

Imaging the impact of blood-brain barrier disruption induced by focused ultrasound on P-glycoprotein function

Sébastien Goutal, Anthony Novell, Sarah Leterrier, Louise Breuil, Erwan Selingue, Matthieu Gerstenmayer, Solène Marie, Bruno Saubaméa, Fabien Caillé, Oliver Langer, et al.

▶ To cite this version:

Sébastien Goutal, Anthony Novell, Sarah Leterrier, Louise Breuil, Erwan Selingue, et al.. Imaging the impact of blood-brain barrier disruption induced by focused ultrasound on P-glycoprotein function. Journal of Controlled Release, 2023, 361, pp.483-492. 10.1016/j.jconrel.2023.08.012. hal-04254542

HAL Id: hal-04254542 https://hal.science/hal-04254542

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Imaging the impact of blood-brain barrier disruption induced by focused ultrasound				
2	on P-glycoprotein function				
3 4	Sébastien Goutal ¹ , Anthony Novell ¹ , Sarah Leterrier ¹ , Louise Breuil ^{1,2} , Erwan Selingue ³ , Matthieu Gerstenmaver ³ Solène Marie ¹ Bruno Saubaméa ² Fabien Caillé ¹ Oliver Langer ⁴				
5	Charles Truillet ¹ , Benoît Larrat ³ , Nicolas Tournier ^{1,*}				
6					
7	¹ Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA,				
8 9	CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401, ORSAY France.				
10 11	² Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France				
12 13	³ Neurospin, Institut Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France				
14 15	⁴ Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austri				
15	*Corresponding author:				
17					
18	CEA/SHEL 4 place du Général Leclere 91400 OBSAY France				
19	nicolas tournier@cea fr				
20					
21	Declaration of interest: None.				
22	Color for figures in print: Yes				
23					
24	Keywords: Blood-brain barrier integrity, brain delivery, efflux transporter, membrane				
25	transporters, therapeutic ultrasound.				
26					
27					
28					
29					
30					
31					

.....

1 Highlights

2	•	P-glycoprotein (P-gp) hinders the blood-brain barrier (BBB) passage of many drugs			
3	•	BBB disruption induced by focused ultrasound (FUS) enables targeted brain delivery			
4 5	 P-gp function at the BBB can be studied in vivo using [¹¹C]metoclopramide PET imaging 				
6	•	Immediately after FUS, BBB disruption did not impact the P-gp-mediated efflux in rats			
7	•	P-gp expression was decreased 24h to 48 h after FUS, with limited impact on function			

1 Graphical Abstract

2 3

Immediate impact

Contrast-enhanced [¹¹C]meto MRI Evan's Blue PET i

+ 24h

Regional BBB disruption

____.

No impact on P-gp function

Delayed impact

Immunostaining

Evan's Blue

Recovery of

BBB integrity

-45.0% decrease in P-gp expression

[¹¹C]metoclopramide PET imaging

Limited impact on P-gp function

1 Abstract (350 words)

The P-glycoprotein (P-gp/ABCB1) is a major efflux transporter which impedes the brain delivery of many drugs across the blood-brain barrier (BBB). Focused ultrasound with microbubbles (FUS) enables BBB disruption, which immediate and delayed impact on P-gp function remains unclear. Positron emission tomography (PET) imaging using the radiolabeled substrate [¹¹C]metoclopramide provides a sensitive and translational method to study P-gp function at the living BBB.

8 A FUS protocol was devised in rats to induce a substantial and targeted disruption of the 9 BBB in the left hemisphere. BBB disruption was confirmed by the Evan's Blue extravasation 10 test or the minimally-invasive contrast-enhanced MRI. The expression of P-gp was measured 11 24h or 48h after FUS using immunostaining and fluorescence microscopy. The brain kinetics of [¹¹C]metoclopramide was studied by PET at baseline, and both immediately or 24h after 12 FUS, with or without half-maximum P-gp inhibition (tariguidar 1 mg/kg). In each condition 13 (n=4-5 rats per group), brain exposure of [¹¹C]metoclopramide was estimated as the area-14 15 under-the-curve (AUC) in regions corresponding to the sonicated volume in the left 16 hemisphere, and the contralateral volume. Kinetic modeling was performed to estimate the uptake clearance ratio (R₁) of [¹¹C]metoclopramide in the sonicated volume relative to the 17 18 contralateral volume.

19 In the absence of FUS, half-maximum P-gp inhibition increased brain exposure 20 $(+135.0\pm12.9\%, p<0.05)$ but did not impact R₁ (p>0.05). Immediately after FUS, BBB integrity 21 was selectively disrupted in the left hemisphere without any detectable impact on the brain 22 kinetics of [¹¹C]metoclopramide compared with the baseline group (p>0.05) or the 23 contralateral volume (p>0.05). 24h after FUS, BBB integrity was fully restored while P-gp 24 expression was maximally down-regulated (-45.0±4.5%, p<0.001) in the sonicated volume. 25 This neither impacted AUC nor R_1 in the FUS+24h group (p>0.05). Only when P-gp was 26 inhibited with tariquidar were the brain exposure $(+130\pm70\%)$ and R₁ $(+29.1\pm15.4\%)$ 27 significantly increased in the FUS+24h/tariquidar group, relative to the baseline group 28 (p<0.001).

We conclude that the brain kinetics of [¹¹C]metoclopramide specifically depends on P-gp function rather than BBB integrity. Delayed FUS-induced down-regulation of P-gp function can be detected. Our results suggest that almost complete down-regulation is required to substantially enhance the brain delivery of P-gp substrates.

- 33
- 34
- 35
- 36
- 37

1

2 Introduction

3 The blood-brain barrier (BBB) is a complex and dynamic biological interface [1]. The BBB is 4 primarily supported by endothelial cells forming the inner surface of brain microvessels [2]. 5 The "physical" BBB mainly results from tight-junctions between adjacent endothelial cells, 6 which reduce paracellular (between cells) passage of solutes and force most molecular traffic 7 to take a transcellular route (across cells) [3]. The "functional" BBB mainly relies on the 8 activity of membrane transporters that selectively control the transcellular traffic of 9 endogenous and exogenous compounds, thus regulating brain homeostasis and protecting 10 the brain from potentially harmful substances in circulating blood [2,4].

11 The P-glycoprotein (P-gp, ABCB1) is the most studied efflux transporter at the BBB. P-gp 12 belongs to the ATP-binding cassette superfamily which restricts the brain exposure to many 13 structurally unrelated substrates including endogenous compounds and xenobiotics [5,6]. 14 Complementarity between the physical and the functional BBB limits the ability of most drugs 15 to naturally reach the brain parenchyma and exert CNS effects [2]. Drugs whose brain penetration is selectively hindered by P-gp include, for instance, antimicrobial agents such as 16 17 itraconazole [7], abacavir or nelfinavir [8], as well as anticancer drugs such as paclitaxel, 18 docetaxel, vinblastine and many others [9]. As a consequence, the BBB is a bottleneck for 19 the development of new drugs for the treatment of CNS diseases, and many drug candidates

are abandoned due to P-gp-mediated efflux at the BBB [10–12].

21 Focused ultrasound associated with microbubbles (FUS) provides a unique method to 22 enable localized and transient disruption of the physical BBB, in animals and patients [13]. 23 FUS is increasingly envisioned to enhance the brain delivery of various drugs with the aim to 24 treat various CNS diseases with drugs which do not naturally cross the physical BBB [14]. 25 However, there is a scarcity of data regarding the impact of FUS on the expression and 26 functionality of the P-gp, as well as the consequences of FUS on the brain delivery of P-gp 27 substrates. Some studies suggest that the BBB passage of some P-gp substrates may 28 predominantly depend on P-gp function rather than the physical integrity of the BBB [15,16]. 29 Other studies have consistently reported a significant decrease in the expression of P-gp at 30 the BBB from 24h to 48h after FUS [17–20]. However, it remains to be evaluated whether 31 delayed FUS-induced down-regulation of the P-gp may locally enhance the brain delivery of 32 P-gp substrates. This would provide a versatile means to overcome either the physical or the 33 functional BBB, taking advantage of either the immediate or the delayed effects of FUS.

Minimally-invasive methods are needed to investigate the immediate and delayed impact of FUS on the brain delivery of therapeutics. In this framework, Positron Emission Tomography (PET) imaging using radiolabeled compounds provides a translational technique for quantitative determination of FUS-aided brain delivery of a large variety of compounds,

- including small molecules and biologics [21–24]. Among available PET probes to estimate Pgp function at the BBB, [¹¹C]metoclopramide benefits from selectivity for P-gp [25], high
 sensitivity to detect changes in P-gp function [26,27], ability to detect an induction of P-gp
 function at the BBB [28] and a successful transfer to humans [29].
- 5 In the present study, the immediate and delayed impact of FUS-induced BBB disruption on
- 6 P-gp function was assessed using [¹¹C]metoclopramide PET imaging in rats. An optimized
- 7 FUS protocol was applied to rats to induce a transient and spatially-controlled disruption of
- 8 the BBB. [¹¹C]metoclopramide PET imaging was performed during BBB disruption (i.e.
- 9 immediately after FUS) and 24h after FUS. PET data were interpreted in the light of different
- 10 markers of BBB integrity and expression of P-gp in the sonicated brain volume.

1 Material and methods

2 Study design

3 [¹¹C]Metoclopramide PET imaging and assessment of BBB integrity using Evan's Blue (EB) 4 extravasation test were simultaneously performed. Immediately before PET acquisition, all 5 animals received an intravenous (i.v) injection of EB and extravasation was visually 6 assessed on the resected brain, immediately after PET acquisition (Fig. 1).

[¹¹C]Metoclopramide PET imaging + EB was performed in control animals, in the absence of
 any intervention on BBB integrity or function (Baseline group, n=5 rats). To assess the acute
 impact of BBB disruption or functional inhibition, [¹¹C]Metoclopramide PET imaging + EB
 were performed immediately after FUS (FUS group, n=4), or after P-gp inhibition with
 tariquidar (TQD group, n=5) respectively [25]. The selected dose of TQD (1 mg/kg; i.v) was

12 previously shown to inhibit 50% of the P-gp mediated transport of [¹¹C]metoclopramide at the

13 BBB [26] (Fig. 1).

14

15 Fig. 1 Study design

In A, the immediate impact of blood-brain barrier (BBB) disruption induced by focused ultrasound
 (FUS) on P-glycoprotein (P-gp) function was assessed using [¹¹C]metoclopramide in rats, and

compared with partial (~50%) P-gp inhibition achieved using tariquidar (TQD, 1 mg/kg). In B, the
 delayed impact of FUS on P-gp expression was assessed using immunohistochemistry (24h and 48h
 after FUS). The functional impact was tested 24h after FUS in the absence and the presence of partial
 P-gp inhibition. Integrity of the BBB in terms of paracellular transport was tested using either the
 Evan's blue (EB) extravasation test or contrast-enhanced magnetic resonance imaging (CE-MRI).

6

To assess the delayed impact of BBB disruption, effective BBB disruption was assesed immediately after FUS using minimally invasive contrast-enhanced magnetic resonance imaging (CE-MRI). Expression of P-gp was measured by quantitative fluorescence microscopy of immunostained rat brain sections 24h and 48h after FUS (n=2 rats per time point). Brain [¹¹C]metoclopramide PET imaging + EB was performed 24h after FUS-induced BBB disruption, without (FUS+24h, n=5 rats) or with concurrent half-maximum P-gp inhibition (FUS+24h/TQD, n=5 rats).

14

15 Chemistry / Radiochemistry

16 Tariquidar used for P-gp inhibition was purchased from Eras Labo (France). Tariquidar 17 solutions for intravenous injection (4.4 mg·mL⁻¹) were freshly prepared on the day of the 18 experiment by dissolving tariquidar dimesylate in dextrose solution (5%, w/v), followed by 19 dilution with sterile water [25]. EB was obtained from Sigma-Aldrich (France).

Ready-to-inject [¹¹C]metoclopramide, was prepared as previously described [30] starting from
cyclotron-produced [¹¹C]carbon dioxide (Cyclone-18/9 cyclotron; IBA, Belgium) by *O*[¹¹C]methylation of nor-metoclopramide (Toronto Chemicals, Canada), using a TRACERLab
FX CPro synthesizer (GE Healthcare, France). Quality control was performed by radio-highperformance liquid chromatography (HPLC) to assess the identity, radiochemical and
chemical purity and the molar activity of the radiotracer.

26

27 Animals

28 A total of 28 male Sprague Dawley rats (Janvier, France) were used for the study (mean 29 weight: 275.9±20.4 g). Animals were housed and acclimatized for at least 3 days before 30 experiments. Rats were housed under standard experimental conditions: room temperature 31 (20 ± 2°C); light/dark cycle (14 h light/10 h dark); free access to water and food (pellets) ad 32 libitum. Rats were kept in social groups of two rats per cage. Polycarbonate shelters and wooden tubes have been added in the cages for enrichment. All interventions on animals 33 34 were performed under isoflurane anesthesia (2-2.5% isoflurane in a mixture of air/O₂; 50/50, 35 *v/v*).

All animal experiments were in accordance with the recommendations of the European Community (2010/63/UE) and the French National Committees (law 2013-118) for the care and use of laboratory animals. The experimental protocol was approved by a local ethics
committee for animal use (CETEA) and by the French ministry of agriculture
(APAFIS#16293-2018072609593031/Ethics committee n°44). Samples size for each group
was based on previous studies [25,26]. Reporting of animal data is in compliance with the
ARRIVE (Animal Research: Reporting in Vivo Experiments) guidelines.

6

7 Focused ultrasound

8 Transient disruption of BBB integrity was adapted from a previously published FUS protocol 9 designed to induce a large and controlled "line"-shaped BBB disruption in rats in one brain 10 hemisphere of rats [21]. The ultrasound set up consisted in a single element concave 11 transducer (diameter of 25 mm, focal depth 20 mm, Imasonic, France) with a central 12 frequency of 1.5 MHz. The transducer was connected to a single channel generator 13 synchronized with a motorized XYZ stage (CUBE, Image Guided Therapy, France). The 14 CUBE system includes a sine wave generator, a 50 W amplifier and a degasser to remove 15 air bubbles trapped into the water-filled balloon. The XYZ motorized stage is also driven by the CUBE system using the BBBop software (Image Guided Therapy), allowing for 16 17 synchronous transmission of FUS with transducer displacement. The delivered acoustic 18 pressure was estimated using a 200-µm calibrated hydrophone (HGL-0200, preamplifier AH-19 2020, Onda Corporation, USA) mounted on a micrometric 3D positioning stage and 20 positioned at the focus of the transducer in a water tank. The -6dB focal dimensions of the 21 sound beam are 7 mm (axial) and 1 mm (lateral).

22 Rats were installed in prone position on a dedicated bed into a stereotactic frame. The 23 transducer holder was fixed on a rail allowing reproducible head-foot displacement over a 24 line permitting targeted sonication of the left-brain hemisphere of the animals. The transducer 25 was coupled to the shaved head of the animals with a latex balloon filled with deionized and 26 degassed water. Acoustic gel was applied to the skin in order to ensure efficient coupling 27 with the balloon. A 200 µL bolus of commercially available microbubbles (SonoVue[®], Bracco, 28 Italy) was injected i.v.. Ultrasound sonication started immediately after microbubble injection, 29 with continuous waves set at an estimated peak negative acoustic pressure of 0.63 MPa in 30 situ at focus. Ultrasound transmission at 1.5 MHz through the skull was previously estimated to be 42% for a 300 g rat [31]. An amplitude compensation was applied as a function of the 31 32 animal weight. The transducer was repeatedly moved back and forth above the left 33 hemisphere along a single axis, in a range of 14 mm at a speed of 10 mm/s with 3s repetition 34 cycles. Continuous ultrasound waves were transmitted during 3 minutes.

35

36 MRI-based evaluation of FUS-induced BBB disruption protocol

1 For animals of the FUS+24h and the FUS+24h/TQD groups, effective disruption of the BBB was non-invasively checked 24h before [¹¹C]metoclopramide PET imaging + EB. To this end, 2 CE-MRI was performed as previously described [21]. Briefly, rats were i.v injected with 3 gadoterate (200 µL, Dotarem[®] 0.5 mmol/mL, Guerbet, France) immediately after the FUS 4 protocol. MRI images were acquired using a 7T small-animal MRI scanner (Bruker, 5 6 Germany). A T1-weighted sequence (Multi Slice Multi Echo, TE/TR = 3/300 ms, spatial resolution = 0.250×0.250×1 mm³, matrix size = 128x128x14, 5 averages, acquisition time = 7 8 3.12 min) was used to detect the signal enhancement due to the gadolinium chelate 9 delivered into brain tissues.

10

11 Expression of P-gp in the brain

12 In additional rat groups, the expression of P-gp in the brain was assessed using fluorescent 13 immunostaining of brain slices taken 24h and 48h after FUS (n=2 rats for each time-point). 14 First, the FUS-induced BBB disruption protocol was applied. The effectiveness of BBB 15 disruption was assessed using CE-MRI, as described above. At either 24h or 48h after FUS, animals were killed. Brains were removed and fresh-frozen using isopentane (-50°C, 16 HoneyWell, USA) and liquid nitrogen (Air Products, France), and stored at -80°C until 17 18 analysis. The slides with affixed 14-µm thick cryosections of the brain were incubated for 15 19 min at room temperature (rt) in 4% paraformaldehyde (PFA, Sigma-Aldrich), and then for 5 20 min at rt in phosphate-buffered saline PBS containing 50 mM of ammonium chloride (both 21 from Sigma-Aldrich) to guench remaining aldehydes. Sections were permeabilized in frozen 22 methanol/acetone (1/1; v/v 5 min, -20°C, from Carlo Erba Reagents, France) followed by 23 0.1% Triton X100 (Sigma-Aldrich) in PBS (5 min, rt). Three washes with PBS were carried 24 out between each of these steps. The non-specific sites were saturated by incubating the 25 slides for 45 minutes at rt in blocking buffer which consisted in PBS containing 5% Bovine 26 Albumin Serum (Fisher Bioreagents, USA) and 0.5% Tween 80 (Sigma-Aldrich). Each slide 27 was incubated for 1 h, in the presence of P-glycoprotein primary antibody (#MA1-26528, 28 Invitrogen, USA) diluted 1/100 in blocking buffer. After several washes with PBS, the slides 29 were left for 45 minutes at rt in Alexa-Fluor 546 donkey anti-mouse secondary antibody (Invitrogen) diluted 1/1000 in blocking buffer. Finally, slides were rinsed again, then mounted 30 in ProLong[™] Diamond Antifade Mountant (Invitrogen) containing 4',6-diamidino-2-31 phenylindole (DAPI) for labeling the nuclei. Brain sections were observed using a 20x lens of 32 33 a Zeiss AxioCam fluorescence microscope (Carl Zeiss, Germany). Intensity measurement of 34 the fluorescent signal was performed with the ImageJ software (https://imagej.nih.gov/ij/) 35 [32]. Two brain slices per rat were included in the analysis. In each section, the whole 36 fluorescence intensity was corrected for background and measured in twelve areas (0.323 37 µm x 0.323 µm) located i) in the sonicated volume of the left hemisphere, where the BBB

was disrupted, and ii) on the contralateral region within the non-sonicated right hemisphere.
 Fluorescence intensity is expressed as a percentage decrease compared with the

- 3 contralateral region.
- 4

5 [¹¹C]Metoclopramide PET imaging and EB extravasation test

6 MicroPET acquisitions were performed using an Inveon microPET scanner (Siemens, USA). 7 Anesthesia was induced and then maintained using 3.5% followed by 1.5-2.5% isoflurane in 8 pure oxygen. Thirty-minute dynamic PET scans were acquired, starting with i.v bolus 9 injection of [¹¹C]metoclopramide (38.2 ± 5.7 MBq, 1.0±0.4 μ g), via a catheter inserted in the 10 caudal lateral vein.

The EB extravasation test was simultaneously performed to assess the integrity status of the physical BBB during the PET acquisition. To this end, animals were i.v. injected with 2 mL/kg of a 4% EB solution, 1 min after ultrasound exposure and 9 min before [¹¹C]metoclopramide injection. At the end of PET experiments, anesthetized animals were decapitated and the brain was removed from the skull. BBB integrity was determined visually by two independent assayers on the intact freshly excised brain and then on ~5 mm thick coronal gross pathology slices.

18

19 PET data analysis

PET images were reconstructed with the Fourier rebinning algorithm and the 3-dimensional 20 21 ordered-subset expectation maximization algorithm (OSEM3D) including normalization, 22 attenuation, scatter, and random corrections. Image analysis and quantification of 23 radioactivity uptake in region of interest were performed using PMOD software (version 3.9; 24 PMOD Technologies, Switzerland). Time-activity curves (TACs) were generated with time frame durations of 1 x 0.25 min, 2 x 0.5 min, 1 x 0.75 min, 4 x 1 min, 1 x 1.5 min, 4 x 2 min, 1 25 26 x 2.5 min, 2 x 3 min and 1 x 3.75 min. Brain radioactivity was corrected for ¹¹C decay and 27 injected dose and expressed as percentage of injected dose per mL of brain tissue (%ID.mL⁻ 28 ¹).

29 Brain exposure was estimated by calculating the area under the brain TACs from either 0 to 10 min (AUC_{10min}) or 0 to 30 min (AUC_{30min}) after radiotracer injection. The AUC ratio of the 30 sonicated volume to the non-sonicated (contralateral) volume (AUCR_{10min} and AUCR_{30min}) 31 32 was also calculated. Kinetic modelling of the PET data was performed using The PKIN 33 module of the PMOD software. The simplified reference tissue model (SRTM) was used to describe the kinetic data of [¹¹C]metoclopramide. In this model, K₁ (in mL.cm⁻³.min⁻¹) is the 34 rate constant for transfer from plasma to free compartment of the region of interest 35 (sonicated volume) and K'₁ (in mL.cm⁻³.min⁻¹) is the rate constant for transfer from plasma to 36 37 free compartment of the reference region (non-sonicated contralateral volume). The SRTM

1 model only estimates R_1 which describes the ratio of the uptake clearance of 2 [¹¹C]metoclopramide in the sonicated volume relative to the non-sonicated volume ($R_1 =$ 3 K_1/K'_1) [33]. To use this model, it was assumed a similar binding potential of 4 [¹¹C]metoclopramide in the sonicated and non-sonicated brain tissue. This assumption is 5 based on previous experiments showing that the brain PET signal corresponds to non-6 displaceable (non-specific) binding in rats [25].

7

8 Statistical analysis

9 For the IHC study, percentage change in P-gp expression relative to the contralateral (nonsonicated) hemisphere was compared using a two-tailed one-sample *t*-test (n=4). Outcome parameters of the PET study were compared between conditions using 2-way ANOVA analysis using the Tukey's post-hoc test. Normality of the residues was checked using the Shapiro-Wilk's test and homoscedasticity using the Bartlett's test. Graphical and statistical analysis were performed using Graphpad[®] Prism software (Version 9, USA).

1 Results

2 Impact of FUS on the integrity of the physical BBB

3 Immediate disruption of the BBB was detected in animals submitted to FUS through either EB extravasation (~40 min after sonication, FUS group) or signal enhancement in CE-MRI 4 (~10 min after sonication, FUS+24h and FUS+24h/TQD groups) (Table 1). EB staining 5 6 consisted of a large blue stripe located in the left brain hemisphere, in line with previous work 7 using a similar FUS protocol, in which EB extravasation could be observed up to 100 min 8 after sonication [21]. This disruption pattern was confirmed in CE-MRI images, which 9 highlighted a large ~2mm stripe, matching the width of the ultrasound beam, from the front of 10 the brain to the cerebellum (Fig. 2). No signal enhancement could be observed in the 11 mirrored volumed drawn in the right hemisphere, thus confirming BBB integrity in the non-12 sonicated volume. Importantly, no EB extravasation was observed in either the baseline or 13 the TQD groups suggesting an intact BBB in these non-sonicated animals, regardless of P-14 gp activity. Moreover, no EB extravasation was observed in the FUS+24h and 15 FUS+24h/TQD groups, suggesting full recovery of the BBB integrity at the time of PET acquisition, i.e at 24h after FUS (Table 1). 16

18

Fig. 2. Expression of P-glycoprotein in the sonicated and the non-sonicated (contralateral) brain volume determined using immunostaining at 24h (FUS+24h) and 48h (FUS+48h) after blood-brain barrier (BBB) disruption induced by focused ultrasound (FUS). BBB disruption was assessed using contrast-enhanced MRI (CE-MRI). Expression of P-gp was determined using

immunostaining and fluorescence microscopy and expressed as the percentage of fluorescence intensity change relative to the contralateral (non-sonicated) volume. DAPI = 4',6-diamidino-2phenylindole. Significant change in P-gp expression was tested using a one sample *t*-test, mean \pm S.D, n=4 slides from 2 different rats per time point) is shown as **p<0.01, ***p<0.001.

- 5
- 6

Table 1. Assessment of blood-brain barrier (BBB) integrity using either the Evan's blue extravasation test (EB) or contrast-enhanced magnetic resonance imaging (CE-MRI) in the different tested conditions. EB was performed either 47 min after FUS (immediate impact), or 24h after FUS (delayed impact). CE-MRI was performed 1 min after FUS. Effective BBB disruption in the sonicated area is shown as "+", intact BBB is shown as "- ".

12

Condition	Immediate impact of FUS		Delayed impact (24h after FUS)
	EB	CE-MRI	EB
Baseline (n=5)	-		
FUS (n =4)	+		
TQD (n=5)	-		
FUS+24h (n=5)		+	_
FUS+24h/TQD (n=5)		+	_

13

14

15 FUS-induced down-regulation of P-gp expression

P-gp expression in the sonicated brain volume was significantly decreased at both 24h (p<0.001) and 48h (p<0.001) after FUS compared with the contralateral (non-sonicated) brain volume (Fig. 2). The decrease in P-gp expression was $-45.0\pm4.5\%$ at 24h and $-39.0\pm11.1\%$ at 48h after FUS (Fig. 2). This is consistent with the dynamics of FUS-induced down-regulation of brain P-gp described in the literature [17–19].

21

22 [¹¹C]Metoclopramide PET imaging

Visually, PET images (summed over 0-30 min) observed in the FUS or the FUS+24h group
were similar to baseline PET images. As expected, following P-gp inhibition with tariquidar,
higher PET signal was observed in the TQD and FUS+24h/TQD groups compared with other
groups. No difference could be observed between the sonicated (left) and non-sonicated
(right) hemisphere in any tested group (Fig. 3).

- 28
- 29
- 30

1

Fig. 3. Impact of regional blood-brain barrier (BBB) disruption induced by focused ultrasound (FUS) on the brain distribution of [¹¹C]metoclopramide. The localization of the area of BBB disruption is shown in A, in a representative contrast enhanced MR image. Panel B shows representative [¹¹C]metoclopramide brain PET summation images (0-30 min) obtained in baseline condition, immediately after FUS (FUS), after P-gp inhibition using tariquidar (TQD), at 24h after FUS without (FUS+24h) or with P-gp inhibition (FUS+24h/TQD). Shown are summed PET images (0-30min).

9

PET quantification revealed that BBB disruption alone (FUS group), as confirmed using the 10 EB test in the FUS group, had no immediate impact on the brain distribution of 11 [¹¹C]metoclopramide in the sonicated volume (AUC) as compared with non-sonicated 12 animals of the baseline group (p>0.05; Fig. 4) or on the left/right AUC ratio (AUCR_{10min} or 13 AUCR_{30min}) of $[^{11}C]$ metoclopramide (p>0.05, Fig. 5). Similar observations were made 24h 14 following FUS since [¹¹C]metoclopramide PET data obtained in the FUS+24h group showed 15 16 no change in the brain exposure (AUC) nor AUCR compared with the baseline group (p>0.05). Therefore FUS alone is unable to significantly change the brain exposure of 17 ¹¹C]metoclopramide either immediately, when BBB is disrupted, or 24h later, when BBB 18 19 integrity is restored but P-gp expression is reduced.

Fig. 4. Brain kinetics of [¹¹C]metoclopramide PET data in the sonicated brain region relative to 2 3 the contralateral volume. The ratio of brain exposure expressed as AUCR obtained from 0 to 10 min 4 (AUCR_{10 min}) or from 0 to 30 min (AUCR_{30 min}) is shown in A. The uptake clearance ratio in the 5 sonicated brain region relative to the contralateral hemisphere, expressed as R₁, is shown in B. Data 6 were acquired either at baseline (n=5), immediately after FUS (FUS, n=4), after P-gp inhibition using 7 tariquidar (TQD, n=5), 24h after FUS without (FUS+24h, n=5) or with P-gp inhibition (FUS+24h/TQD, 8 n=5). Data are presented as mean ± S.D. ns, not significant, *** p<0.001, 2-way ANOVA with Tukey's 9 post-hoc test.

Fig. 5. Kinetic modeling of [¹¹C]metoclopramide PET data obtained in the sonicated brain region to the contralateral volume. The ratio of brain exposure is expressed as AUCR obtained from 0 to 10 min or to 0 – 30 min is shown in A. The uptake transfer constant in the sonicated brain region relative to the contralateral hemisphere, expressed as R₁, is shown in B. Data were acquired either at baseline (n=5), immediately after FUS (FUS, n=4), after P-gp inhibition using tariquidar (TQD, n=5), 24h after FUS without (FUS+24h, n=5) or with P-gp inhibition (FUS+24h/TQD, n=5). Data are presented as mean ± S.D.

8

9 As expected, P-gp inhibition in the absence of FUS (TQD group) significantly increased the brain exposure of [¹¹C]metoclopramide (+135.0±12.9% in AUC_{30min} p<0.05, Fig. 4) relative to 10 11 the baseline but did not impact AUCR, suggesting a similar level of P-gp inhibition at the BBB 12 in both the right and left hemispheres (Fig. 5). Brain exposure (AUC_{10min} and AUC_{30min}) of 13 ¹¹C]metoclopramide in the sonicated hemisphere of the FUS+24h/TQD was significantly 14 higher compared with either the baseline group (p<0.05) or the FUS+24h group (p<0.05), most likely due to P-gp inhibition in the whole brain. However, in the FUS+24h/TQD group, 15 AUCR_{10min} was significantly higher compared with all other tested groups, suggesting higher 16 initial brain uptake in the sonicated volume compared with the non-sonicated hemisphere 17 18 (Fig. 5A). Kinetic modelling using the SRTM confirmed that the ratio of the uptake clearance 19 relative to the contralateral hemisphere (R1) was significantly higher in the FUS+24h/TQD group compared with the baseline (+29.1±15.4%, p<0.001) and all other tested groups 20 (p<0.001, Fig. 5B). However, the overall brain exposure ratio of [¹¹C]metoclopramide 21 22 (AUCR_{30min}) was not significantly higher in the FUS+24h/TQD group compared with the other 23 groups (p>0.05).

24

1 Discussion

The interplay between the P-gp-mediated efflux, which forms a "functional" barrier, and the "physical" integrity of the BBB remains poorly understood. In the present study, the immediate and delayed impact of FUS-induced BBB disruption on P-gp function was investigated in rats. To this end, [¹¹C]metoclopramide PET imaging was performed immediately after FUS-induced BBB disruption, as well as 24h after FUS, at time point when a significant down-regulation of P-gp expression at the BBB was observed.

- 9 The FUS protocol used in this study has been specifically designed to estimate the impact of 10 BBB disruption upon BBB function using minimally-invasive PET imaging [21]. The size of the brain volume with disrupted BBB is consistent with the spatial resolution of PET scanner 11 12 (~1.6 mm) and allows for quantification and comparison with the contralateral hemisphere, where the BBB is intact. Similar FUS conditions were applied in mice and were shown to 13 enhance the brain delivery of [¹⁸F]fluoro-desoxy-sorbitol ([¹⁸F]FDS) as a quantitative PET 14 probe for BBB permeability [23]. The EB extravasation test was systematically performed at 15 16 the end of PET acquisition to inform on the integrity status of the BBB during PET 17 acquisition. No EB extravasation was observed 24h after FUS, suggesting recovery of the paracellular integrity BBB at this time point, consistent with the previously described 18 19 dynamics of BBB recovery following FUS [34]. It should be noticed that FUS also enables 20 drug delivery to the brain through the stimulation of caveolae-mediated transcytosis which 21 residual activity may still exist 24h after FUS [35-37].
- The present results, obtained in rats using [¹¹C]metoclopramide as a model P-gp substrate, 22 23 do not support the use FUS-induced BBB disruption to deliver drugs whose brain penetration 24 is selectively limited by P-gp rather than the physical BBB integrity. This is consistent with previous work performed using similar FUS and PET conditions for [¹¹C]erlotinib, which is a 25 dual substrate of P-gp and the Breast Cancer Resistance Protein (BCRP), and the avid P-gp 26 27 substrate [¹¹C]*N*-desmethyl-loperamide [21]. As a consequence, efflux transporters may still 28 restrict drug delivery to the brain, even when physical BBB integrity is lost, as observed for 29 some P-gp substrates in animal models of brain tumors [38]. The combination of FUSinduced BBB disruption with partial P-gp inhibition was not tested for [¹¹C]metoclopramide. 30 However, in this previous study, FUS did not improve the brain delivery of [¹¹C]erlotinib when 31 P-gp and BCRP were inhibited [21]. From a drug delivery perspective, P-gp inhibition 32 33 increases exposure of [¹¹C]metoclopramide in the whole brain, so that the added value of FUS to enable targeted brain delivery would be lost compared with clinically validated 34 35 protocols enabling almost complete P-gp inhibition [39]. Of note, metoclopramide is a weak substrate of the P-gp, which means it shows substantial 36
- 37 brain penetration even when P-gp is fully functional. Moreover, it was shown that

1 [¹¹C]metoclopramide freely crosses the BBB when P-gp inhibited [26,40]. This is consistent 2 with the high passive diffusion of metoclopramide across artificial lipid membrane [41]. This 3 may explain the negligible impact of FUS on the brain delivery of [¹¹C]metoclopramide. Our 4 data suggest that the CNS adverse effects observed in some patients treated with 5 metoclopramide as an antiemetic drug [42] are not likely to be related to a loss in BBB 6 integrity. CNS adverse effects may however be linked to increased plasma exposure and/or 7 enhanced brain distribution which may be caused by impaired P-gp function at the BBB.

8 We hypothesized that the regional decrease in P-gp expression observed at 24h after FUS 9 by several groups [17-19] may provide an innovative mean to locally enhance the brain 10 delivery of P-gp substrates in selected brain regions. So far, pharmacological inhibition of P-11 gp at the BBB using tariquidar was shown feasible in animals and humans, as highlighted by previous PET studies using radiolabeled substrates of this transporter like (*R*)-[¹¹C]verapamil 12 [39] or [¹¹C]*N*-desmethyl-loperamide [43,44]. However, pharmacological inhibition occurs in 13 14 the whole-brain [45] which does not allow for targeted brain delivery of P-gp substrates. 15 Fluorescence microscopy on immunostained brain sections confirmed a regional decrease in 16 P-gp expression in the sonicated region, which was maximal at 24h after FUS, a time point at 17 which BBB integrity had already recovered in terms of paracellular transport, according to the 18 absence of EB extravasation. It should, however, be noticed that only a partial -45% 19 decrease in P-gp expression was achieved. This result is consistent with previous studies 20 reporting a significant but partial down-regulation of P-gp at the BBB from 24h to 48h after 21 FUS [17–20]. These studies used different acoustic pressure and FUS conditions. Cho et al. 22 reported an inverse correlation between the level of FUS-induced BBB disruption and the 23 down-regulation of P-gp [17]. Aryal et al. have shown than the maximum level of P-gp 24 suppression was correlated with harmonic emission rather than acoustic pressure [18]. 25 However, it remains to be demonstrated whether FUS conditions may be further optimized to 26 lead to more pronounced decrease in P-gp expression, with the aim to approach complete 27 down-regulation.

28 ¹¹C]metoclopramide was selected over previous PET radiotracers for P-gp because it was 29 demonstrated to be more sensitive to assess partial inhibition of the P-gp, suggesting high 30 sensitivity to detect moderate changes in P-gp function at the BBB [26]. Contrary to our 31 expectations, the brain uptake of [¹¹C]metoclopramide was not increased in the sonicated brain volume in the FUS+24h group. Neither was the brain uptake of [¹¹C]metoclopramide 32 relative to the contralateral, non-sonicated hemisphere increased. This observation supports 33 34 the nonlinear hypothesis assuming that nearly maximal P-gp inhibition or depletion is required to substantially enhance the brain delivery of substrates [46]. This is consistent with 35 previous study reporting that the brain uptake of (R)-[¹¹C]verapamil or [¹¹C]N-desmethyl-36 loperamide was not increased in heterozygous Abcb1a/b^(+/-) mice expressing 50% less P-gp 37

at the BBB compared with wild-type mice [47], although, species differences in terms of P-gp
 abundance at the BBB between rats and mice should be considered [48,49].

From an imaging perspective, this suggests that decrease in P-gp function observed in elderly subjects or patients with Alzheimer's disease using PET is probably associated with high degree of decline in P-gp expression at the BBB [50,51]. A correlation of PET data obtained *in vivo* with P-gp expression measured *ex vivo* in resected brain samples would be of interest to estimate the level of P-gp expression associated with a change in the brain kinetics of P-gp PET probes.

9 We further hypothesized that partial inhibition of the P-gp using tariquidar may enhance the 10 brain delivery of [¹¹C]metoclopramide in the presence of the ~45% down-regulation of P-gp expression induced by FUS, leading to an additive effect. Partial P-gp inhibition was 11 previously reported to enhance the sensitivity of (R)-[¹¹C]verapamil PET imaging to detect a 12 partial decrease in P-gp function at the BBB [52,53]. The tariguidar dose selected in this work 13 14 (1 mg/kg) was shown to inhibit 50% of the total P-gp function in rats [26]. Tariguidar, at dose up to 8 mg/kg was shown to not impact the arterial input function of [¹¹C]metoclopramide. In 15 the absence of FUS, tariguidar induced a significant 2.3-fold increase in the brain distribution 16 17 of [¹¹C]metoclopramide, which extent was the same in both hemispheres. However, when 18 PET imaging under conditions of partial P-gp inhibition with tariquidar was performed 24h 19 after FUS (FUS+24h/TQD group), a significant 11.1±4.4% increase in the initial brain uptake of [¹¹C]metoclopramide relative to the contralateral hemisphere (AUCR_{10 min}) was measured. 20 This effect was not observed in the absence of tariquidar (FUS+24h group, -1.7±2.1% 21 22 change in AUCR_{10min}), which indicated that partial inhibition using tariquidar significantly 23 enhanced the sensitivity of [¹¹C]metoclopramide PET to detect this moderate and regional 24 decline in P-gp function induced by FUS. However, overall brain exposure of 25 ¹¹C]metoclopramide (AUC_{30 min}) in the sonicated brain volume of the FUS+24h/TQD group 26 was not higher than that observed in the TQD group. This does not support a possible 27 exploitation of the delayed impact of FUS on P-gp expression as a strategy to locally 28 enhance the brain delivery of P-gp substrates for therapeutic purposes.

29 Kinetic modeling was useful to interpret the dynamic PET data obtained with 30 ^{[11}C]metoclopramide in the FUS+24h/TQD group. First, a difference between the sonicated and the contralateral hemisphere was observed in the initial uptake phase only (AUCR_{10min}). 31 32 Consistently, the kinetic parameter R_1 , which corresponds to the ratio of the brain delivery in 33 a targeted regions relative to a reference region estimated using the SRTM model [33], was 34 also increased in the FUS+24h/TQD group compared with all other groups. This is consistent with the local down-regulation of P-gp expression. It may also be hypothesized that the 35 36 increase in R1 observed 24h after FUS may reflect residual stimulation of the caveolae-37 mediated transcytosis, which was not evaluated using the EB extravasation test [35–37].

However, the increase in R₁ was only observed in the presence of partial P-gp inhibition, but
 not in the FUS nor the FUS+24h group. This supports a link between decreased R₁ and the
 local P-gp down-regulation.

However, a significant increase in the initial brain uptake (AUCR_{10min} and R₁) did not translate
into a significant increase in the overall brain exposure (AUC_{30min} and AUCR_{30min}) compared
with the FUS+24h group. It may be hypothesized that [¹¹C]metoclopramide may preferentially
penetrate the brain in the sonicated volume due to decreased P-gp function, and then diffuse
to the rest of the brain, where P-gp is normally active, according to the "bulk-flow" hypothesis
[54]. Accordingly, a local decrease in P-gp function may not appear as a relevant strategy
compared with pharmacological inhibition to enable the brain exposure to P-gp substrates.

PET imaging using radiolabeled substrates is widely used to investigate P-gp dysfunction in many pathophysiological conditions [55,56]. However, concurrent changes in both the physical integrity of the BBB and P-gp function can be observed in pathological conditions [55]. Our results obtained in rats suggests that quantification of P-gp function using [¹¹C]metoclopramide may not depend on the integrity status of the BBB. This supports the use of [¹¹C]metoclopramide PET imaging to evaluate P-gp in neurological diseases in which a loss in BBB integrity is suspected [57].

- 18 The results obtained in the present study should be carefully interpreted in terms of clinical 19 translation and safety consideration for clinical use. Proteomic studies have notably shown 20 large species differences in terms of abundance of efflux transporters at the BBB, with a ~10-21 fold higher expression of P-gp in rats compared with humans [58]. Consistently, almost 22 complete inhibition of P-gp using tariquidar led to a 3.5-fold increase in the brain uptake of 23 ^{[11}C]metoclopramide in rats [25], and a 2.0-fold increase in non-human primates [40] which 24 BBB more closely resembles that of humans in terms of P-gp expression [59]. This suggests 25 that the rat model may overestimate the relative importance of P-gp in limiting the brain 26 uptake of [¹¹C]metoclopramide in humans [48]. Taking advantage of the translational 27 potential of [¹¹C]metoclopramide PET imaging [29,40], further experiments should be 28 conducted in nonhuman primates or humans to confirm the present preclinical results in a 29 perspective of clinical safety.
- 30

31 Conclusion

In rats, BBB disruption induced by FUS did not impact the brain kinetics of [¹¹C]metoclopramide, a PET probe for P-gp function at the BBB. [¹¹C]Metoclopramide, under conditions of partial P-gp inhibition, has the sensitivity to detect the functional impact of a moderate decline in P-gp expression observed 24h after FUS. However, this moderate and regional decline in P-gp expression did not translate into a substantial increase in brain exposure. This rat study suggests that almost complete down-regulation of P-gp expression

- 1 is probably required to substantially enhance the brain delivery of compounds which brain
- 2 distribution is predominantly impaired by the P-gp-mediated efflux rather than physical BBB
- 3 integrity. This PET data should however be confirmed in humans given important species
- 4 differences between humans and rodents in terms of P-gp abundance at the BBB.
- 5

6 Acknowledgements

- 7 We gratefully thank Maud Goislard for technical assistance.
- 8 9

10 Grant support

11 This work was performed on a platform member of France Life Imaging network (grant ANR-

- 12 11-INBS-0006).
- 13
- 14

15 References

- Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS
 drug delivery. Nat Rev Drug Discov. 2016;15:275–92.
- Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function
 of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25.
- 20 3. De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into
- 21 rather unexplored terrain—transcellular transport across the blood–brain barrier. Glia.
- 22 2016;64:1097–123.
- 23 4. Ronaldson PT, Davis TP. Transport Mechanisms at the Blood-Brain Barrier and in Cellular
- Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs.
 Pharmaceutics. 2022;14:1501.
- 26 5. Durmus S, Hendrikx JJMA, Schinkel AH. Apical ABC transporters and cancer
- chemotherapeutic drug disposition. Adv Cancer Res. 2015;125:1–41.
- 28 6. Pathan N, Shende P. Tailoring of P-glycoprotein for effective transportation of actives
- 29 across blood-brain-barrier. J Controlled Release. 2021;335:398–407.
- 30 7. Miyama T, Takanaga H, Matsuo H, Yamano K, Yamamoto K, Iga T, et al. P-Glycoprotein-
- 31 Mediated Transport of Itraconazole across the Blood-Brain Barrier. Antimicrob Agents
- 32 Chemother. 1998;42:1738–44.
- 8. Agrawal N, Rowe J, Lan J, Yu Q, Hrycyna CA, Chmielewski J. Potential Tools for
- 34 Eradicating HIV Reservoirs in the Brain: Development of Trojan Horse Prodrugs for the
- 35 Inhibition of P-Glycoprotein with Anti-HIV-1 Activity. J Med Chem. 2020;63:2131–8.
- 36 9. Kemper EM, Boogerd W, Thuis I, Beijnen JH, van Tellingen O. Modulation of the blood-
- 37 brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours?
- 38 Cancer Treat Rev. 2004;30:415–23.
- 39 10. Pardridge WM. The Blood-Brain Barrier: Bottleneck in Brain Drug Development.
- 40 NeuroRx. 2005;2:3–14.
- 41 11. de Lange ECM, Hammarlund Udenaes M. Understanding the Blood-Brain Barrier and
- 42 Beyond: Challenges and Opportunities for Novel CNS Therapeutics. Clin Pharmacol Ther.
 43 2022;111:758–73.
- 44 12. Cox B, Nicolaï J, Williamson B. The role of the efflux transporter, P-glycoprotein, at the
- 45 blood–brain barrier in drug discovery. Biopharm Drug Dispos. 2023;44:113–26.

- 13. Couture O, Foley J, Kassell NF, Larrat B, Aubry J-F. Review of ultrasound mediated drug 1
- delivery for cancer treatment: updates from pre-clinical studies. Transl Cancer Res. 2
- 3 2014;3:494-511.
- 4 14. Gorick CM, Breza VR, Nowak KM, Cheng VWT, Fisher DG, Debski AC, et al.
- 5 Applications of focused ultrasound-mediated blood-brain barrier opening. Adv Drug Deliv 6 Rev. 2022;191:114583.
- 7 15. Mittapalli RK, Manda VK, Bohn KA, Adkins CE, Lockman PR. Quantitative
- 8 fluorescence microscopy provides high resolution imaging of passive diffusion and P-gp
- 9 mediated efflux at the in vivo blood-brain barrier. J Neurosci Methods. 2013;219:188-95.
- 10 16. Adkins CE, Mittapalli RK, Manda VK, Nounou MI, Mohammad AS, Terrell TB, et al. P-
- glycoprotein mediated efflux limits substrate and drug uptake in a preclinical brain metastases 11
- of breast cancer model. Front Pharmacol. 2013;4:136. 12
- 13 17. Cho H, Lee H-Y, Han M, Choi J-R, Ahn S, Lee T, et al. Localized Down-regulation of P-
- glycoprotein by Focused Ultrasound and Microbubbles induced Blood-Brain Barrier 14
- 15 Disruption in Rat Brain. Sci Rep. 2016;6:31201.
- 18. Aryal M, Fischer K, Gentile C, Gitto S, Zhang Y-Z, McDannold N. Effects on P-16
- Glycoprotein Expression after Blood-Brain Barrier Disruption Using Focused Ultrasound and 17
- Microbubbles. PloS One. 2017;12:e0166061. 18
- 19. Choi H, Lee E-H, Han M, An S-H, Park J. Diminished Expression of P-glycoprotein 19
- Using Focused Ultrasound Is Associated With JNK-Dependent Signaling Pathway in Cerebral 20 Blood Vessels. Front Neurosci. 2019;13:1350. 21
- 22 20. Conti A, Geffroy F, Kamimura HAS, Novell A, Tournier N, Mériaux S, et al. Regulation
- of P-glycoprotein and Breast Cancer Resistance Protein Expression Induced by Focused 23
- Ultrasound-Mediated Blood-Brain Barrier Disruption: A Pilot Study. Int J Mol Sci. 24
- 25 2022;23:15488.
- 26 21. Goutal S, Gerstenmayer M, Auvity S, Caillé F, Mériaux S, Buvat I, et al. Physical blood-
- 27 brain barrier disruption induced by focused ultrasound does not overcome the transporter-28 mediated efflux of erlotinib. J Controlled Release. 2018;292:210-20.
- 29 22. Arif WM, Elsinga PH, Gasca-Salas C, Versluis M, Martínez-Fernández R, Dierckx RAJO,
- 30 et al. Focused ultrasound for opening blood-brain barrier and drug delivery monitored with 31 positron emission tomography. J Controlled Release. 2020;324:303-16.
- 23. Hugon G, Goutal S, Dauba A, Breuil L, Larrat B, Winkeler A, et al. [18F]2-Fluoro-2-32
- deoxy-sorbitol PET Imaging for Quantitative Monitoring of Enhanced Blood-Brain Barrier 33 34 Permeability Induced by Focused Ultrasound. Pharmaceutics. 2021;13:1752.
- 35 24. Tran VL, Novell A, Tournier N, Gerstenmayer M, Schweitzer-Chaput A, Mateos C, et al.
- 36 Impact of blood-brain barrier permeabilization induced by ultrasound associated to
- 37 microbubbles on the brain delivery and kinetics of cetuximab: An immunoPET study using
- 89Zr-cetuximab. J Controlled Release. 2020;328:304-12. 38
- 39 25. Pottier G, Marie S, Goutal S, Auvity S, Peyronneau M-A, Stute S, et al. Imaging the
- 40 Impact of the P-Glycoprotein (ABCB1) Function on the Brain Kinetics of Metoclopramide. J 41 Nucl Med. 2016:57:309-14.
- 42 26. Breuil L, Marie S, Goutal S, Auvity S, Truillet C, Saba W, et al. Comparative
- 43 vulnerability of PET radioligands to partial inhibition of P-glycoprotein at the blood-brain 44
- barrier: A criterion of choice? J Cereb Blood Flow Metab. 2022;42:175-85.
- 27. Breuil L, Goutal S, Marie S, Del Vecchio A, Audisio D, Soyer A, et al. Comparison of the 45
- Blood-Brain Barrier Transport and Vulnerability to P-Glycoprotein-Mediated Drug-Drug 46
- 47 Interaction of Domperidone versus Metoclopramide Assessed Using In Vitro Assay and PET 48 Imaging. Pharmaceutics. 2022;14:1658.
- 28. Zoufal V, Mairinger S, Brackhan M, Krohn M, Filip T, Sauberer M, et al. Imaging P-49
- 50 Glycoprotein Induction at the Blood-Brain Barrier of a β-Amyloidosis Mouse Model with

- 1 11C-Metoclopramide PET. J Nucl Med. 2020;61:1050–7.
- 2 29. Tournier N, Bauer M, Pichler V, Nics L, Klebermass E-M, Bamminger K, et al. Impact of
- 3 P-Glycoprotein Function on the Brain Kinetics of the Weak Substrate 11C-Metoclopramide
- 4 Assessed with PET Imaging in Humans. J Nucl Med. 2019;60:985–91.
- 5 30. Caillé F, Goutal S, Marie S, Auvity S, Cisternino S, Kuhnast, Bertrand, et al. PET
- 6 imaging reveals a saturable liver uptake transport of importance for the pharmacokinetics of
- 7 metoclopramide. Contrast Media Mol Imaging. In Press. 2018;In Press.
- 8 31. Gerstenmayer M, Fellah B, Magnin R, Selingue E, Larrat B. Acoustic Transmission
- 9 Factor through the Rat Skull as a Function of Body Mass, Frequency and Position. Ultrasound Mad Biol. 2018:44:2326, 44
- 10 Med Biol. 2018;44:2336–44.
- 11 32. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image
- 12 analysis. Nat Methods. 2012;9:671–5.
- 13 33. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies.
- 14 NeuroImage. 1996;4:153–8.
- 15 34. Marty B, Larrat B, Van Landeghem M, Robic C, Robert P, Port M, et al. Dynamic Study
- 16 of Blood–Brain Barrier Closure after its Disruption using Ultrasound: A Quantitative
- 17 Analysis. J Cereb Blood Flow Metab. 2012;32:1948–58.
- 18 35. Meng Y, Pople CB, Lea-Banks H, Abrahao A, Davidson B, Suppiah S, et al. Safety and
- efficacy of focused ultrasound induced blood-brain barrier opening, an integrative review of
 animal and human studies. J Controlled Release. 2019;309:25–36.
- 21 36. Olsman M, Sereti V, Mühlenpfordt M, Johnsen KB, Andresen TL, Urquhart AJ, et al.
- Focused Ultrasound and Microbubble Treatment Increases Delivery of Transferrin Receptor-
- Targeting Liposomes to the Brain. Ultrasound Med Biol. 2021;47:1343–55.
- 24 37. Pandit R, Koh WK, Sullivan RKP, Palliyaguru T, Parton RG, Götz J. Role for caveolin-
- 25 mediated transcytosis in facilitating transport of large cargoes into the brain via ultrasound. J
- 26 Controlled Release. 2020;327:667–75.
- 27 38. de Gooijer MC, Kemper EM, Buil LCM, Çitirikkaya CH, Buckle T, Beijnen JH, et al.
- 28 ATP-binding cassette transporters restrict drug delivery and efficacy against brain tumors
- even when blood-brain barrier integrity is lost. Cell Rep Med. 2021;2:100184.
- 30 39. Bauer M, Karch R, Zeitlinger M, Philippe C, Römermann K, Stanek J, et al. Approaching
- 31 complete inhibition of P-glycoprotein at the human blood-brain barrier: an (R)-
- 32 [11C]verapamil PET study. J Cereb Blood Flow Metab. 2015;35:743–6.
- 33 40. Auvity S, Caillé F, Marie S, Wimberley C, Bauer M, Langer O, et al. P-Glycoprotein
- 34 (ABCB1) Inhibits the Influx and Increases the Efflux of 11C-Metoclopramide Across the
- Blood-Brain Barrier: A PET Study on Nonhuman Primates. J Nucl Med. 2018;59:1609–15.
- 36 41. Tsinman O, Tsinman K, Sun N, Avdeef A. Physicochemical Selectivity of the BBB
- 37 Microenvironment Governing Passive Diffusion—Matching with a Porcine Brain Lipid
- 38 Extract Artificial Membrane Permeability Model. Pharm Res. 2011;28:337–63.
- 39 42. Parkman HP, Mishra A, Jacobs M, Pathikonda M, Sachdeva P, Gaughan J, et al. Clinical
- 40 response and side effects of metoclopramide: associations with clinical, demographic, and
- 41 pharmacogenetic parameters. J Clin Gastroenterol. 2012;46:494–503.
- 42 43. Langer O. Use of PET Imaging to Evaluate Transporter-Mediated Drug-Drug Interactions.
- 43 J Clin Pharmacol. 2016;56 Suppl 7:S143-156.
- 44 44. Kreisl WC, Bhatia R, Morse CL, Woock AE, Zoghbi SS, Shetty HU, et al. Increased
- 45 permeability-glycoprotein inhibition at the human blood-brain barrier can be safely achieved
- 46 by performing PET during peak plasma concentrations of tariquidar. J Nucl Med.
- 47 2015;56:82–7.
- 48 45. Eyal S, Ke B, Muzi M, Link JM, Mankoff DA, Collier AC, et al. Regional P-glycoprotein
- 49 activity and inhibition at the human blood-brain barrier as imaged by positron emission
- 50 tomography. Clin Pharmacol Ther. 2010;87:579–85.

- 1 46. Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang S-M, Liu X, et al. Why clinical
- modulation of efflux transport at the human blood-brain barrier is unlikely: the ITC evidence-2 3 based position. Clin Pharmacol Ther. 2013;94:80-94.
- 4 47. Wanek T, Römermann K, Mairinger S, Stanek J, Sauberer M, Filip T, et al. Factors
- 5 Governing P-Glycoprotein-Mediated Drug-Drug Interactions at the Blood-Brain Barrier
- 6 Measured with Positron Emission Tomography. Mol Pharm. 2015;12:3214–25.
- 7 48. Verscheijden LFM, Koenderink JB, de Wildt SN, Russel FGM. Differences in P-
- 8 glycoprotein activity in human and rodent blood-brain barrier assessed by mechanistic
- 9 modelling. Arch Toxicol. 2021;95:3015-29.
- 10 49. Zhang W, Liu QY, Haqqani AS, Liu Z, Sodja C, Leclerc S, et al. Differential Expression
- of ABC Transporter Genes in Brain Vessels vs. Peripheral Tissues and Vessels from Human, 11
- Mouse and Rat. Pharmaceutics. 2023;15:1563. 12
- 13 50. Deo AK, Borson S, Link JM, Domino K, Eary JF, Ke B, et al. Activity of P-Glycoprotein,
- a β-Amyloid Transporter at the Blood-Brain Barrier, Is Compromised in Patients with Mild 14
- 15 Alzheimer Disease. J Nucl Med. 2014;55:1106-11.
- 51. Bauer M, Bamminger K, Pichler V, Weber M, Binder S, Maier-Salamon A, et al. 16
- Impaired clearance from the brain increases the brain exposure to metoclopramide in elderly 17
- subjects. Clin Pharmacol Ther. 2020; 18
- 52. Bauer M, Wulkersdorfer B, Karch R, Philippe C, Jäger W, Stanek J, et al. Effect of P-19
- 20 glycoprotein inhibition at the blood–brain barrier on brain distribution of (R)-[11C]verapamil in elderly vs. young subjects. Br J Clin Pharmacol. 2017;83:1991-9. 21
- 22 53. Zoufal V, Wanek T, Krohn M, Mairinger S, Filip T, Sauberer M, et al. Age dependency of
- cerebral P-glycoprotein function in wild-type and APPPS1 mice measured with PET. J Cereb 23
- Blood Flow Metab. 2020;40:150-62. 24
- 25 54. Groothuis DR, Vavra MW, Schlageter KE, Kang EW-Y, Itskovich AC, Hertzler S, et al.
- 26 Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary
- 27 transport, bulk flow and capillary transporters. J Cereb Blood Flow Metab. 2007;27:43-56.
- 28 55. Gil-Martins E, Barbosa DJ, Silva V, Remião F, Silva R. Dysfunction of ABC transporters
- 29 at the blood-brain barrier: Role in neurological disorders. Pharmacol Ther. 2020;213:107554.
- 30 56. Harris WJ, Asselin M-C, Hinz R, Parkes LM, Allan S, Schiessl I, et al. In vivo methods
- 31 for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging. 32 2022;
- 57. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of 33
- 34 the blood-brain barrier. Nat Med. 2013;19:1584-96.
- 58. Uchida Y, Yagi Y, Takao M, Tano M, Umetsu M, Hirano S, et al. Comparison of 35
- 36 Absolute Protein Abundances of Transporters and Receptors among Blood-Brain Barriers at
- 37 Different Cerebral Regions and the Blood-Spinal Cord Barrier in Humans and Rats. Mol Pharm. 2020;17:2006-20. 38
- 39 59. Uchida Y, Wakayama K, Ohtsuki S, Chiba M, Ohe T, Ishii Y, et al. Blood-brain barrier
- 40 pharmacoproteomics-based reconstruction of the in vivo brain distribution of P-glycoprotein
- 41 substrates in cynomolgus monkeys. J Pharmacol Exp Ther. 2014;350:578-88.
- 42