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Development of Particle Resolved - Subgrid Corrected Simulations:
Hydrodynamic force calculation and flow sub-resolution corrections

E. Butaye?®, A. Toutant®, S. Mer?, F. Bataille®

“PROMES Laboratory, CNRS — University of Perpignan (UPVD), 66100 Perpignan, France

Abstract

Particle Resolved - Direct Numerical Simulation (PR-DNS) of fluid—solid particles is conducted to study
hydrodynamic interactions at the interface between phases. An original distinction is proposed between
Particle Resolved Simulation (PRS) and Particle Resolved - Direct Numerical Simulation (PR-DNS). In
PR-DNS, velocity gradients and pressure are fully resolved, which required several dozens of meshes in the
diameter of the particles (40 in Stokes configuration), whereas for PRS, with grid resolution of 10 meshes
per diameter, the gradients are only partly resolved, resulting in a sub-resolution of hydrodynamic forces
exerted by the fluid to the interface of solid particles. The very high computational cost, associated to
PR-DNS, limits its application to academic cases, even though, it was originally developed to study the
collective physical effects of a fluid—particle assembly. It explains why numerous simulations with a grid
resolution of only a dozen meshes in the particle’s diameter — typically between 10 and 16 — referred to
here as PRS, can be found in the literature. In these cases, the velocity gradients and pressure are not
accurately computed, inducing an error in the hydrodynamic forces exerted by the fluid to the interface
of particles. This paper aims to clarify the hydrodynamic interactions at this scale for a single particle
settling in an infinite medium under Stokes configuration. For this purpose, an original method, designed
for solid particles, is proposed to compute hydrodynamic forces. A mesh-dependent correlation is then
built to numerically correct the partially resolved hydrodynamic forces obtained with PRS, in what we call
Particle Resolved - Subgrid Corrected Simulations (PR-SCS). Finally, the correction is assessed for various
Reynolds numbers and density ratios under the Stokes assumption.

Keywords: Fluid - particles flows, DEM, Particle Resolved - Direct Numerical Simulation, Hydrodynamic
force calculation, Fully resolved particles, Viscous penalization

1. Introduction fluidized beds behavior [1-5]. Flow regimes transi-
tions are now well characterized in terms of particles
shape [6] and hydrodynamics [5]. However, local
measurements of flow properties remain very diffi-
cult without invasive methods. Numerical studies
appear therefore essential to fully characterize the
flow, see [7-9] for a review of numerical methods

In the context of solar power generation, fluidized
beds are used as a heat transfer fluid within verti-
cals tubular receivers in solar towers power plants.

Under certain conditions of velocity and pressure,
the flow attributes properties to solid particles that

are specific to fluids (mixing viscosity, bubbly flow, and CFD simulations of fluidized beds.
waves. .. ). Over the last decades, numerous ex-
perimental studies in the literature have described Depending on the precision required, numerical

modeling can be conducted at different scales. On
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tional domain and is transported at each time step
through a continuity equation [10, 11]. At labora-
tory scale, Euler-Lagrange methods represent indi-
vidually each particle [12]. Interactions between the
flow and particles are not resolved but considered
by means of drag, lubrication, added mass, history,
and lift forces. The expression of such forces rely
on correlation well referenced in the literature [13—
16]. Particles are either simply advected by the
fluid (one-way coupling) or collision laws are used
to model interactions between them (four-way cou-
pling) [17]. In this method, the solving of the fluid
flow and the treatment of particles is known as
Computational Fluid Dynamics - Discrete Element
Method (CFD-DEM). Navier-Stokes equations are
solved for the fluid phase and Newton-Euler equa-
tions coupled with collision models [18] are solved
for the solid phase [19]. On a smaller scale, Particle
Resolved - Direct Numerical Simulations (PR-DNS)
intend to fully characterize interactions between the
fluid and particles. In this framework, the solving
of the flow is identical to CFD-DEM, but forces ex-
erted by the particles to the fluid are fully resolved.
PR-DNS is widely used in the literature to study lo-
cal interactions between the fluid and the particles,
and especially to develop precise drag force models
to inform Euler-Lagrange methods [20-23].

At least 5 Eulerian meshes in the boundary layer
are required to fully solve fluid—particle interactions
in PR-DNS [21]. The higher the Reynolds number,
the smaller the dynamic boundary layer and thus
the higher the grid resolution must be. However,
the term PR-DNS is commonly employed when
about 10 Fulerian meshes represent the particle.
In most cases, the boundary layer is only partially
resolved and the use of the term PR-DNS seems no
longer relevant. PR-DNS are thus, with fully re-
solved boundary layers, limited to reproduce sim-
ple experimental case [24, 25]. Nonetheless, these
PR-DNS simulations are used to provide models for
Euler—Euler simulations. A gap lies between the
very simple cases in PR-DNS and the actual appli-
cation in industrial areas. The present article aims
to address part of the aforementioned problem by
enlightening fluid—particle interactions. As a first
step, this paper focuses on a single particle in sed-
imentation. Prospects for using this methodology
in more complex flows, such as fluidized beds, are
drawn in the conclusion.

One propose to distinguish two cases in Par-
ticle Resolved Simulations (PRS). Firstly, simu-
lations where boundary layers are fully resolved,

known as PR-DNS. In this case, velocity gradi-
ents and pressure, interpolated from the Eulerian
mesh, are fully resolved, resulting in an accurate
computation of hydrodynamic forces exerted by
the fluid on the particles. Then, an intermedi-
ate scale, named Particle Resolved - Subgrid Cor-
rected Simulations (PR-SCS) where boundary lay-
ers are not resolved (see 1). In the latter, the Eu-
lerian mesh is too coarse to correctly capture the
velocity gradients and pressure at the interface be-
tween the fluid and the solid particles. PR-SCS
scale is adapted for particle resolved simulations
with a dozen meshes per diameter, as in [26-28].
The unresolved part of fluid—particle interactions is
modeled by a mesh-dependent correction developed
with PR-DNS. Hereinafter, the term Particle Re-
solved Simulations (PRS) will refer to simulations
where boundary layers, and thus the velocity gradi-
ents and the pressure at the interface between the
fluid and the particles, are not fully resolved, and
no correction is used to model the unresolved part
of fluid—particle interactions. A first step to this
work consists of studying the flow around a single
particle at low Reynolds numbers, as in Stokes con-
figuration [29]. Thus, the analytical solution of the
flow is well known and commonly referred to in the
literature for validation. The coarser the mesh, the
less captured the velocity gradients and the pres-
sure, leading to sub-resolved hydrodynamic forces.
For such resolution, the terminal velocity of the
particle is no more in agreement with the theory.
To overcome this, a correction term F, is added to
the Navier—Stokes equation and discretized over the
particle volume to correct the sub-resolved friction
Fpr_scs. This procedure is very similar to the law
of the wall in LES methods for turbulence modeling.
However, one should point out that the proposed
correction is essentially numerical, induced by the
poorly velocity gradients and pressure capture. In
this way, it differs from LES methods which aim
to model subgrid interactions. The hydrodynamic
force can thus be expressed as F, = Fpr_scs+ Fe.

The paper is organized as follows. First, the
modeling approach is presented in 2. The case
of Stokes sedimentation is investigated in 3. In 4
a mesh dependent correction is built for PR-SCS.
The strengths and limitations of the approach are
assessed in 5. Finally, in 6, conclusions and per-
spectives to the present work are drawn.
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Figure 1: Diagram of resolution scales for fluid-particle flows

2. Modeling

Numerical modeling of PR-DNS flows has been
extensively investigated. Two main approaches
can be identified: body-fitted mesh [30-32] and
fictitious domain [33-35]. While the body-fitted
method describes interfaces accurately, it requires
remeshing while moving the interface, which results
in a very high computational cost. This method is
therefore not adapted for particle resolved simula-
tion of fluidized beds, but very interesting for fixed
arrays of spheres [36]. The difficulty of represent-
ing the interface can be overcome through the use of
the fictitious domain method. The mesh of interest
is embedded in a mesh of simpler geometry. The
inside of the particles is now represented, hence the
name fictitious domain [34]. Fictitious domain does
not require remeshing. The grid used is fixed, and
the interfaces are represented using different tech-
niques, developed hereinafter. Navier—Stokes equa-
tions are solved on all the computational domain,
including the inside of particles. A numerical treat-
ment is required to enforce the solid body motion
in this part of the domain. Two main methods are
encountered in the literature to do so, namely the
Immersed Boundary Methods (IBM) [37, 38] and
viscous penalization [39, 40]. In IBM, boundary
conditions are explicitly imposed over the particle
surface, whereas viscous penalization implicitly en-
force fluid constraints on the interface. One should
note that in IBM, even though the inside of the

particle is represented by a fictitious fluid, it is not
considered for the solving of the flow. The loca-
tion of the interface can be achieved with different
techniques. The rate of presence of solid in each
Eulerian mesh is used by Volume-Of-Fluid (VOF)
methods [41]. A signed distance to the interface
is calculated for Level-Set methods [42]. Finally,
the Lagrangian markers located on the interface
are moved according to a transport equation with
Front-Tracking method [43].

2.1. Particle resolved numerical approach

The resolution method is based on the one-
fluid VOF /Front-Tracking approach implemented
in TrioCFD software. Initially developed for gas-
liquid flows, Hamidi et al. extended the technique
to fluid-solid flows [27]. In this framework, only
one set of equations is solved. The fluid properties
vary at the interface according to a phase indicator
function.

The fluid is considered incompressible in each
phase. Navier—Stokes equations are given by:

V-u=0 (1)

ou

p<+(u-V)u> =-Vp+pg+V-(u(Vu+V'iu)) (2)

ot

where u is the velocity, p the pressure, ¢ the time,
g the gravity vector, p the density, p the viscos-
ity. Velocity and pressure are solved on a stag-
gered grid (see 2). The interface is located with



the Front-Tracking method [43, 44]. Particles are
represented by a mobile mesh overlying on the fixed
FEulerian mesh. This mesh is represented by the so-
called Lagrangian markers, uniformly distributed
over the surface. The method has the advantage
of accurately describing particles of complex geom-
etry. The interface is advected by a transport equa-
tion:
Ix

E§£"% u- Y7)( =0 (3)

where y is the phase indicator function. Numeri-
cally, the procedure is the following. First, a tri-
linear interpolation (bilinear in two dimensions) of
the Eulerian velocity on each Lagrangian marker is
realized (see 2). Then, an average velocity is com-
puted at the gravity center of Lagrangian facets.
A Lagrangian facet is defined by three markers in
three dimensions (two markers in two dimensions).
The overall average velocity of the particle p is given
by: )

up = 5, fz Siu; (4)

acets

where S, is the particle surface, S; and u; the sur-

face and velocity of the facet 7. Finally, the markers
are advected with the velocity up:

xit = xt + u, At (5)

where x; represent the position of the Lagrangian
marker 7 and At the time step. In this way, the par-
ticle does not deform over time and the mass con-
servation is satisfied. The local vorticity can initiate
a rotation of the particle. However, for a spherical
particle, the projection of its shape onto the Eule-
rian mesh will remain unchanged for any rotation
about its gravity center. As Lagrangian markers are
not material points but only describe the particle
surface, a pure rotation of the Lagrangian mark-
ers is not required. For non-spherical particles, the
current method would require some developments.
Unlike gas-liquid flows, no remeshing is performed
during the calculation. Then, x is integrated on
Eulerian cells to compute the fluid volume fraction.
This integrated quantity divided by the mesh vol-
ume, noted as I, equals 1 in fully fluid cells and 0
in fully solid cells. In diphasic cells, the value of I
lies between 0 and 1. Density and viscosity vary at
the interface according to the following equations:

p= Ipr+QQ—1)ps (6)

HfHs
1) pr + 10, )

/’l’:

The subscripts y and , denote, respectively, the
fluid and the solid. The precision and mesh con-
vergence of the arithmetic model for the den-
sity and the harmonic model for the viscosity is
demonstrated in [39] and later validated in [45] for
TrioCFD Front-Tracking method.

» )
» )
» °

Figure 2: Interpolation of Eulerian velocity on La-
grangian markers. ug represents the velocity of the
i-eme Lagrangian marker. o : pressure nodes, a » :
velocity nodes, : Lagrangian marker.

2.2. Discretization schemes and solvers

The mass and momentum conservation equations
are solved with a first order Euler Explicit scheme
with an implicit treatment for diffusion. A second-
order centered spatial discretization is employed
for the convection and diffusion terms. The Pois-
son equation is solved with a prediction—correction
algorithm. For this purpose, a conjugated gra-
dient method with a symmetric successive over-
relaxation (ssor) preconditioner is used. Finally,
the Lagrangian markers are advected with a first-
order temporal scheme.

2.8. Hydrodynamic force computation

Although the number of PRS studies is very
large, few of them specifically describe the hy-
drodynamic force computation method. One can
cite [14, 21, 46, 47]. In all these methods, pressure
and viscous contributions are computed indepen-
dently of each other. A local force is first computed
at the gravity center of each Lagrangian facet and
weighted by its surface (see 3). The accuracy of the
computed hydrodynamic force then depends on the



ability to compute the local velocity gradients and
pressure at the gravity center of each Lagrangian
facet. The sum of all the local components results in
the global force exerted by the fluid on the particle.
Zastawany [14] used a second-order extrapolation
to compute the pressure on the surface and a sec-
ond order Taylor series expansion to compute the
velocity tensor at the interface. In this framework,
diphasic cells are used to compute the velocity gra-
dients which limits the accuracy of the viscous force
estimation acting on the particle. Chadil et al. [21]
improved this method by using only fluid velocity
to compute the viscous term. A third order Tay-
lor interpolation and Lagrangian extrapolation of
the same order are employed. Later, the method
was enhanced by the use of Aslam extensions, as
explained in [47]. In all these studies, all the com-
ponents of the viscous tensor were computed. In
the method presented below, only radial derivatives
of the velocity are required to compute the friction
force, owing to the non-deformability of the solid
interface. The calculation cost of the method is
thus reduced and the precision improved, since the
zero theoretical terms involved in Eq. 11 are not
considered by means of the simplification detailed
in Eq. 13.

The hydrodynamic force is the sum of the friction
and pressure forces. It is written as follows:

Po= [ (plantu(Tus v n ) as (9

Sp

with S}, the surface of the particle. This equation
can be discretized on the surface of the particle as
follows:

N
Fp = Z <_kakH3 0y + ppSk(Vu+ V'), - nk)

2
(9)
with N: the number of Lagrangian facets, pills and
pf(Vu + VTu): the pressure and stress tensors at
the gravity center of the Lagrangian facets.

The pressure and stress tensors are required at
the center of gravity of the Lagrangian facets to
compute the hydrodynamic force. However, the
meshes crossed by the interface are, by definition,
diphasic. The fluid velocity and pressure are there-
fore poorly defined at this location. It is neces-
sary to move from the interface, along its normal,
in order to extrapolate u and p from the closest
single-phase fluid meshes. The method developed
is inspired by that of [46].

For the pressure, for each Lagrangian facet j, the
computation steps are as follows:

1. Trilinear interpolation of the pressure at points
P; and P, located respectively, at a distance
67 and 247 from the interface (see 3). Let Axz?,
Ay’ and Az?, be the grid size of the Eulerian
element ¢ in which the facet j is located. ng,
ny, N, are the Cartesian components of the
normal of the facet. ¢,, is a parameter for the
user to define. It represents the distance to P;
scaled by the mesh grid size for a Lagrangian
facet which normal would coincide with one of
the Cartesian axes. Then, 67 is computed as
follows:

8 =46, (nzAxi + nyAyi + nzAZi) (10)

In this way, in all geometric configurations, the
element P; will be strictly fluid. For a uniform
mesh of grid size A, the norm of §7 verifies: 1 <
SJA < V/3. This definition guarantees that
the Eulerian mesh, in which the interpolation
point Pj is located, is strictly fluid (see point
P} in 3). Moreover, it adapts to a non-uniform
mesh with, for example, near-wall refinement.
2. Linear extrapolation of the pressure at the
gravity center of the Lagrangian facet j.

For the friction, the steps are as follows:

1. Interpolation of the velocity at points P; and
P; in the same way as for the pressure, but with
consideration of the location of the velocities.
As shown in 2, the field is located at the gravity
center of the faces of Eulerian elements.

2. Change of reference frame to express the veloc-
ity at points P; and P, in spherical coordinates
(r,0,®).

3. Computation of the stress at the gravity center
of the facets:

dfe = pup(Va+ Vi), _p -n (11)

where R), is the radius of the particle. In spher-
ical coordinates, the components of the ten-
sor U that intervenes in the computation of
(Va + VTﬁ)rsz -1 are:

oU. 10U, Uy 19U, Uy

or r 00 T rsinf O T

Uy _ _

s _ _

or r=R,

(12)



However, in the case of a solid particle, the
non-deformation of the interface implies that
the tangential components of the velocity are
zero at the interface. This translates numeri-
cally into a constant distance between the La-
grangian markers. Thus, only radial deriva-
tives need to be computed:

20U,
(Vu+ VTﬁ)T:RP n=|pg, _U
)
Ud),r - T(b r=R,
(13)

With a second order forward discretization
scheme, the partial derivative of u along the
normal is written as:

Ui - —Ul +4Ulr - 3U}
Oy 26

(14)

with o € {r,0, ¢} and U’ the o component of
the velocity of the facet .

4. Change of reference frame to express the fric-
tion force in Cartesian coordinates.

The interest of this method lies in the fact that
tangential derivatives of the velocity are not in-
volved in the computation of the friction at the in-
terface. Indeed, all derivatives involved in the pro-
jection along the interface normal of the stress ten-
sor are only with respect to r. Thus, the only knowl-
edge of the velocities at P, and P, allows solving
the friction at the interface. Moreover, as the stress
tensor is not interpolated at P; and Ps, the associ-
ated computational cost is greatly reduced as well
as the joint area — the number of virtual meshes
that a processor must know during parallel oper-
ations. The default thickness of the joint area is
2, whereas the proposed method requires an exten-
sion to 4. However, it should be noted that it must
be increased to 7 for the complete calculation of
the stress tensor at P; and P,. This illustrates the
memory cost reduction of the proposed method.

3. Stokes sedimentation

The objective of this section is to validate the
force computation method and its implementation.
The case of Stokes sedimentation is considered, for
which the solution is known. The reference frame of
the particle is considered. A reduced computation
domain is defined where the theoretical solution
is applied as a boundary condition. Fine meshes

})B fluid

Figure 3: Diagram of the identification of neigh-
boring Eulerian meshes for the hydrodynamic force
computation. e : pressure nodes, o: Lagrangian
marker, X X: interpolation points.

can then be used without incurring high compu-
tational costs. The hydrodynamic force exerted by
the fluid on the particle is computed by the method
described in the Sec. 2.3 and confronted with the
theoretical solution.

3.1. Simulations setup

A fictitious domain method is adopted in the
current work, the flow inside the solid particle must
be considered. In a numerical viewpoint, the solid
particle is a highly viscous drop. The Stokes flow
is solved in each phase. The closure is achieved
through the Delahaye stress jump equation [48].

In the reference frame of the particle, and in
spherical coordinates, the velocity, and pressure
fields can be derived analytically as shown in Tab. 3.
In this set of equations, ®,, = Z—P is the viscosity ra-
tio between the particle and the fluid, Uy, the ter-
minal velocity of the particle and R, the particle
radius. A dynamic equilibrium between the weight
of the particle, buoyancy and the hydrodynamic re-
sultant force leads to the following expression of the
settling velocity:

29R; 1+ @,

— 2T T, 15
~=3, 2_’_3(I)H(Pf Pp) (15)

3.2. Flow solver assessment

The 3D computational domain is schematized in
Fig. 8. Velocity and pressure given in Tab. 3 are



Fluid flow

3

B 2430, R, | @, R
Ur | =Uso(l = T332 37 + 178, 275) cos 0
3
2430, R, @&, RS, .
Up | Ux(1 TEx e Tl e %) sind
U, 0
2430, R
P —pfUsx 1+(I>‘i‘ﬁ(:ost9

Inside the particle

Uso 1 r2
U, = 1re, (1—&%) cosf
Uo 1 _or’ i
U0 _21+q>“(1 2R%>Sln9
Uy
P Uso —2— -2 cos 0
HpYoo 115, RZ

Table 1: Theoretical velocity and pressure fields.

initially imposed on all the domain. A pressure
condition is imposed on the top boundary, whereas
velocity is imposed on the others. The exact
solution of Stokes flow is thus applied on the
boundaries, enabling a reduced computational
domain to be used. The fluid is injected from the
bottom of the domain at a prescribed velocity
(see Tab. 3). The hydrodynamic force exerted by
the fluid on the particle balance gravity. In other
words, if the friction is well taken into account
numerically, the particle must remain at rest in the
calculation domain.

fluid
B Pf

D, solid
Hp, Pp

3D,

z

I

Y

3D,

Figure 4: 2D diagram of stokes configuration. The
size of the domain in z-direction is 3D,,.

The physical parameters of the configuration are

X
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Figure 5: Mesh convergence of the relative settling
velocity error, normalized by U, the theoretical
settling velocity given by Eq. 18.

given in Tab. 4. The Reynolds and Stokes numbers

are respectively 7.81072 and 8.71072. These are
defined as follows:
2R,psU
R, = 2pPfYoo (16)
M
1., p
S; = —Re % 17
' 9 py ()
Py Pf iy ff D, g
[kg.m~3] [kg.m™3] [Pa.s] [Pa.s] [m] [m.s—2)
104 103 3 31073 5.2107° 10

Table 2: Physical parameters of Stokes configura-
tion.

The relative settling velocity error is represented
in Fig. 9. The fields obtained in the finest simu-
lation (£ = 80) are represented in Fig. 10 and
Fig. 11. As the referential frame of the simulation
is the one of the particle, the theoretical velocity of
the particle is zero. Above a grid resolution of 20
meshes per diameter, the relative settling velocity

error is below 0.3 %.

3.8. Stokes hydrodynamic force

The objective of this section is to validate the
force computation method and its implementation.
The case of Stokes sedimentation is considered, for
which the solution is known. The reference frame of
the particle is considered. A reduced computation
domain is defined where the theoretical solution
is applied as a boundary condition. Fine meshes
can then be used without incurring high compu-
tational costs. The hydrodynamic force exerted by



07418

-0.5570

Z (x10™-6)

121

60 -20 -20
x (x10" 6)

0.3722
0.1873
0.002463

Z (x10"-6)

I 1.000

-0.5002
0.0004684
-0.4993

-0.9991

20 40 60

60 -40 -20 0
X (x10~-6)
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crossing the gravity center of the particle.

the fluid on the particle is computed by the method
described in 2.3 and confronted with the theoretical
solution.

3.4. Simulations setup

A fictitious domain method is adopted in the cur-
rent work, the flow inside the solid particle must
be considered. In a numerical viewpoint, the solid
particle is a highly viscous drop. The Stokes flow
is solved in each phase. The closure is achieved
through the Delahaye stress jump equation [48].

In the reference frame of the particle, and in
spherical coordinates, the velocity, and pressure
fields can be derived analytically as shown in 3. In
this set of equations, ®,, = Z 2 is the viscosity ratio
between the particle and the ﬂuld U the terminal
velocity of the particle and R, the particle radius.
A dynamic equilibrium between the weight of the
particle, buoyancy and the hydrodynamic resultant
force leads to the following expression of the settling
velocity:

29R’ 1+ @,
U — 29K, +(

18
3y 2439, (18)

= Pp)

3.5. Flow solver assessment

The 3D computational domain is schematized in
8. Velocity and pressure given in 3 are initially
imposed on all the domain. A pressure condition is
imposed on the top boundary, whereas velocity is

center of the particle.

Fluid flow
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Table 3: Theoretical velocity and pressure fields.

Pp Py Bp Ky Dy 9
[kg.m=3] [kg.m™3] [Pa.s] [Pa.s] [m] [m.s
10* 103 3 31072 5.2107° 10

_2]

Table 4: Physical parameters of Stokes configura-
tion.

imposed on the others. The exact solution of Stokes
flow is thus applied on the boundaries, enabling a
reduced computational domain to be used. The
fluid is injected from the bottom of the domain at
a prescribed velocity (see 3). The hydrodynamic



force exerted by the fluid on the particle balance
gravity. In other words, if the friction is well taken
into account numerically, the particle must remain
at rest in the calculation domain.

fluid
B P

Dy solid 3D,
HKp, Pp

Figure 8: 2D diagram of stokes configuration. The
size of the domain in z-direction is 3D,,.

The physical parameters of the configuration are
given in 4. The Reynolds and Stokes numbers are
respectively 7.81072 and 8.71072. These are de-
fined as follows:

R, = HuprUx (19)
s
L, p
S, = —Re-L 20
' 9 py (20)

The relative settling velocity error is represented
in 9 The fields obtained in the finest simulation
(£ = 80) are represented in ??. As the referential
frame of the simulation is the one of the particle, the
theoretical velocity of the particle is zero. Above
a grid resolution of 20 meshes per diameter, the
relative settling velocity error is below 0.3%.

3.6. Stokes hydrodynamic force

The validation of the forces computation method
is achieved in two ways: (i) on a local scale: the
pressure and friction forces calculated with the ex-
trapolation method, on each Lagrangian facet, are
confronted to their respective theoretical value. (ii)
on a global scale: the calculated integral sum of the
pressure and friction forces are compared to their
theoretical value. In the following, the upper scripts
th dis and ™ stand respectively for theoretical, dis-
cretization and interpolation.

X
SRR
3 X%
2 X
~ X
3 | X X X
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Figure 9: Mesh convergence of the relative settling
velocity error, normalized by U, the theoretical
settling velocity given by Eq. 18.

For each Lagrangian facet ¢, the theoretical local
friction and pressure forces are written, in spherical
coordinate, as follows:

2cos 0;
U (1+2},)
dFpn; = —E20 seisime | dS;  (21)
R, T20497)
0
sUs 1430
dF tn; = 0;1 d$22
pth i 2R, 11, cos 0; I3 - el d§22)

The integral over the particle surface gives the
contribution of the friction and pressure terms:

(23)

(24)

Fi* = —drpUs R,,” T
P

Fi' = —2mupUsRy—2—

[lu p||
Therefore, the overall hydrodynamic force is
given as:

FiP = —6mu;ULR (25)

" Jup|| p||

Moreover, considering ®,, > 1, the norm of the
hydrodynamic constraint is uniform over the parti-
cle surface and given by the following equation for
each Lagrangian facet i:

dFih
dsS

_ 3 Us
2R,

(26)

This first validation step does not require PR-
DNS to be performed, as only the methodology pre-
sented in 2.3 is evaluated. Instead, the theoretical
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Figure 13: Influence of the distance § used in the
interpolation method, to identify the points P; and
P, (see Fig. 3), on the calculated force relative er-
ror.

Figure 14: Mesh convergence of the overall hydro-
dynamic force relative error.
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velocity and pressure fields are discretized on the
Eulerian mesh and considered as an input for the
interpolation of the pressure and friction forces from
the fluid phase to the interface. A grid resolution
of 80 meshes per diameter is adopted to reduce the
discretization error. ¢, is set equals to the mesh
grid size as in [21]. The surface pressure force is
represented in 12. The left image presents the the-
oretical field obtained with Eq. 22 on the particle
surface. In the middle, the equivalent surface pres-
sure force - computed from the discretized theoreti-
cal pressure field, with the method described in 2.3
- is shown. Finally, on the right the relative error
between the two fields is drawn. The maximum lo-
cal relative error is less than 0.5%. With the same
methodology, but utilizing the discretized theoret-
ical velocity field as an input, a maximum relative
error of 2.3% is calculated for the surface friction
force.

»

» ° » o+ » ° »
" " N
Y &

»
»
»

Figure 15: Schematic representation of the stag-
gered grid with the location of the variables: e:
pressure nodes, a »: velocity nodes, : Lagrangian
marker, 21 : control volume V}, of a cell face k.

On a global scale, three assessments of the same
force can be identified. Firstly, the theoretical hy-
drodynamic force given by the Eq. 25. Then, the
sum of all the local contributions exerted on the
Lagrangian facets:

Nb facets

Firdis = 3" dFye; (27)

where dFpen ; = dFgen ; +dF pen 5. In this case, dS;
is the surface of the Lagrangian facet i. Finally, the

force interpolated from the theoretical velocity and
pressure fields, with the method described in 2.3, is
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noted as Fflhfint. Therefore, the following relative
errors are considered:

[[FR 5] — [ |F|
€th th—dis — b ||Ff1h” = ‘ (28)
PR — [Pl
€th_th—int — b ||Fflh” b ‘ (29)
e -
€ s = - 30
int__dis ||F¥lh_dls|| ( )

€th_th—dis characterizes the error in the hydrody-
namic force caused by the discretization of the par-
ticle surface into Lagrangian facets. For a grid reso-
lution of 80 meshes per diameter, the error over the
surface, committed with the Lagrangian discretiza-
tion, is equal to 0.03% leading to € th—ais =
0,06%. €int qis represents the error of the method,
which refers to the errors committed during the
interpolation and extrapolation processes of Eu-
lerian variables on each Lagrangian facet. One
should note that both Fflh_dis and Fflh_i“t are
computed over the same discretized surface. Here,
€int_dis = 0.35%. However, the computed force
should be compared to Ffjh which is the variable
of interest. Therefore, the coefficient e, tp—int is
adopted to characterize the method, as it also con-
siders the discretization error. In this configuration,
it is equal to €z, th—int = 0.29%. The implementa-
tion of the method is therefore validated.

A parametric study ensured that the distance d,,
adopted according to [21] was relevant to the devel-
oped method. 13 depicts the linear evolution of the
error as a function of the distance chosen to inter-
polate the variables in P;. An absolute minimum
is reached for a value equal to the mesh grid size
which is in accordance with [21].

A mesh convergence study of PRS is presented
in 14. The computed hydrodynamic force is con-
fronted with the theoretical value. PRS from 5 to
80 meshes per diameter were conducted. The con-
vergence of the method is of order 2. For a grid
resolution of 10 meshes per diameter, a relative er-
ror of 10% is computed. Indeed, the Eulerian grid
resolution is too coarse to properly compute ve-
locity gradients over the particles’ surface. This
highlights the need to develop corrections for PRS
of fluid—particle flows using a grid resolution of a
dozen meshes per particle’s diameter.



4. Building a mesh-dependent correction for
PR-SCS

A mesh-dependent correction is developed to ac-
count for the unresolved part of the friction and
the pressure. The methodology is very similar to
Breugems’s work for the lubrication force [49]. A
mesh-specific correction was developed for 2 resolu-
tions to correct the lubrication force. In the present
study, a generalized correction, therefore depending
on the Eulerian grid resolution, is proposed for the
hydrodynamic force.

4.1. Implementation of subgrid correction

The correlation between the force obtained in
PRS, without any correction, and that obtained
with PR-SCS is written as follows:

Fpr-scs = Fprs + Fc (31)
where Fprg is the hydrodynamic force captured
with the PRS and F., is the correction force account-
ing for the unresolved part of the fluid—particle in-
teractions. The correction is designed to correct the
error committed on the velocity gradients and the
pressure computation because the Eulerian mesh is
not fine enough. The correlation assessment is de-
scribed in plan::assess. It is developed to verify:

lim Fpr_-scs = Fpr_DNs (32)
D, /Ax—00
lim F. = 0 (33)
D, /Ax—o0

The correction is discretized over the volume of
the particle and applied to the solid and dipha-
sic faces of the Eulerian elements. For the sake
of simplicity, a two-dimension representation of the
discretization is given in 15. For an Eulerian face
k, the component i of the modeled hydrodynamic
force is applied as follows:

. I, Fi
fC?C = acesc (34>
I;Lbof IVy,
where F! = ||FC||ﬁ is the component i of F, Iy,

is the phase indicator of the face k and Vj is the
control volume of the face k.

4.2. Establishment of the mesh-dependent function

In the case of the Stokes sedimentation, the hy-
drodynamic force is well known. Thus, Eq. 31 can
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be rewritten as:

Fpr-scs = Fstokes = Frrs + F¢ (35)

With Fgtokes given by the Eq. 25. The objective
is to write F, as a function of the grid resolution.
To do so, we assume — in the fashion of what did [49]
for the lubrication force — that the correction is of

the form: D
F. = Fstokes I | —~ 36
Stok ( A:c) (36)
where h %) is to be determined and depends

on the Eulerian grid resolution. One should point
out that the correction is Reynolds dependant as
the theoretical Stokes force is a function of the
Reynolds number Fiioges = %pfSpUgo%. Where
Sp = T * RIQ,. With results from the mesh conver-

gence study, h can be computed as:

D F
h(”):l— [Fersl|
Az | |FStokes | |

(37)

With such a formulation, it is assumed that the
force computed on the under-resolved mesh follows
the correct direction, and only its magnitude must
be corrected to retrieve the full hydrodynamic force.
We will see later that for resolutions smaller than
5 meshes per diameter, this assumption can be de-
feated (see 18).

From Eq. 37, assuming h(z) = lez, one can
be determined C; and Cs with the least squares
method as represented in Fig. 16. The obtained
function for h can be written as follows, with x
standing for Z—;:

9.79
SEH

h(z) (38)

The correction is then applied in Navier—Stokes
equations as explained in 4.1. Results of these PR-
SCS are shown in 17. The maximum velocity error
is less than 0.01% for a grid resolution of 5 meshes
per diameter and less than 0.003% for the others,
whereas the error without correction is higher than
4% for the coarser grid.

Although the particle settling velocity is slightly
affected by this low-resolution limit, the problem is
more marked on the hydrodynamic force estimate.
(see 18).

In this case, the overall hydrodynamic force ob-
tained with PR-SCS overestimates the theoretical
value. The resolved part of fluid—particle interac-
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Figure 16: Construction of a mesh-dependent
correction
X: computed with Eq. 37. — Interpolated function
obtained with a least squares method.
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Figure 17: Effect of the correction force on the
residual settling velocity error for different mesh
resolution. — : % =5, —: 10, —: 12, — : 16,

20, . 30, : 40. —: with correction, --:
without correction.

tion is labeled as Fprg and the corrected part as
F, in agreement with Eq. 31. One can note that
the thinner the mesh, the more accurate the Fprg
and the smaller the correction. The relative error
on the hydrodynamic force in PR-SCS is less than
1.3% for a mesh resolution above 10 meshes per
diameter. It must be compared with a 10.6% er-
ror obtained without correction. One should point
out that the same precision is obtained with the
grid resolutions of 10 and 40 meshes per diameter,
but the CPU cost of the simulation with only 10
meshes per diameter is 430 times lower. However,
it is of 7% for the resolution of 5 meshes per di-
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Figure 18: Overall hydrodynamic force, normalized
by its theoretical value, as a function of the mesh
resolution.

ameter. The error in the computation of the force
is more than ten times higher than the one com-
mitted on the velocity. This is explained by the
interpolation method of the quantities of interest.
The larger the mesh size, the further the points P1
and P2 are from the interface (see 3) and the less
resolved the velocity gradients and pressure at the
fluid-solid interface. In the present case, PR-SCS
is therefore not adapted for PRS with less than 5
meshes in diameter. It has to be noted that the
coarser grid resolution (% = 5) was not used to
build the correction given by Eq. 38.

4.3. Application to a dense fluid—particle flow

In a dense fluid—particle flow, particle-wall and
particle—particle collisions occur. In the present
method, the collision process is treated as in Dis-
crete Element Method through a soft-sphere model
developed by Hamidi et al. [27]. When two par-
ticles undergo collision, the lubrication force in-
creases as the particles get closer. When the col-
lision occurs, the incompressible fluid film between
the particles is of the order of the rugosity (approx-
imately one micrometer). The capture of the lubri-
cation force is therefore impossible in 3-dimensions
with current numerical methods. However, to ac-
count for this phenomenon, lubrication models are
widely employed in the literature [49, 50]. In the
present framework, during a collision, the collision
and lubrication forces predominate over the hydro-
dynamic forces — and thus our correction. There-
fore, the proposed correction might be deactivated
while the lubrication is considered.
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Figure 19: Normalized hydrodynamic force as a
function of the mesh resolution.

5. Assessment of the Subgrid Corrected
Simulations

5.1. Within the Stokes flow regime

The correlation is assessed through the study of
four configurations presented in 5. These configura-
tions are selected to verify Stokes regime hypothesis
as Reynolds numbers are less than 1072, Two den-
sity ratios of 10 and 3000 are chosen to represent,
respectively, liquid—solid and gas—solid flows. The
hydrodynamic force relative error is represented in
19. One can see that in these configurations, the
hydrodynamic force relative error is independent of
both the Reynolds number and the Stokes number.
Furthermore, the PR-SCS force agrees almost per-
fectly with the theoretical Stokes force for all grid
resolutions and all density ratios. Note that for
small Re numbers the physics is independent of the
density ratio, but the simulations are not.

case Re P/ Pf St
a 1.0 x 1073 10 1.1 x 1073
b 1.0 x 1072 | 3000 | 3.3 x 107!
c | 1.0x1072 10 1.1 x 1072
d 1.0 x 1072 | 3000 3.3

Table 5: Stokes configurations for the correlation
assessment.

5.2. Beyond the Stokes flow regime

To evaluate the limit of the proposed approach
and especially the validity domain of the correc-
tion force proposed, simulations were performed for
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higher Re numbers and various density ratios (rang-
ing from 2 to 3000). To evaluate the correction at
higher Reynolds numbers, a hydrodynamic coeffi-
cient is computed and confronted with the Abra-
ham correlation [51]. These coefficients are defined
as follows:

2F,
C, = 39
e

24 9.06 2
2 (14 2= 4
OdAbraham 9.062 < + @) ( O)

where F}, is the hydrodynamic force in the settling
direction, U, and U are, respectively, the residual
velocity (numerical error) and theoretical settling
velocity.

The simulation setup for this study is the same as
described in 3. The imposed velocity on the bound-
aries is defined with the assumption that Stokes
flow remains valid for these Re numbers. As the
later assumption is defeated for Re > 0.1, one
can expect the particle settling velocity to be non-
zero. However, as it is the velocity difference be-
tween the fluid and the particle that is considered
in Eq. 39, this enables the hydrodynamic coefficient
to be evaluated. Results are presented in 20 for PRS
and PR-SCS. The grid resolution for these simula-
tions is 10 meshes per diameter. One can see that
the correction improves the accuracy by 10% for Re
numbers ranging from 1073 to 107!, regardless of
the density ratio. In this range, Abraham’s correla-
tion is valid and consistent with the Stokes theory.
One can observe that the density ratio has no influ-
ence on the hydrodynamic coefficient in this creep-
ing flow regime, as all the points are superimposed.
When the Reynolds number increases, both PRS
and PR-SCS deviate from the Abraham coefficient,
following both the Stokes trend. In this range, the
10% improvement between the two methods seems
to remain. It can be seen that, even outside its
range of validity, the PR-SCS continues to closely
follow the evolution predicted by the Stokes theory.
This is attributed to the fact that the correction was
initially designed for creeping flows. Furthermore,
for Re ~ 1, the density ratio affects the hydrody-
namic coefficient, with a five percent dispersion of
the different simulations. This dispersion increases
for higher Re. The influence of the density ratio on
the computation of the hydrodynamic force might
be related to the difficulties of the Poisson equation
solver in resolving strong density gradients at the
interface.
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Finally, the correction developed in this paper
is validated for Reynolds numbers up to 10~ and
density ratios between 2 and 3000. The grid res-
olution of PRS must be of 10 meshes per diame-
ter or higher to correctly capture the direction of
the hydrodynamic force. To adapt the correction
for higher Reynolds numbers, the structure of the
correction (see Eq. 36) must be adapted to be con-
sistent with Abraham’s correlation. Furthermore,
dependence with respect to the density ratio must
be introduced.

In more complex flows such as fluidized beds, no
theoretical solution exists to describe the velocity
and pressure fields in the vicinity of the fluid—solid
interface. It may also be difficult to access to purely
fluid cells at point P; and P, because of the prox-
imity of particles. To expand the correlation to
higher Reynolds in fluidized beds, one key point
has to be considered: how to derive a correction for
higher Reynolds number, where Stokes formulation
no longer holds. The targeted Reynolds numbers lie
between 1 and 10 where the Abraham correlation
remains valid. Thus, the Abraham drag coefficient
(see Eq. 40) can be used to expand the validity
of the correlation developed. At higher Reynolds
number, in cases where the wake/history force can-
not be neglected in front of other hydrodynamic
forces. In such configurations, the proposed scheme
is expected to work if the grid resolution is fine
enough to resolve the wake. Indeed, the method
only intends to resolve velocity and pressure gradi-
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ents at the fluid—solid interface. Future work will
address this issue through the study of the sedimen-
tation case of Cate [24] and the Drafting-Kissing-
Tumbling case described by Fortes [52].

6. Concluding remarks

The objective of this study was to clarify
fluid—particle interactions for PRS with unresolved
boundary layers. For this purpose, a new method
to compute the hydrodynamic forces exerted by the
fluid on the interface of a solid particle is detailed
in this paper. Inspired of [21, 46], the Lagrangian
description of the interface to interpolate velocity
and pressure on the Eulerian mesh is used. How-
ever, it does not require computing the full gradi-
ent velocity tensor. The originality of the present
method consists in using the solid behavior of a par-
ticle that implies a non-deformation of the interface,
resulting in a zero velocity gradient in the tangen-
tial components. This method thus saves time and
computation memory.

A correlation was developed to correct the
sub-resolution of hydrodynamic forces for coarse
meshes. Applied in the volume of the particle, it
corrects the action of the fluid to the particle for
all resolutions thinner than 10 meshes per diame-
ter. One may point out that only the amplitude of
the force is corrected and not the direction, which
is assumed to be correctly captured with these grid
resolutions. Thereby, the velocity of the particle is



corrected. The simulation with only 10 meshes per
diameter is computed with the same precision on
the particle transport velocity than the grid reso-
lution of 40 meshes per diameter but with a CPU
cost 430 times lower. A validation of the correc-
tion was realized for two Reynolds numbers and
two density ratios within the Stokes flow regime.
It exhibited a similar behavior for these four cases
for four different grid resolutions. An assessment
of the correlation beyond the Stokes flow regime
enlightened that for a Reynolds number of unity,
the density ratio influences the simulations. More-
over, as it was originally developed for Stokes flow
regime, the error committed on the hydrodynamic
force increases with the Reynolds number. This
emphasizes the importance of considering both the
density ratio and the Reynolds number in the cor-
relation.
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