OpenFlexo

Figure 2 illustrates the structure of the security-
oriented model federation created for the iTrust system.
The main structural element in FML is the Virtual
Model which may be assimilated to a model in other
more classical frameworks. For our case study, we
create a Virtual Model to serve as an interaction model,
this is, a model capturing dependencies between model
elements in different models. This allows us to estab-
lish links between elements in the models participating
in our security-oriented federation (e.g., BMPN and
deployment models). Practically, this is achieved by
the creation of Flexo Concepts (which can be seen as
metaclasses) in the aforementioned interaction model.
To enable these concepts to access information on
external models (e.g., models not directly defined in
FML), Openflexo uses model slots which serve as
technological connectors. For example, to link the
Pool element of the BPMN model with the Artifact
element of the Deployment model, we create a concept
called ”PoolToArtifact” as shown in listing 1. Two
technology adapters (one for BPMN models and one
for Deployment models) are used.

1 public concept PoolToArtifact {
2 public Pool poolInter with ConceptInstance

(virtualModelInstance=bPMNModelSlot);
3 public Artifact artifactInter with

ConceptInstance(virtualModelInstance=
deployModelSlot);

4 String namePoolArtifact;
5 public create::_createPoolArtifact(Pool

sourcePool, Artifact destinatArtifact) {
6 poolInter = parameters.sourcePool;
7 artifactInter = parameters.

destinatArtifact;

8 container.listConceptBPMNDeploy.add(
namePoolArtifact);

9 }
10 delete() {
11 delete poolInter;
12 delete artifactInter;
13 }
14 }

Listing 1. FlexoConcept linking Pool to Artifact with FML

c) Define security-oriented federation: Regarding the se-
curity requirements of the iTrust system, for now we
have defined security rules concerning the transmission
of data, who access it and how this relates to changes
of deployment. For example, we have attached the se-
curity rule in Listing 2 to the concept ”PoolToArtifact”.
The objective of this security rule is to verify whether
the communication flow between tasks have the same
security annotation as the communication path relating
Device/Node where the artifact is deployed.

1 public checkSecurityConsistency() {
2 boolean isEncrypeted = true;
3 if (!artifactInter.deployaccess.deviceDep.

comPath.secNotationDeploy.equals("encrypted")) {
4 isEncrypeted = false;
5 }
6 List<Lane> lanes = select Lane from poolInter;
7 for (Lane lane : lanes) {
8 List<Task> tasks = select Task from lane;
9 for (Task task : tasks) {

10 if (!task.comPath.secureNotation.equals(
"encrypted")) {

11 isEncrypeted = false;
12 }
13 }
14 }
15 if (!isEncrypeted) {
16 log "Security check failed";
17 }
18 }

Listing 2. Security rule

B. Using the iTrust security-oriented model federation

In order to illustrate the use of the iTrust security-oriented
model federation we describe here an evolution scenario
related with a deployment change. Concretely, we propose an
evolution scenario in which an artifact is moved from a trusted
device to a non trusted one, which implies communications to
occur through an encrypted channel (in UMLsec, a channel
with an encrypted annotation).

1) Detect changes: As mentioned above, change detection
relies on the model federation. There is nothing specific
to the iTrust security-oriented model federation.

2) Analyze changes: Once the change in the deployment
model is detected, it needs to be analyzed. Intra model
consistency rules are validated. However, artifacts are
linked to Pools and Lanes in the BPMN model, and a
security consistency rule is attached to this link. This rules
needs to be re-evaluated. Figure 3 shows that this rule is
violated. The violation is caused by the communication
flow between Tasks with Pool that is not annotated
”encrypted”.



Summarizing, the security-oriented model federation for the
iTrust system helped us to: 1) detect that changes occurred in
the deployment model; 2) Analyze the change to determine its
impact in other models and on the security of the system.

Fig. 3. Security rule violated after deployment model evolution

V. RELATED WORK

Many different approaches have been proposed to sup-
port the security by design paradigm at the model level.
Among others, we can find UMLsec [1], SysML-Sec [2],
and secBPMN [3] which add security to UML, SysML and
BMPN respectively. Our approach is complementary to these
contributions when they are used in a multi-model scenario by
dealing with their consistent evolution.

A plethora of works deal with consistency management
in multi-model scenarios [16], however, very few of them
are specially tailored to security. Focused on evolution and
security, in [9] Sven Peldzus propose an approach on top of
UMLsec to study the evolution of system artifacts (conceptual
level to program level) by using inter-artifact tracing and graph
transformation techniques to synchronize models. Object Con-
straint Language (OCL) predicates are used to verify intra-
model consistency w.r.t security. Similarly, in [1], [7], [8]
the authors study the consistent evolution of the environment
according to the security requirements of the system. They use
SiLift to detect changes and a set of Security Maintenance
Rules (SMR) to semi-automatically restore system security.

Our approach is more focused on multi-modeling and
heterogeneity by supporting an arbitrary number and type
of artifacts and inter-artifact consistency rules. We believe
that (parts of) their approach may be integrated into ours
to enhance it. As an example, their SMRs may be used as
behaviours in our links.

Similar to our approach albeit not dealing with evolution,
in [17] the authors propose a model-based approach that
enables the composition of heterogeneous artifacts into a
consistent system model that can then be used for verification
and simulation. They focus on the combination of functional
and security views at the meta-model level. Their approach
is based in Transformation Rules Expressions (TRE) that are
used to build a combination between various metamodels and
derive model level transformations. In contrast to their ap-
proach, we use model federation to establish relations between

different modeling languages without the need for a combined
metamodel.

VI. CONCLUSIONS & FUTURE WORK

We have presented here an approach to support the evolution
of secured models (i.e., models including security concerns)
in a multi-model MBSE scenario by leveraging on the model
federation paradigm. We have presented a methodology to
create security-oriented model federations and applied it to
a case study based on the iTrust system.

As a future work, we plan to enrich our approach by
including: 1) additional types of models at different abstraction
levels; 2) explore automation potential for some steps of our
methodology; and 3) improve the validation and tool support.

REFERENCES

[1] J. Bürger, S. Gärtner, T. Ruhroth, J. Zweihoff, J. Jürjens, and K. Schnei-
der, “Restoring security of long-living systems by co-evolution,” in
COMPSAC 2015, vol. 2. IEEE, 2015, pp. 153–158.

[2] Y. Roudier and L. Apvrille, “Sysml-sec: A model driven approach for
designing safe and secure systems,” in MODELSWARD. IEEE, 2015,
pp. 655–664.

[3] M. Salnitri, F. Dalpiaz, and P. Giorgini, “Designing secure business
processes with secbpmn,” Software & Systems Modeling, vol. 16, pp.
737–757, 2017.

[4] Z. K. Kebaili, D. E. Khelladi, M. Acher, and O. Barais, “Towards lever-
aging tests to identify impacts of metamodel and code co-evolution,” in
CAiSE 2023. Springer, 2023, pp. 129–137.

[5] M. Riedl-Ehrenleitner, A. Demuth, and A. Egyed, “Towards model-and-
code consistency checking,” in COMPSAC. IEEE, 2014, pp. 85–90.

[6] R. Jongeling, J. Fredriksson, F. Ciccozzi, A. Cicchetti, and J. Carlson,
“Towards consistency checking between a system model and its imple-
mentation,” in ICSMM 2020. Springer, 2020, pp. 30–39.

[7] J. Bürger, D. Strüber, S. Gärtner, T. Ruhroth, J. Jürjens, and K. Schnei-
der, “A framework for semi-automated co-evolution of security knowl-
edge and system models,” Journal of Systems and Software, vol. 139,
pp. 142–160, 2018.

[8] S. Peldszus, J. Bürger, T. Kehrer, and J. Jürjens, “Ontology-driven
evolution of software security,” Data & Knowledge Engineering, vol.
134, p. 101907, 2021.

[9] S. M. Peldszus, Security Compliance in Model-driven Development of
Software Systems in Presence of Long-Term Evolution and Variants.
Springer Nature, 2022.

[10] F. R. Golra, A. Beugnard, F. Dagnat, S. Guerin, and C. Guychard,
“Addressing modularity for heterogeneous multi-model systems using
model federation,” in Companion Proceedings of the 15th International
Conference on Modularity, 2016, pp. 206–211.

[11] A. Meneely, B. Smith, and L. Williams, “Appendix b: itrust electronic
health care system case study,” Software and Systems Traceability, p.
425, 2012.

[12] S. P. Mohanty, “Security and privacy by design is key in the internet of
everything (ioe) era.” IEEE Consumer Electron. Mag., vol. 9, no. 2, pp.
4–5, 2020.

[13] F. R. Golra, A. Beugnard, F. Dagnat, S. Guerin, and C. Guychard,
“Continuous requirements engineering using model federation,” in RE
2016. IEEE, 2016, pp. 347–352.

[14] ——, “Addressing modularity for heterogeneous multi-model systems
using model federation,” in Companion Proceedings of the 15th Inter-
national Conference on Modularity, 2016, pp. 206–211.

[15] F. R. Golra, F. Dagnat, J. Souquieres, I. Sayar, and S. Guerin, “Bridging
the gap between informal requirements and formal specifications using
model federation,” in SEFM 2018. Springer, 2018, pp. 54–69.

[16] W. Torres, M. G. Van den Brand, and A. Serebrenik, “A systematic
literature review of cross-domain model consistency checking by model
management tools,” Software and Systems Modeling, pp. 1–20, 2020.

[17] H. Zhao, F. Mallet, and L. Apvrille, “A language-based multi-view
approach for combining functional and security models,” in APSEC
2019. IEEE, 2019, pp. 426–433.


	Introduction
	Background
	Security by design
	Model Federation

	Approach
	 Designing the security model federation 
	Using the security model federation

	Case study
	Designing the security model federation for iTrust
	Using the iTrust security-oriented model federation

	Related work
	Conclusions & future work
	References

