

High pathogenicity avian influenza (H5N1) in Northern Gannets (Morus bassanus): Global spread, clinical signs and demographic consequences

Jude Lane, Jana W.E. Jeglinski, Stephanie Avery-Gomm, Elmar Ballstaedt, Ashley Banyard, Tatsiana Barychka, Ian Brown, Brigitte Brugger, Tori Burt, Noah Careen, et al.

▶ To cite this version:

Jude Lane, Jana W.E. Jeglinski, Stephanie Avery-Gomm, Elmar Ballstaedt, Ashley Banyard, et al.. High pathogenicity avian influenza (H5N1) in Northern Gannets (Morus bassanus): Global spread, clinical signs and demographic consequences. Ibis, In press, 10.1111/ibi.13275. hal-04254722

HAL Id: hal-04254722 https://hal.science/hal-04254722

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 High pathogenicity avian influenza (H5N1) in Northern Gannets:

2 Global spread, clinical signs, and demographic consequences

3

4 Authors

5 Jude V Lane¹, Jana WE Jeglinski², Stephanie Avery-Gomm³, Elmar Ballstaedt⁴, Ashley C Banyard⁵, 6 Tatsiana Barychka³, Ian H Brown⁵, Brigitte Brugger⁶, Tori V Burt⁷, Noah Careen⁷, Johan HF 7 Castenschiold⁸, Signe Christensen-Dalsgaard⁹, Shannon Clifford², Sydney M Collins⁷, Emma 8 Cunningham¹⁰, Jóhannis Danielsen¹¹, Francis Daunt¹², Kyle JN d'Entremont⁷, Parker Doiron⁷, Steven 9 Duffy¹³, Matthew D English¹³, Marco Falchieri⁵, Jolene Giacinti³, Britt Gjerset¹⁴, Silje Granstad¹⁴, David Grémillet^{15,16}, Magella Guillemette¹⁷, Gunnar T Hallgrímsson¹⁸, Keith C Hamer¹⁹, Sjúrður Hammer^{20,21}, 10 Katherine Harrison²², Justin D Hart²³, Ciaran Hatsell²⁴, Richard Humpidge²⁵, Joe James⁵, Audrey 11 12 Jenkinson²², Mark Jessopp²⁶, Megan EB Jones²⁷, Stéphane Lair²⁸, Thomas Lewis⁵, Alexandra A 13 Malinowska²⁹, Aly McCluskie¹, Gretchen McPhail⁷, Børge Moe⁹, William A Montevecchi⁷, Greg 14 Morgan³⁰, Caroline Nichol³¹, Craig Nisbet²⁴, Bergur Olsen¹¹, Jennifer Provencher³, Pascal Provost³², Alex Purdie²³, Jean-François Rail¹³, Greg Robertson³, Yannick Seyer¹⁷, Maggie Sheddan³³, Catherine 15 16 Soos³, Nia Stephens³⁰, Hallvard Strøm³⁴, Vilhjálmur Svansson³⁵, T David Tierney³⁶, Glen Tyler³⁷, Tom 17 Wade³¹, Sarah Wanless¹², Christopher RE Ward¹³, Sabina Wilhelm¹³, Saskia Wischnewski¹, Lucy J 18 Wright¹, Bernie Zonfrillo², Jason Matthiopoulos², Stephen C Votier³⁸.

- 19
- 20 ¹ RSPB Centre for Conservation Science, Sandy, UK
- 21 ² School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland, UK
- ³ Wildlife and Landscape Science Directorate, Science & Technology Branch, Environment and Climate
- 23 Change Canada
- 24 ⁴ Verein Jordsand zum Schutz der Seevögel und der Natur e. V.
- 25 ⁵ International Reference Laboratory for Avian Influenza-Weybridge, Animal and Plant Health Agency,
- 26 Addlestone, Surrey UK
- 27 ⁶ Icelandic Food and Veterinary Authority, Iceland.
- 28 ⁷ Psychology Department, Memorial University of Newfoundland and Labrador, Canada
- 29 ⁸ Aarhus University, Dept. of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark
- 30 ⁹Norwegian Institute for Nature Research (NINA), PO Box 5685 Torgard, 7485 Trondheim, Norway
- 31 ¹⁰Centre for Immunity, Infection and Evolution, Institute of Evolutionary Biology, School of Biology,
- 32 University of Edinburgh, Scotland, UK
- ¹¹ Seabird Ecology Department, Faroe Marine Research Institute, Nóatún 1, FO-100 Tórshavn, Faroe
 Islands
- 35 ¹² UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Scotland, UK
- 36 ¹³ Canadian Wildlife Service, Environment and Climate Change Canada
- 37 ¹⁴ Norwegian Veterinary Institute, PO Box 64, N-1431 Ås, Norway

- 38 ¹⁵CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- 39 ¹⁶ FitzPatrick Institute, DST/NRF Excellence Centre at the University of Cape Town, Rondebosch 7701,
- 40 South Africa
- ¹⁷ Department of Biology, Chemistry and Geography, Université du Québec à Rimouski, Rimouski,
 Québec, Canada
- 43 ¹⁸Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- 44 ¹⁹ School of Biology, University of Leeds, UK
- 45 ²⁰ Faroese Environment Agency, Traðargøta 38, FO-165 Argir, Faroe Islands
- 46 ²¹University of the Faroe Islands, J. C. Svabos gøta 14, FO-100 Tórshavn, Faroe Islands
- 47 ²² Department of Agriculture, Food and the Marine (DAFM), Agriculture House, Kildare Street, Dublin,
- 48 Ireland
- 49 ²³ Alderney Wildlife Trust, Channel Islands
- 50 ²⁴ National Trust for Scotland, Hermiston Quay, Edinburgh, Scotland, UK
- 51 ²⁵ RSPB Scotland, UK.
- 52 ²⁶ School of Biological, Earth & Environmental Sciences, University College Cork, Ireland
- 53 ²⁷ University of Prince Edward Island, Canada
- 54 ²⁸ Centre québécois sur la santé des animaux sauvages, Canadian Wildlife Health Cooperative, Faculté
- 55 de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec, Canada
- 56 ²⁹ RSPB Hoy, Stromness, UK
- 57 ³⁰ RSPB Ramsey Island, St Davids, Pembrokeshire UK
- 58 ³¹ School of Geosciences, University of Edinburgh, UK
- 59 ³² Ligue pour la Protection des Oiseaux, Réserve Naturelle Nationale des Sept-Iles, Pleumeur Bodou,
- 60 France
- 61 ³³ Scottish Seabird Centre, North Berwick, UK
- 62 ³⁴ Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
- 63 ³⁵ Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Iceland
- 64 ³⁶ Science and Research Directorate, National Parks and Wildlife Service, 90 King Street North, Dublin
- 65 7, D07 N7CV, Ireland
- 66 ³⁷ NatureScot, Great Glen House, Leachkin Road, Inverness IV3 8NW, UK
- 67 ³⁸ Lyell Centre, Institute for Life and Earth Sciences, Heriot-Watt University, Edinburgh, UK
- 68

69 Acknowledgements

- 70 This work was funded by the Forth and Tay Offshore Wind Farm Developers; Neart na Gaoithe
- 71 Offshore Wind Ltd, Seagreen Wind Energy Ltd and SSE Renewables, the Animal Plant Health Agency,
- 72 and the UK Department for Business, Energy and Industrial Strategy Offshore Energy Strategic
- 73 Environmental Assessment BEIS OESEA programme, as well as a NERC Urgency Grant NE/X013502/1
- 74 and Natural Sciences and Engineering Research Council of Canada (NSERCC) and Fisheries and Oceans
- 75 Canada. ACB, JJ, TL and IHB were part supported by the Biotechnology and Biological Sciences
- 76 Research Council (BBSRC) and Department for Environment, Food and Rural Affairs (Defra, UK)
- 77 research initiative 'FluMAP' (grant number BB/X006204/1). Funding was also provided by the Defra
- 78 and the Devolved Administrations of Scotland and Wales, through grants SE2213 and SV3006. UAV

data collection was undertaken by the University of Edinburgh's Airborne Research and Innovation
facility (ARI), the NERC Field Spectroscopy Facility (FSF)) and Scotland's Rural College (SRUC), in
partnership with the Scottish Seabird Centre.

82 We thank Sir Hew Hamilton-Dalrymple and the Scottish Seabird Centre, North Berwick for support and 83 access to Bass Rock, and Jack Dale and John McCarter for logistic support. We thank Esbern í 84 Evőanstovu for, for making the observations of Mykineshólmur available to us. We thank Armel 85 Deniau, Grgoire Delavaud, Aurlien Prudor, Timothe Poupart and Gauthier Poiriez for support with data 86 collection at Rouzic. We thank Andrew Lang, Kathryn Hargan (Memorial University of Newfoundland 87 and Labrador, Canada), Pauline Martigny (Université du Québec à Rimouski) and Ishraq Rahman and 88 Jordan Wright (Memorial University of Newfoundland) for field and lab support. Permission to 89 undertake work on the Bass Rock during the HPAI outbreak was granted by NatureScot. Birds were 90 ringed and swabbed with permits and approval from the British Trust for Ornithology. Blood sampling 91 was carried out under licence from the UK Home Office; Project licence number PEAE7342F and 92 Personal licence number IF2464041.

93

94 **Conflict of Interest**

95 The authors confirm that they have no conflicts of interest.

96

97 Abstract

98 During 2021-22 High Pathogenicity Avian Influenza (HPAI) killed thousands of wild birds across Europe 99 and North America, suggesting a change in infection dynamics and a shift to new hosts, including 100 seabirds. Northern Gannets (Morus bassanus) appeared especially severely impacted, but limited 101 understanding of how the virus spread across the metapopulation, or the demographic consequences 102 of mass mortality limit our understanding of its severity. Accordingly, we collate information on HPAIV 103 outbreaks across most North Atlantic gannet colonies and for the largest colony (Bass Rock, UK), 104 provide impacts on population size, breeding success, adult survival, and preliminary results on 105 serology. Unusually high numbers of dead gannets were first noted in Iceland during April 2022. 106 Outbreaks in May occurred in many Scottish colonies, followed by colonies in Canada, Germany and 107 Norway. By the end of June, outbreaks had occurred in five Canadian colonies and in the Channel 108 Islands. Outbreaks in 12 UK and Ireland colonies appeared to follow a clockwise pattern with the last 109 infected colonies recorded in late August/September. Unusually high mortality was recorded at 40 110 colonies (75% of global total colonies). Dead birds testing positive for HPAIV H5N1 were associated 111 with 58% of these colonies. At Bass Rock, the number of occupied sites decreased by at least 71%,

breeding success declined by ~66% compared to the long-term UK mean and adult survival between 2021 and 2022 was 42% lower than the preceding 10-year average. Serological investigation detected antibodies specific to H5 in apparently healthy birds indicating that some gannets recover from HPAIV infection. Further, most of these recovered birds had black irises, suggestive of a phenotypic indicator of previous infection. Untangling the impacts of HPAIV infection from other key pressures faced by seabirds is key to establishing effective conservation strategies for threatened seabird populations, HPAIV being a novel and pandemic threat.

119 Key Words

- 120 HPAIV; avian flu; virus outbreak; seabirds; immunity
- 121

122 **1. Background**

123 High Pathogenicity Avian Influenza Virus (HPAIV) H5Nx has negatively impacted wild and domestic 124 bird populations globally for decades (Nuñez and Ross. 2019). However, the current global panzootic 125 of H5Nx has seen shifts in both the seasonality of outbreaks and the species affected (EFSA, 2023). 126 H5Nx (A/goose/Guangdong/1/1996 (Gs/GD) H5N1) was first detected in 1996 on a domestic goose farm in Guangdong Province, China (Xu et al. 1999). This goose Guangdong lineage (Gs/Gd) has since 127 128 caused significant outbreaks in a variety of bird populations and has also raised concerns about the 129 potential zoonotic consequences for humans (Wan 2012, EFSA 2023). Genetic reassortment has led 130 to the emergence and evolution of multiple subtypes and genotypes of this group of high 131 pathogenicity viruses on a global scale, potentially with different epidemiological properties, 132 especially with respect to host range in wild birds (Monne et al. 2014, Falchieri et al. 2022). The 133 mechanism of viral transmission is likely a combination of infected wild bird migration and the global 134 domestic poultry trade or their products (Blagodatski et al. 2021, Ramey et al. 2022).

Low Pathogenicity Avian Influenza Virus (LPAIV) is widely circulating in wild aquatic birds; *Anseriformes* (waterfowl) and *Charadriiformes* (shorebirds) are known to act as reservoirs (Venkatesh et al. 2018) however, we know little about the recent emergence, spread and impact of HPAIVs in aquatic birds, including seabirds (Burggraff et al. 2014, Falchieri et al. 2022, Boulinier. 2023, Roberts et al. 2023). HPAIVs do not evolve within wild bird populations but once they have spilled into wild populations, are transmitted via infected saliva, nasal secretion and faeces but shedding methods differ between species and are not well understood (Arnal et al. 2014, Caliendo et al. 2020).

The winter of 2021/2022 saw a record number of confirmed cases of HPAIV H5N1 in poultry, captive and wild birds across Europe (EFSA 2023). HPAIV H5N1 was first detected in UK breeding seabirds in July 2021 when Great Skuas (*Stercorarius skua*) on Fair Isle, Scotland tested positive (Banyard et al. 2022). The first case of H5N1 detected in North American seabirds was a Great Black-backed Gull (Larus marinus) in Newfoundland and Labrador, Canada in November 2021, with phylogenetic analyses revealing the virus was of the European H5N1 lineage (Caliendo et al. 2022). In early April 2022, Common Eider (*Somateria mollissima*) was the first seabird species to test positive for HPAIV in the UK that year, followed in late April by Great Skua (Falchieri et al. 2022). Then followed an unprecedented epidemic in seabirds across the North Atlantic, with Northern Gannets (*Morus bassanus;* hereafter gannet), previously unknown to have been impacted by H5Nx, being severely impacted (Cunningham et al. 2022).

- 153 Gannets breed in 53 colonies of various sizes (<10 to >60,000 breeding pairs and non-breeding 154 immatures) on sea cliffs, stacks, and islands across both sides of the North Atlantic from Russia to 155 north-eastern North America (d'Entremont et al. 2022a, Jeglinski et al. 2023). During the breeding 156 season, gannets are medium-range foragers capable of travelling more than 1000 km to find food 157 (Hamer et al. 2007). Moreover, immature gannets travel greater distances than adults and prospect 158 other colonies (Votier et al. 2011, Votier et al. 2017, Grecian et al. 2018). During the non-breeding 159 period, gannets are migratory with birds from Iceland and the eastern Atlantic occupying marine 160 wintering grounds in UK waters, Iberia, with the majority wintering off the coast of West Africa (Veron 161 and Lawlor 2009, Fort et al. 2012, Furness et al. 2018, Deakin et al. 2019). Birds from the western 162 Atlantic primarily winter along the coasts of the eastern United States of America south to the Gulf of 163 Mexico, although some also winter off the coast of West Africa (Fifield et al. 2014). Considering the 164 oral-faecal spread of avian influenza viruses, opportunities for spread between gannets are most likely 165 at the colony but may also occur at foraging grounds and wintering areas by birds in the early stages 166 of infection (Weber and Stilianakis 2007).
- Globally, gannets are classified as Least Concern by the International Union for Conservation of Nature
 (IUCN) due to their wide distribution and growing populations in Europe and North America (IUCN
 2023). The European population comprises 75-94% of the global population with 55.6% breeding in
 the UK (IUCN, 2023). The Bass Rock, Scotland (56° 6' N, 2° 36' W) is the world's largest gannet colony
 with an estimated 75,259 apparently occupied sites (AOSs) in 2014 (Murray et al. 2015).
- 172 Understanding virus spread and infection outcome is essential to fully understand how the HPAIV 173 outbreak impacted gannets and other seabirds. Here, we provide the first comprehensive assessment 174 of the spatio-temporal occurrence of HPAIV outbreaks at most gannet colonies across their North 175 Atlantic breeding range. Moreover, to better understand HPAIV transmission, immunity, and the 176 potential for population recovery, we present detailed results from the largest gannet colony at Bass 177 Rock, Scotland. We quantify how the 2022 HPAIV outbreak influenced adult survival and breeding 178 success and present a non-invasive method that has the potential to determine exposure status based 179 on iris colour.

180

181 **2. Methods**

a. Global context: HPAIV spread across the North Atlantic gannet metapopulation

183 We collated and mapped data on the timing of unusually high gannet mortalities (the earliest 184 observations notable to fieldworkers familiar with their sites) at existing colonies across the global 185 metapopulation as defined by Jeglinski et al. 2023. Colonies in Norway, Iceland and some Irish colonies 186 were not monitored directly, but instead we gathered information on dead gannet sightings reported 187 to the Norwegian Species Observation System (www.artsobservasjoner.no), the Icelandic Food and 188 Veterinary Authority and to the Department of Agriculture, Food and the Marine's (DAFM) Avian Check 189 App (https://aviancheck.apps.services.agriculture.gov.ie/), and we associated these observations with 190 the nearest gannet breeding colony. We also collated information on positive HPAIV tests associated 191 with gannet colonies, based on data from the national testing laboratories for the relevant countries. 192

b. Case Study: Bass Rock

194

' I. Health and safety and biosecurity

Strict biosecurity and health and safety measures were followed to ensure the safety of birds and field workers. During handling our Personal Protection Equipment (PPE) comprised coveralls, face masks, goggles, disposable aprons, and gloves. Safe4 disinfectant was used for disinfecting equipment and footwear (see Supplementary Online Material S1).

- 199
- 200

II. Impact of HPAIV on apparently occupied sites, breeding success and adult survival

201 Apparently occupied sites - A DJI Matrice 300 RTK unmanned aircraft system fitted with a DJI-Zenmuse 202 L1 LiDAR and photogrammetry sensor was flown over the Bass Rock between 15:07-15:19 on 30th June 203 to count live and dead birds. All flights were conducted from the southern tip of the island with a Real-204 Time-Kinematic (RTK) base station, in good light with light winds (<5ms⁻¹) enabling a flight speed of 4 205 ms⁻¹, with image sidelap of 70% and endlap of 80%. The resulting 102 images (captured with 0.001 of 206 a second shutter speed and auto ISO) collected at an altitude of 100 m above ground level, were 207 processed through Agisoft Metashape (Agisoft LLC, St Petersburg, Russia) to produce an orthomosaic 208 of the Bass Rock with a ground sampling distance of approximately 3 cm (see Supplementary Online 209 Material S2). The composite image was loaded into DotDotGoose version 1.5.3 (DotDotGoose 210 (amnh.org)) to allow manual counting of birds on the colony. White birds were presumed to be adults 211 but could not be distinguished from 4-5-year-old immatures. Birds were considered dead based on 212 spread wings or contorted body shape, or alive if their posture was apparently natural or too indistinct 213 to see.

Breeding success - We monitored 93 active nests in two study sites, during 14 visits between 15th June
 and 14th August 2022. All nests had an egg on the first visit, those with a chick on 14th August were
 considered successful.

Adult survival - Visual searches for 370 colour-ringed adults (marked during 2010-2021) took place
 weekly (total of 12 days) from 15th June until 30th July 2022. Nest sites of colour-ringed birds were
 repeatedly scanned from a distance of between ~5-30m and the ring sequence of each bird recorded
 during a total of ~11 person-observation hours each day.

- 221 We constructed annual encounter histories for each marked bird using resighting data from July 2022 222 and from visits made in July 2011-2021. A goodness-of-fit test (GOF) showed that a fully time-223 dependent (both survival (φ) and resigning (p) probabilities vary with time) Cormack-Jolly-Seber (CJS) 224 model did not fit the data well (GOF: χ^2_{34} = 73.33, P = <0.01) with evidence of trap dependence 225 (TEST2.CT; z = -6.1484, two-sided test, p < 0.01) but no evidence for transience (TEST3.SR; z = -1.9044, 226 two-sided test, p = 0.056). After accounting for trap-dependence a variance inflation factor (\hat{c}) of 1.212 227 was estimated by U-CARE (Choquet et al. 2009). Therefore we set $\hat{c} = 1.212$ to account for the over-228 dispersion in the data and a two-stage TSM structure was applied to model re-sightings.
- 229 Models were specified in MARK (Version 9.0, White and Burnham 1999) with the candidate model set 230 (n=4) built so that the survival and resignting probability parameters could vary with year (*t*) or remain 231 constant over time (*c*).
- 232
- 233

III. Serology and iris colour

During September 2022 we caught 19 apparently healthy chick-rearing adults and took ~1 ml of blood from the tarsal vein (under licence from the UK Home Office; Project licence number PEAE7342F). Sampling effort focused on catching equal numbers of birds with healthy and abnormally black irises, seen for the first time during the outbreak. Birds were caught from seven distinct locations to minimise potential bias in virus exposure between clusters of nests. Where possible, birds with chicks were caught preferentially to guarantee that they had been present throughout the HPAIV outbreak. Birds without chicks were caught if they appeared to be holding a territory.

We took external cloacal swabs from 18 of the 19 birds to test for any possible asymptomatic HPAI infection. Blood and cloacal swabs were stored in a cool bag with ice blocks in the field, then stored at ~4°C before being transported directly to the UK reference laboratory for avian influenza at the Animal and Plant Health Agency (APHA). Blood samples were tested for an indication of previous infection using an hemagglutination inhibition assay to detect antibodies to H5 avian influenza virus (clade 2.3.4.4b) using a viral antigen homologous to the outbreak virus. Swabs were first tested for influenza A virus nucleic acid following RNA extraction using a matrix (M) gene-specific real-time

reverse-transcriptase polymerase chain reaction (rRT-PCR) assay (Nagy et al. 2021) and a HPAIV
 specific H5 PCR assay (James et al. 2022). Unless already ringed, birds were fitted with a metal British
 Trust for Ornithology (BTO) ring and a blue plastic darvic ring engraved with a unique alphanumeric
 code to allow future identification.

- A Fisher's exact test was used to determine the associations between iris colour and exposure status.
- 253 Statistics were performed using R 4.1.1 (R Development Core Team 2007).
- 254

255 **3. Results**

a. Global Context: HPAIV spread across the North Atlantic gannet metapopulation

257 We gathered evidence of HPAI occurrence for 41 colonies. Unusually large numbers of dead gannets 258 were detected at 40 of 53 colonies during the breeding season, only one colony (Biørnøya) was not 259 affected, and 12 colonies were not monitored (Figure 1). Positive H5N1 samples were associated with 260 24 of the 41 sampled colonies (58%), either through direct sampling of dead gannets from the colony 261 or by proximity of dead gannets to colonies. A small colony at Store Ulvøyholmen, Norway (330 262 Apparently Occupied Nests (AONs) in 2015, Barrett et al. 2017) was reported abandoned (Børge Moe, 263 pers comm) and, since dead gannets were reported close to the colony, this may have been due to 264 HPAI. One gannet sample from a bird found dead at Kjelmøya (Norway) tested positive for H5N5.

265 The earliest outbreaks occurred in the northeast Atlantic in Iceland (at Eldey, Brandur and Raudinupur during 15th, 17th and 26th April), followed by Shetland, Scotland (Noss and Hermaness on 1st and 4th 266 267 May, respectively) then the Outer Hebrides, Scotland (St Kilda, 10th May). Subsequent outbreaks appeared to occur from early June in southern Norway (Runde, 8th June). The concurrent, southwards 268 269 progression occurred along the east coast of the UK (e.g., Troup Head, 20th May, Bass Rock 4th June). 270 By mid-June, there were HPAIV outbreaks in northern Norway (Syltefjord, 16th June), the southern 271 North Sea (Heligoland, 21st June), the Channel Islands (Les Etacs and Ortac, 28th June) and the 272 southernmost colony Rouzic, France (1st July). In July and early August, signs of HPAI appeared in 273 northwest Norway, the Faroe Islands (Mykineshólmur, 7th July) and in a clockwise progression around 274 the UK, followed by Wales (Grassholm, 21st July) and then in Ireland (Clare Island, Lambay, Bull Rock, 275 Little Skellig, Great Saltee, Ireland's Eye; 10th, 25th, 26th, 31st August, 1st and 12th September 276 respectively). The northernmost colony Bjørnøya (52 AON in 2016, Barrett et al. 2017) appeared 277 unaffected by HPAIV. No information was available for several remote colonies in the west and 278 northwest of Scotland but unusually high mortality at Sule Skerry was detected after the breeding 279 season in October (Wanless and Harris, in press).

The outbreaks in the northwest Atlantic metapopulation developed in parallel to these in the northeast, with the earliest outbreaks occurring between early and mid-May in the three colonies in

the Gulf of St. Lawrence (at Rochers aux Oiseaux, Magdalen Islands, 1st May and, Le Bonaventure, 20th
May) followed by the colonies in Newfoundland throughout June (Cape St. Mary's, 6th June, Baccalieu
Island, 17th June, and Funk Island, 24th June).

285

b. Case Study: Impact of HPAIV on Bass Rock

Unusually high gannet mortality during incubation in early June 2022 was the first suggestion of an
 HPAIV outbreak at the Bass Rock and subsequent testing of four carcasses from 4th June proved
 positive for clade 2.3.4.4b HPAIV H5N1.

290 I. Impact of HPAIV on apparently occupied sites, breeding success and adult survival

Apparently occupied sites - A total of 21,227 live birds were counted on the 30th June 2022. An additional 5,035 birds were identified as dead, approximately 3.3% of the breeding population (assuming 150,518 breeding adults from 75,259 AOS, Murray et al. 2015), however, many additional birds will have died at sea. Given the almost complete absence of immatures and non-breeders at the colony during June, it is highly likely that the majority of birds counted, both live and dead, would have been breeding adults.

297 Breeding success - Monitored nests declined from 93 to 23 (75% decline) between 15th June and 14th August. However, empty nest sites on the 15th June indicated nests had already failed prior to the start 298 299 of monitoring (Figure 2). The majority of the 93 nests had failed by the beginning of July with nest 300 abandonment leaving gaps within the colony (Figures 2 and 3). An index of breeding success was 301 estimated as 0.247 based on the presence of 23 large, apparently healthy chicks in the study areas on 302 the 14th August. Clinical signs of viral infection, seizures, and lethargy were observed in a small number 303 of chicks (aged 2+ weeks) outside of our study areas, but since they were not monitored their fate is 304 unknown.

Adult survival - The top model showed strong support for survival probability varying with time and
for re-sightings to vary with time following the first year after marking (Table 1). Adult survival
between 2021 and 2022 was 0.455 (95% CI: 0.153 – 0.794) compared with an average annual survival
of 0.940 (SD 0.035) between 2011 and 2021. The resighting probability during 2022 was 0.615 (95%
CI: 0.144 – 0.938) compared with an average of 0.839 (SD: 0.066) between 2011 and 2021.

310 Seven colour-ringed birds were found dead during June and July 2022 on the North Sea coasts of the

311 UK, Sweden and Denmark, and eight were found dead on the colony in October, compared with 3

312 dead recoveries between 2015 and 2021.

313 II. Serology and iris colour

All 18 birds tested negative for viral nucleic acid from cloacal swabs, indicating they were not currently
infected. Of the 19 blood samples, two were insufficient for testing and eight tested positive for H5
antibodies indicating a previous infection.

Black irises – instead of the usual pale blue – were first noted on 15-16th June 2022. Iris colour varied from completely black to mottled and with some variation between eyes and did not present like a dilated pupil (Figure 4). The likelihood of testing positive for HPAIV H5 antibodies was higher in birds with black irises (77.7%) compared to birds with normally coloured eyes (12.5%; Fisher's exact test; p <0.05). The hemagglutinin (HA) binding antibody levels in serum samples, as detected by a Haemagglutination Inhibition (HAI) titre, were 1/16 (n = 3) and 1/32 (n = 5, including the sample from the bird with healthy irises) (Table 2 and Supplementary Online Material, Table S2).

324

325 4. Discussion

a. Global Context: HPAIV spread across the North Atlantic gannet metapopulation

During summer 2022 HPAIV H5N1 was recorded for the first time in gannets, causing mortality on an unprecedented scale across their entire Atlantic breeding range. Positive tests from 58% of monitored colonies mean it is likely that unusually high mortality in the 16 untested colonies in 2022 was due to HPAI. Of the 41 colonies monitored, only one was confirmed to have been unimpacted/unaffected. Strong evidence of an HPAIV outbreak at a colony unmonitored during the breeding season, Sule Skerry, northern Scotland (Harris and Wanless in press) suggests it is likely some of the 12 remote unmonitored colonies were also affected.

All positive samples collated across the northeast and northwest Atlantic metapopulations were subtype H5N1 apart from a single gannet sample testing positive for subtype H5N5 from the Sør-Varanger municipality in Troms and Finnmark county, Norway. In Norway, Subtype H5N5 has also been detected in 30 birds from different species, including White-tailed Eagles, gulls (*Laridae*), Great Skuas and corvids (*Corvidae*) (S. Granstad, personal communication, March 26, 2023).

Although a thorough estimation of gannet mortality during the 2022 HPAIV outbreak is beyond the scope of the paper, we document the spread of the HPAIV outbreak and provide details on impacts at the largest gannet colony. Following the first confirmed cases in Iceland during April 2022, HPAIV was detected almost simultaneously across the northeast and northwest Atlantic metapopulations. HPAIV outbreaks, confirmed and inferred from dead untested birds, occurred in at least 75% of all 53 known gannet colonies. While gannets are a well-studied species, we note that sampling effort was not standardised among colonies (e.g. uncertainty in data from northern Norway, Iceland and some of the

346 Irish colonies is largely due to the use of passive surveillance data rather than direct colony
347 monitoring), but we have no reason to believe this leads to an inaccurate representation of the timing
348 of HPAIV outbreaks.

b. Possible mechanism of HPAIV transmission between gannet colonies

350 The scale and speed at which HPAIV spread through the gannet metapopulation was dramatic, but 351 the mechanism of transmission and the subsequent spread between colonies is unclear. A possible 352 source may have been infectious gannets returning from their wintering areas. During the spring 353 migration, gannets in the eastern North Atlantic frequently perform a clockwise loop around the UK, 354 with Icelandic breeders arriving earlier than those breeding on the Bass Rock (Furness et al. 2018). 355 However, gannets from different colonies overlap to some degree in the wintering areas (Fort et al. 356 2012; Furness et al. 2018), making the sequential nature of the spread less likely due to differences in 357 migratory timing. Yet an unprecedented stranding of dead adult gannets on the Dutch coast prior to 358 the start of the breeding season in April 2022 potentially indicates HPAIV exposure over the previous 359 winter although none of these birds were tested (Camphuysen et al. 2023).

360 The timing of outbreaks on each side of the Atlantic and throughout the northeast metapopulation, 361 might point towards HPAIV transmission via other infected seabirds. Great Skuas (Grecian et al. 2016) 362 were severely affected by HPAIV H5N1 in Scotland in 2021 (Banyard et al. 2022) and again in 2022 363 (Camphuysen et al. 2022, Falchieri et al. 2022). Great Skua breed in close proximity to gannets in 364 Iceland, the Faroes and northern Scotland (Birdlife International, 2023) and overlap with the winter 365 range of gannets from both sides of the North Atlantic (Magnusdottir et al. 2012, Fifield et al. 2014). 366 Great Skua regularly kleptoparasitise gannets (Anderson 1976) which in addition to transmission via 367 faeces and respiratory secretions could explain the spread across taxa. Brown Skuas (Stercocarius 368 antarcticus) are likely vectors of avian cholera on Amsterdam Island, Indian Ocean (Gamble et al. 2019) 369 and we speculate a similar role for Great Skuas triggering the HPAIV outbreak in gannets in 2022. Yet 370 this does not explain the subsequent spread through the gannet metapopulation, and questions 371 remain about why spill-over into gannets may or may not have occurred during the 2021 outbreak 372 among skuas. Similarly, waterfowl and gull species have been found to play an important role in 373 intercontinental transmission of LP and HPAIVs via Iceland, the link between the East Atlantic and 374 North American Atlantic Flyways (Duesk et al. 2014). Gulls are known to frequent seabird colonies to 375 opportunistically prey on eggs and chicks (Donehower et al. 2007, pers obs) and may therefore have 376 played a role in virus spread.

The subsequent clockwise spread around the UK seems unlikely to be linked to centrally-placed adults
foraging at sea, based on current evidence. During chick-rearing, gannets have colony-specific foraging
ranges with limited overlap (Wakefield et al. 2013) and tend to have individual specific foraging

380 grounds (Wakefield et al. 2015, Votier et al. 2017). However, the HPAIV outbreak may have altered 381 their movement behaviour leading to an increased inter-colony contact (Jeglinski et al. in prep; 382 d'Entremont and Montevecchi unpubl. data). Immature gannets are another possible route for 383 spreading the virus while prospecting among colonies (Votier et al. 2011). They also have larger 384 foraging ranges than breeders (Votier et al. 2017, Grecian et al. 2018), and therefore a greater chance 385 of inter-colony overlap. Nevertheless, immature gannets tend to return to the colony much later than 386 adults, being scarce during April-May and only appearing in large numbers during June/July (Wanless 387 1983, Nelson 2002), so were unlikely to have played a role during outbreaks during April and May, 388 though they may have played a role during outbreaks later in the breeding season (Figure 1). More 389 research into virus incubation and length of infectious period in addition to possible transmission 390 pathways between species that overlap in their wintering, migratory and breeding areas is paramount 391 (Hill et al. 2022).

392

c. Case Study: Impact on Bass Rock Gannet Colony

393 Drone footage on 30th June recorded 5,035 dead individuals that represented ~3% of breeding adult 394 gannets on Bass Rock. This is likely an underestimate as it excludes decomposed birds or those that 395 died at sea and does not account for the colony growth since 2014 (Murray et al. 2017). This figure 396 compares with an estimated 7% mortality at Mykineshólmur, Faores (unpublished) and 6% at Sule 397 Skerry, Scotland (Harris and Wanless, in press), both from aerial counts although the Sule Skerry count 398 was performed at the end of the breeding season. Drone counts in late June indicate that the colony 399 was ~71% smaller than during the last full colony count in 2014 (Murray et al. 2015). However, the 400 colony had grown since 2014 (Murray 2017) so again, this is almost certainly an underestimate, though 401 note that different methodologies and counting units make a direct comparison difficult.

Around one quarter of nests with an egg on 15th June still had a chick in late August, which is much
lower than the mean UK gannet breeding success during 1961–2018 (mean ± standard deviation) 0.72
± 0.12 (Jeglinski et al. 2023). There are methodological differences in approach, but the comparison
provides a further indication of the severe impact of the virus. The primary cause of breeding failure
appeared to be nest abandonment, either when adults did not return from foraging trips or died at
the nest.

Adult survival was approximately 42% lower than the average of 0.940 (SD 0.035) between 2011 and 2021. The reduction in the number of re-sighted colour-ringed birds indicates that a large proportion of adults have died, but a full assessment of the impact on adult survival will have to wait until 2023 when visual searches will be made for returning birds. Similar to most seabirds, gannets are a longlived species making their populations particularly sensitive to changes in adult survival therefore the

413 consequences of a significant reduction in adult survival could be considerable (Croxall & Rothbury,414 1991).

415 Despite a modest sample size, our study suggests that gannets infected with HPAIV H5N1 can survive, 416 with important implications for the long-term consequence of the virus impact. We also found that 417 black iris coloration in otherwise apparently healthy gannets is a likely indicator of prior infection. One 418 seropositive bird had healthy irises, but this may be related to a different subtype of HPAIV or LPAIV 419 (Wilson et al. 2013), to waning antibody levels following prior infection, or may suggest that not all 420 infected birds develop black irises. We suggest the two birds with black irises that tested negative for 421 antibodies had previously been infected but had already lost the antibodies, however further 422 investigation is needed to inform on antibody persistence. Black eyes have been reported in gannets 423 once before, but the reason is unknown (J. Swales pers comm., Balfour 1922). During the HPAIV 424 outbreak in 2022, gannets with black irises were also reported from colonies in the UK (Bempton Cliffs, 425 Grassholm and Ortac), France (Rouzic), Germany (Heligoland) and Canada (île Bonaventure). In early 426 spring 2023, gannets with black irises were observed at the Bempton Cliffs, Bass Rock, Troup Head, 427 Rouzic and Les Etacs colonies, suggesting the potential for a longer-lasting or even permanent 428 modification of the iris.

429

430 **5. Recommendations**

431 Future research should quantify changes in demography (i.e. population size, adult survival and 432 breeding success) of gannets and other impacted seabirds while also assessing whether previously 433 infected birds have developed immunity in order to model disease progression and long-term impacts 434 of HPAIV (Hill et al. 2019). Additionally, assessments of infection and mortality rates in different age 435 classes, and of how previous infection might influence fertility or the outcome of a second infection 436 are also needed (Wilson et al. 2013). Juvenile gannets have been found to carry antibodies to HPAIV 437 (Grémillet et al. in prep) but it is unknown whether these were maternally derived or produced in 438 response to infection (DeVriese et al. 2010).

Black irises may provide a useful non-invasive diagnostic tool, more work is required to better understand its efficacy, if it applies to any other species, and whether there are any potential costs in terms of vision. Ophthalmology exams or histopathology examinations are also required to determine what is causing the black colouration. It is also desirable to better understand the circulation of LPAIVs and prior exposure to antigenically related HPAIV sub-types in seabird populations to better understand potential cross-protective immunity, as well as the potential for compensatory recruitment to offset mortality (Votier et al. 2008, Jeglinski et al. 2023).

- 446 If sampling for live virus, we recommend cloacal swabs be taken in conjunction with oropharyngeal
- 447 swabs (Suarez et al. 2000, van den Brand et al. 2018) because of possible differences in virus genotype
- 448 detectability (Slomka et al, in prep). Primary flight feathers can also be used as a diagnostic indication
- 449 of systemic viral infection as infectious virus can be detected in these samples (Nuradji et al. 2015).
- 450 The 2022 HPAIV H5N1 outbreak has provided another significant stressor to those already faced by
- 451 our rapidly declining seabird populations (Dias et al. 2019, Careen et al. 2023) quantifying and
- 452 perhaps even mitigating its impact is therefore crucial if we hope to see a healthy seabird assemblage
- 453 across the world's oceans.

454 6. References

- Andersson, M. 1976. Predation and kleptoparacitism by skuas in a Shetland seabird colony. *Ibis*. **118**(2), 208-217. https://doi.org/10.1111/j.1474-919X.1976.tb03066.x
- 457 Arnal, A. Marion Vittecoq, M., Pearce-Duvet, J., Gauthier-Clerc, M., Boulinier, T & Jourdain, E. 2014.
- 458 Laridae: A neglected reservoir that could play a major role in avian influenza virus epidemiological
- 459 dynamics. Critical Reviews in Microbiology. 41(4). <u>10.3109/1040841X.2013.870967</u>
- 460 Balfour, H. 1922. Varieties of the common gannet. British Birds.
- 461 <u>https://britishbirds.co.uk/sites/default/files/V15_N04_P082-084_A019.pdf</u>
- 462 Banyard, A. C., Lean, F. Z. X., Robinson, C., Howie, F., Tyler, G., Nisbet, C., Seekings, J., Mirisr, S.,
- 463 Whittard, E., Ashpitel, H. F., Bas, M., Byrne, A. M. P., Lewis, T., James, J., Stephan, L., Lewis, N. S.,
- 464 Brown, I. H., Hansen, R. D. E. & Reid, S. M. 2022. Detection of Highly Pathogenic avian influenza virus
- 465 H5N1 clade 2.3. 4.4 b in Great Skuas: a species of conservation concern in Great Britain. *Viruses.* 14:
 466 212.
- Barrett, R.J., Strøm, H. & Melnikov, M. 2017. On the polar edge: the status of the northern gannet
 (*Morus bassanus*) in the Barents Sea in 2015-16. *Polar Res.* 36:1, DOI:
- 469 10.1080/17518369.2017.1390384
- 470 Blagodatski, A.; Trutneva, K.; Glazova, O.; Mityaeva, O.; Shevkova, L.; Kegeles, E.; Onyanov, N.; Fede,
- 471 K.; Maznina, A.; Khavina, E., Yeo, S-J., Park, H. & Volchkov, P. 2021. Avian Influenza in wild birds and
- 472 poultry: Dissemination pathways, monitoring methods, and virus ecology. *Pathogens*. **10**: 630.
- 473 https://doi.org/10.3390/ pathogens10050630
- 474 Boulinier, T. 2023. Avian influenza spread and seabird movements between colonies. *Trends Ecol*
- 475 *Evol.* **23**:S0169-5347(23)00031-9. doi: 10.1016/j.tree.2023.02.002.
- 476 Burggraff, S., Kapala, A.J., Bingham, J., Lowther, S., Selleck, P, Kimpton, W. & Bean, A.G.D. 2014.
- 477 H5N1 infection causes rapid mortality and high cytokine levels in chickens compared to ducks. *Virus*478 *Res.* 185: 23-31. doi: 10.1016/j.viruses.2014.03.012
- 479 Caliendo, V., Leijten, L., Begeman, L., Poen, M.J., Fouchier, R.A.M., Beerens, N., Kuiken, T. 2020.
- 480 Enterotropism of Highly Pathogenic avian influenza virus H5N8 from the 2016/2017 epidemic in
- 481 some wild bird species. *Vet Res.* **51**(1):117. doi: 10.1186/s13567-020-00841-6.

482 Caliendo, V., Lewis, N.S., Pohlmann, A., Baillie, S.R., Banyard, A.C., Beer, M., Brown, I.H., Fouchier,

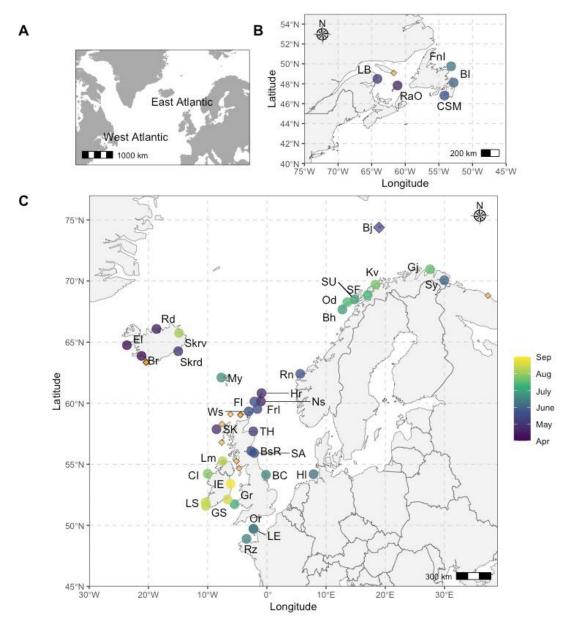
- 483 R.A.M., Hansen, R.D.E., Lameris, T.K., Lang, A.S., Laurendeau, S., Lung, O., Robertson, G., van der
- 484 Jeugd, H., Alkie, T.N., Thorup, K., van Toor, M.L., Waldenström, J., Yason, C., Kuiken, T. & Berhane, Y.
- 485 2022. Transatlantic spread of Highly Pathogenic avian influenza H5N1 by wild birds from Europe to
- 486 North America in 2021. *Sci Rep.* **11**;12(1):11729. doi: 10.1038/s41598-022-13447-z. PMID: 35821511;
- 487 PMCID: PMC9276711.
- Camphuysen, K., Kelder, L., Zuhorn, C. & Fouchier, R. 2023. Avian influenza panzootic leads to mass
 strandings of Northern Gannets Morus bassanus in the Netherlands, April-October 2022. Limosa (in
 press).
- 491 Camphuysen, C.J. Gear, S.C. & Furness. R.W. 2022. Avian influenza leads to mass mortality of adult
 492 Great Skuas in Foula in summer 2022. *Scottish Birds*. 42(4), 312-323.
- 493 Careen, N., d'Entremont, K., Mooney, C., Montevecchi, W. 2023. Avian influenza (H5N1) and a
- 494 marine heatwave spell reproductive disaster for Northern Gannets at their southernmost colony.
- 495 Poster, Pacific Seabird Group Annual Meeting (San Diego, 15-17 February).
- Choquet, R., Lebreton, J.D., Gimenez, O., Reboulet, A.M. & Pradel, R. 2009. U-CARE: utilities for
 performing goodness of fit tests and manipulating Capture– Recapture data. *Ecography.* 32, 1071–
 1074. https://doi.org/10.1111/j.1600-0587.2009.05968. x.
- 499 Croxall, J.P. & Rothery, P. 1991. Population regulation of seabirds: implications of their demography
 500 for conservation. p272-296 in Perrins, C.M., Lebreton, J-D. & Hiron, G.J.M. editors *Bird population*501 Construction of the second secon
- 501 *Studies: relevance to conservation and management*. Oxford University Press, Oxford, England.
- 502 Cunningham, E.J.A, Gamble, A., Hart, T., Humphreys, E.M., Philip, E., Tyler, G. & Wood, M.J. 2022.
- 503 The incursion of Highly Pathogenic Avian Influenza (HPAI) into North Atlantic seabird populations: An
- 504 interim report from the 15th International Seabird Group conference. Report on HPAI in North
- 505 Atlantic seabirds. *Seabird.* **34**.
- 506 Deakin, Z., Hamer, K.C., Sherley, R.B., Bearhop, S., Bodey, T.W., Clark, B.L., Grecian, W.J., Gummery,
- 507 M., Lane, J., Morgan, G., Morgan, L., Phillips, R.A., Wakefield, E.D & Votier, S.C. 2019. Sex differences
- 508 in migration and demography of a wide-ranging seabird, the northern gannet. *Mar Ecol Prog Ser.*
- 509 622: 191-201. doi.org/10.3354/meps12986
- 510 d'Entremont, K.J.N., Guzzwell, L.M., Wilhelm, S.I., Friesen, V.L., Davoren, G.K., Walsh, C.J. &
- 511 Montevecchi, W.A. 2022a. Northern Gannets (*Morus bassanus*) breeding at their southern limit
- 512 struggle with prey shortages as a result of warming waters, ICES J Mar Sci. **79** (1), 50–60.
- 513 https://doi.org/10.1093/icesjms/fsab240
- 514 DeVriese, J., Steensels, M. Palya, Gardin, Y., Moore Dorsey, K., Lambrecht, B., Van Borm, S. & van
- 515 den Berg, T. 2010. Passive protection afforded by maternally-derived antibodies in chickens and the
- 516 antibodies' interference with the protection elicited by avian influenza–inactivated vaccines in
- 517 progeny. Avian Dis. 54(s1), 246-252. https://doi.org/10.1637/8908-043009-Reg.1

- 518 Dias, M.P., Martin, R., Pearmain, E.J., Burfield, I.J., Small, C., Phillips, R.A., Yates, O., Lascelles, B.,
- 519 Garcia Borboroglu, P. & Croxall, J.P. 2019. Threats to seabirds: A global assessment. *Biol Conserv*.
 520 237: 525-537. <u>https://doi.org/10.1016/j.biocon.2019.06.033</u>.

521 Donehower, C.E., Bird, D.M., Hall, C.S. & Kress, S.W. 2007. Effects of gull predation and predator 522 control on tern nesting success at Eastern Egg Rock, Maine. *Waterbirds*. **30**(1):29-39.

- 523 Dusek, R.J., Hallgrimsson, G.T., IP, H.S., Jónsson, J.E., Sreevatsan, S., Nashold, S.W. 2014. North
- 524 Atlantic migratory bird flyways provide routes for intercontinental movement of avian influenza
- 525 viruses. *PLoS ONE*. **9**(3): e92075. https://doi.org/10.1371/journal.pone.0092075
- 526 EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control),
- 527 EURL (European Reference Laboratory for Avian Influenza), Adlhoch, C., Fusaro, A., Gonzales, J.L.,
- 528 Kuiken, T., Marangon, S., Niqueux, É., Staubach, C., Terregino, C., Aznar, I., Muñoz Guajardo, I. &
- Baldinelli, F. 2023. Scientific report: Avian influenza overview September–December 2022. EFSA
 Journal. 21(1):7786. https://doi.org/10.2903/j.efsa.2023.7786
- 531 Falchieri, M., Reid, S.M., Ross, C.S., James, J., Byrne, A.M.P., Zamfir, M., Brown, I.H., Banyard, A.C.,
- 532 Tyler, G., Philip, E. & Miles, W. 2022. Shift in HPAI infection dynamics causes significant losses in
- 533 seabird populations across Great Britain. Vet Rec. 191: 294-296. <u>https://doi.org/10.1002/vetr.2311</u>
- 534 Fifield, D.A., Montevecchi, W.A., Garthe, S., Robertson, G.J., Kuetzki, U. & Rail, J-F. 2014. Migratory
- 535 tactics and wintering areas of Northern gannets (*Morus bassanus*) breeding in North America.
- 536 Ornithol Monographs. **79**: 1-63. https://doi.org/10.1642/aoum.79-1
- 537 Fort, J., Pettex, E., Tremblay, Y., Lorentsen, S.-H., Garthe, S., Votier, S., Pons, J.B., Siorat, F., Furness,
- R.W., Grecian, W.J., Bearhop, S., Montevecchi, W.A., Gremillet, D. 2012. Meta-population evidence
- of oriented chain migration in northern gannets (*Morus bassanus*). *Front Ecol Environ*. **10**(5): 237-
- 540 242. https://doi.org/10.1890/110194
- 541 Furness, R.W., Hallgrimsson, G.T., Montevecchi, W.A., Fifield, D., Kubetzki, U., Mendel, B. & Garthe,
- 542 S. 2018. Adult Gannet migrations frequently loop clockwise around Britain and Ireland. *Ringing and*
- 543 *Migration*. 1–9. https://doi.org/10.1080/03078698.2018.1472971.
- 544 Gamble, A., Bazire, R., Delord, K., Barbraud, C., Jaeger, A., Gantelet, H., Thibault, E., Lebarbenchon,
- 545 C., Lagadec, E., Tortosa, P., Weimerskirch, H., Thiebot, J-B., Garnier, R., Tornos, J. & Boulinier, T.
- 546 2019. Predator and scavenger movements among and within endangered seabird colonies:
- 547 Opportunities for pathogen spread. J Appl Ecol. 57(2), 367-378. https://doi.org/10.1111/1365-
- 548 2664.13531
- 549 Grecian, W.J., Lane, J.V., Michelot, T., Wade, H.M. & Hamer, K.C. 2018. Understanding the ontogeny
- of foraging behaviour: insights from combining marine predator bio-logging with satellite-derived
- 551 oceanography in hidden Markov models. *Royal Society Interface*. **15**: 20180084.
- 552 <u>https://doi.org/10.1098/rsif.2018.0084</u>
- 553 Grecian, J.W., Witt, M.J. Attrill, M.J., Bearhop, S., Becker, P.H., Egevang, C., Furness, R.W., Godley,
- 554 B.J., González-Solís, J., Grémillet, D., Kopp, M., Lescroël, Amélie., Matthiopoulos, J., Patrick, S.C.,
- 555 Peter, H-U., Phillips, R.A., Stenhouse, I.J. & Votier, S.C. 2016. Seabird diversity hotspot linked to

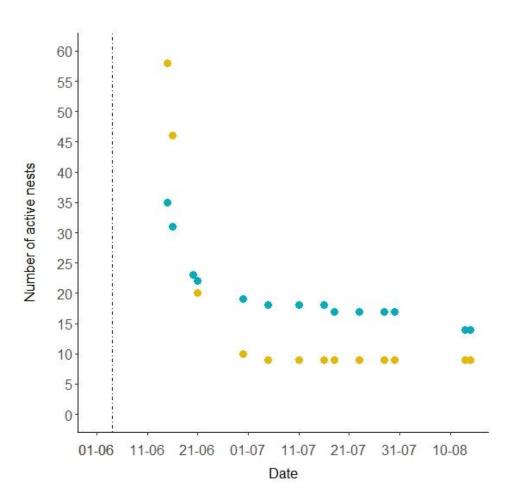
- 556 ocean productivity in the Canary Current Large Marine Ecosystem. *Biol. Lett.* **12**(8).
- 557 https://doi.org/10.1098/rsbl.2016.0024
- 558 Grémillet, D., et al. in prep


Hamer, K.C., Humphreys. E.M., Garthe, S., Hennicke, J., Peters, G., Gremillet, D., Phillips, R.A., Harris,

- 560 M.P. & Wanless, S. 2007. Annual variation in diets, feeding locations and foraging behaviour of
- 561 gannets in the North Sea: flexibility, consistency and constraint. *Mar Ecol Prog Ser.* **338**. 295-305.
- 562 Harris, M.P. & Wanless, S. A major mortality of Gannets due to a probable outbreak of High
- 563 Pathogenicity Avian Influenza on Sule Skerry in 2022. (in press Scottish Birds).
- Hill, N.J., Bishop, M.A., Trovão, N.S., Ineson, K.M., Schaefer, A.L., Puryear, W.B., et al. 2022.
- 565 Ecological divergence of wild birds drives avian influenza spillover and global spread. *PLoS Pathog*.
 566 18(5): e1010062. https://doi.org/10.1371/journal.ppat.1010062
- 567 IUCN. BirdLife International. 2023. Species factsheet: *Catharacta skua*. Downloaded from
 568 http://www.birdlife.org on 23/02/2023.
- 569 IUCN. BirdLife International. 2023. Species factsheet: *Morus bassanus*. Downloaded from
 570 http://www.birdlife.org on 20/03/2023.
- 571 James, J., Seekings, A.H., Skinner, P., Purchase, K., Mahmood, S., Brown, I.H., Hansen, R.D.E.,
- 572 Banyard, A.C. & Reid, S.M. 2022. Rapid and sensitive detection of high pathogenicity Eurasian clade
- 573 2.3.4.4b avian influenza viruses in wild birds and poultry. *J Virol Methods*. **301**:114454. doi:
- 574 10.1016/j.jviromet.2022.114454.
- 575 Jeglinski, J.W.E., Wanless, S., Murray, S., Barrett, R.T., Gardarsson, A., Harris, M.P., Dierschke, J.,
- 576 Strøm, H., Lorentsen, S-V. & Matthiopoulos, J. 2023. Metapopulation regulation acts at multiple
- spatial scales: Insights from a century of seabird colony census data. *Ecological Monographs*.
 https://doi.org/10.1002/ecm.1569
- 579 Magnusdottir, E., Leat, E.H.K., Bourgeon, S., Strøm, H., Petersen, A., Phillips, R.A., Hanssen, S.A.,
- Bustnes, J.O., Hersteinsson, P. & Furness, R.W. 2012. Wintering areas of great skuas *Stercorarius skua* breeding in Scotland, Iceland and Norway. *Bird Study*. 59:1–9.
- 582 Monne, I., Fusaro, A., Nelson, M.I., Bonfanti, L., Mulatti, P., Hughes, J., Murcia, P.R., Schivo, A.,
- 583 Valastro, V., Moreno, A., Holmes, E.C. & Cattoli, G. 2014. Emergence of a highly pathogenic avian
- 584 influenza virus from a low-pathogenic progenitor. *J Virol.* **88**(8):4375-88. doi: 10.1128/JVI.03181-13.
- 585 Murray, S., Harris, M.P. & Wanless, S., 2015. The status of the gannet in Scotland in 2013-14.
 586 Scottish Birds. 35: 3–18.
- 587 Murray, S. 2017. Gannets and tree mallow change on the Bass Rock, 2009-17. *Scottish Birds*.
 588 **37**(4):346-347.
- 589 Nagy A, Černíková L, Kunteová K, Dirbáková Z, Thomas SS, Slomka MJ, et al. 2021. A universal RT-
- 590 qPCR assay for "One Health" detection of influenza A viruses. *PLoS ONE* **16**(1): e0244669.
- 591 <u>https://doi.org/10.1371/journal.pone.0244669</u>

- 592 Nelson, B. 2002. The Atlantic Gannet. Poyser Monographs.
- 593 Nuñez, I.A. & Ross, T.M. 2019. A review of H5Nx avian influenza viruses. Ther Adv Vaccines
- 594 *Immunother*. **7**:2515135518821625. doi: 10.1177/2515135518821625.
- 595 Nuradji, H., Bingham, J., Lowther, S., Wibawa, H., Colling, A., Thanh Long, N & Meers, J. 2015. A
- 596 comparative evaluation of feathers, oropharyngeal swabs, and cloacal swabs for the detection of
- 597 H5N1 highly pathogenic avian influenza infection in experimentally infected chicks and ducks. J Vet
- 598 *Diagn Investig.* **27**:704-715. doi:10.177/1040638715611443
- 599 Ramey, A.M., Hill, N.J., DeLiberto, T.J., Gibbs, S.E.J., Hopkins, C., Lang, A.S., Poulson, R.L., Prosser,
- D.J., Sleeman, J.M., Stallknecht, D.E. & Wan, X. 2022. Highly Pathogenic avian influenza is an
- 601 emerging disease threat to wild birds in North America. *J Wildlife Manage*. **86**(2), e22171.
- 602 https://doi.org/10.1002/jwmg.22171
- 603 Roberts, L.C., Abolnik, C., Waller, L.J., Shaw, K., Ludynia, K., Robers, D.G., Kock, A.A., Makhado, A.B.,
- Snyman, A. & Abernethy, D. 2023. Descriptive epidemiology of and response to the High
- 605 Pathogenicity Avian Influenze (H5N8) epidemic in South African coastal seabirds. *Transbound Emerg*
- 606 Dis. 2023:2708458. doi.org/10.1155/2023/2708458Slomka et al. in prep
- 607 van den Brand, J.M.A., Verhagen, J.H., Veldhuis Kroeze, E.J.B., van de Bildt, M.W.G., Bodewes, R.,
- Herfst, S., Richard, M., Lexmond, P., Bestebroer, T.M., Fouchier, R.A.M. & Kuiken, T. 2018. Wild
- 609 ducks excrete Highly Pathogenic avian influenza virus H5N8 (2014–2015) without clinical or
- 610 pathological evidence of disease. *Emerg Microbes Infec.* **7**(1): 1-10. doi:10.1038/s41426-018-0070-9
- 611 Venkatesh, D., Poen, M.J., Bestebroer, T.M., Scheuer, R.D., Vuong, O., Chkhaidze, M., Machablishvili,
- A., Mamuchadze, J., Ninua, L., Fedorova, N.B., Halpin, R.A., Lin, X., Ransier, A., Stockwell, T.B.,
- 613 Wentworth, D.E., Kriti, D., Dutta, J., van Bakel, H., Puranik, A., Slomka, M.J., Essen, S., Brown, I.H.,
- 614 Fouchier, R.A.M. & Lewis, N.S. 2018. Avian Influenza Viruses in Wild Birds: Virus Evolution in a
- 615 Multihost Ecosystem. J Virol. 92(15): e00433-18. doi: 10.1128/JVI.00433-18
- Veron, P.K. & Lawlor, M.P. 2009. The dispersal and migration of the Northern Gannet *Morus bassanus* from Channel Islands breeding colonies. Seabird. 22, 37-47.
- 618 Votier, S.C., Birkhead, T.R., Oro, D., Trinder, M., Grantham, M.J., Clark, J.A., McCleery, R.H.
- 619 &Hatchwell, B.J. 2008. Recruitment and survival of immature seabirds in relation to oil spills and 620 climate variability. *J Anim Ecol.* **77**(5): 974-983.
- Votier, S.C., Fayet, A.L., Bearhop, S., Bodey, T.W. and others. 2017. Effects of age and reproductive
 status on individual foraging site fidelity in a long-lived marine predator. *Proc Biol Sci.* 284: 1859
- Votier, S. C., Grecian, W. J., Patrick, S., & Newton, J. 2011. Inter-colony movements, at-sea behaviour
 and foraging in an immature seabird: results from GPS-PPT tracking, radio-tracking and stable
 isotope analysis. *Mar Biol.* **158**: 355-362.
- Wakefield, E.D., Cleasby, I.R., Bearhop, S., Bodey, T.W., Davies, R.D., Miller, P.I., Newton, J., Votier,
- 627 S.C., & Hamer, K.C. 2015. Long-term individual foraging site fidelity--why some gannets don't change
 628 their spots. *Ecology*. 96(11), 3058-74. doi: 10.1890/14-1300.1.

- 629 Wakefield, E.D., Bodey, T.W., Bearhop, S., Blackburn, J., Colhoun, K., Davies, R., Dwyer, R.G., Green,
- 630 J.A., Gremillet, D., Jackson, A., Jessopp, M., Kane, A., Langston, R., Lescroel, A., Murray, S., Le Nuz,
- 631 M., Patrick, S., Peron, C., Soeanes, L., Wanless, S., Votier, S. & Hamer, K.C. 2013. Space partitioning
- 632 without territoriality in gannets. *Science*. **341**, 68-70. 10.1126/science.1236077
- 633 Wan, X.F. 2012. Lessons from emergence of A/goose/Guangdong/1996-like H5N1 highly pathogenic
- 634 avian influenza viruses and recent influenza surveillance efforts in southern China. *Zoonoses Public*
- 635 *Hlth.* **59**, Suppl 2(0 2):32-42. doi: 10.1111/j.1863-2378.2012.01497.x.
- Wanless, S. 1983. Seasonal variation in the numbers and condition of gannets *Sula bassana* dying on
 Ailsa Craig. *Bird Study*. **30**: 102-108.
- Weber, T.P. & Stilianakis, N.I. 2007. Ecologic immunology of avian influenza (H5N1) in migratory
 birds. *Emerg Infect Dis.* 13(8): 1139-43. doi: 10.3201/eid1308.070319
- 640 Wilson, H.M., Hall, J.S., Flint, P.L., Franson, J.C., Ely, C.R., Schmutz, J.A. & Samuel, M.D. 2013. High
- 641 seroprevalence of antibodies to avian influenza viruses among wild waterfowl in Alaska: Implications
- 642 for surveillance. PLoS ONE. 8(3): e58308. https://doi.org/10.1371/journal.pone.0058308
- 643 Xu, X., Subbarao, K., Cox, N. J. & Guo, Y. 1999. Genetic characterization of the pathogenic influenza
- 644 A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1
- 645 viruses from the 1997 outbreaks in Hong Kong. *Virology*. **261**: 15–19.
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 002
- 663


664 **Figures**

665

666 Figure 1: The timing of HPAIV outbreaks across the gannet metapopulation in 2022, based on the 667 first date unusual mortalities in adults were observed. Affected colonies (n = 40) are indicated by 668 circles, coloured by date. Colonies where information is unavailable (n=12) are indicated by orange 669 diamonds. Letter combinations indicate colony name abbreviations, for full colony name see 670 Supplementary Online Material, Table S1). A) Geographical context. B) Colonies in the West Atlantic. 671 C) Colonies in the East Atlantic. A navy-coloured diamond indicates Bjørnøya (Bj, Norway, the 672 northernmost colony, H Strøm pers. obs.) where no signs of HPAIV were observed. The Store 673 Ulvøyholmen colony (SU) was found abandoned (confirmation received 29th June 2022 in litt.) No 674 signs of HPAIV were detected in the colony Ailsa Craig (AC) between Northern Ireland and Scotland 675 on the 28th July 2022, but there was no visit later in the season when the surrounding colonies were 676 affected.

677

678

679 Figure 2: The number of active nests within two study areas on Bass Rock; area 1 in blue, area 2 in

yellow. Dotted vertical line indicates 4th June, the date carcasses were collected for testing by the
 Animal Plant Health Agency (APHA).

682

683

684

685

686

Figure 3. Nest failures, apparent from gaps between birds, and dead birds in study area 2 of the Bass
Rock on (a) 15th June and (b) 30th June, (c and d) study area on 29th April 2022 and 23rd July 2020
showing typical nest spacings and densities for the respective time of year; (c) pre-laying and (d)
mid-chick rearing. Coloured dots in a) and b) indicate the status of the bird; red - dead, green visibly sick, yellow - active nest with healthy adults, dark blue - non-breeding healthy adults, light
blue painted rocks delineate a path.

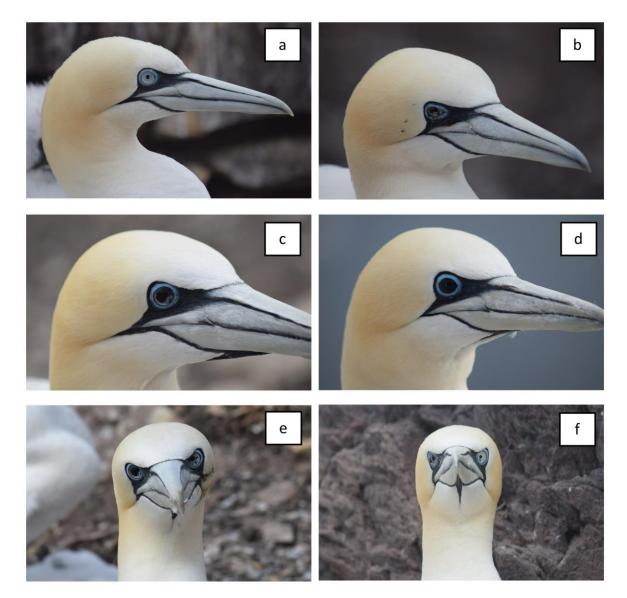


Figure 4. Gannets on the Bass Rock colony in 2022 with black flecking in their irises. The condition
 was variable between individuals from a) healthy, b and c) increasing degrees of black flecks in the
 iris d) completely black iris, and asymmetrical irises affected to e) greater and f) lesser extents. No
 pattern was detected in the asymmetry of black irises.

718 Tables

Table 1. Candidate model set for estimating annual survival of northern gannets from Bass Rock

- between 2010 and 2022. Inflation factor (\hat{c}) = 1.212. Effects fitted to apparent survival (ϕ) and
- resighting probabilities (*p*) (*t*: time dependent; *c*: time constant). AICc: Akaike Information Criterion
- 722 for small samples. ΔAICc: difference in AICc between model in question and best model. Num. Par.:
- 723 number of parameters.

_							
_	Model	QAICc	ΔQΑΙCc	AICc	Model	Num. Par.	QDeviance
				Weights	Likelihood		
	φ(t) <i>p</i> (c/t)	2031.27	0.00	0.912	1.000	24	377.31
	φ(c) p(c/t)	2036.85	5.58	0.056	0.061	13	405.39
	φ(t) p(c/c)	2037.94	6.67	0.032	0.036	14	404.45
	φ(c) <i>p</i> (c/c)	2225.89	194.62	0.000	0.000	3	614.63

Table 2. Serological results from 17 adult gannets from Bass Rock tested for H5 antigen.

		HPAI H5 antibody status		
		Positive	Negative	
tuis condition	Black	7	2	
Iris condition	Healthy	1	7	