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A. Computational Details: Electronic Structure

In the DFT calculations, we mainly employ the
PBE approximation to the exchange-correlation energy.
Among other GGA approximations, the PBE is known
to describe hydrogen bonds quite well, with a slight ten-
dency to overestimate their strength in several molecules
and solids [1, 2]. Within the PBE approximation, the
iono-covalent OH bond in the isolated water molecule is
longer than the experimental value. The latter drawback
is fairly eliminated when using a hybrid correction, that
is, the PBE0 approximation [3]. In order to assess the
impact of the chosen exchange-correlations approxima-
tions on the energetics of sodium hydroxide, we report
in section C an extensive comparison of selected con-
figurations that are computed either at the PBE or the
PBE0 levels. We anticipate that the energy differences
of the relevant configurations does not vary significantly
(see section C). For computational reasons, we employed
the PBE in all the dynamical calculations, as the use of
PBE0 can slow down the computational time needed for
the convergence of the Kohn-Sham equations roughly by
an order of magnitude.

In the electronic structure calculations adopting the
PBE functional, we employ ultra-soft (US) pseudo-
potentials for O and H and include the semi-core 2s and
2p Na electrons in the self-consistent charge density, us-
ing a plane-wave expansion cutoff of 60 Ry for the Kohn-
Sham states and 8 times as large for the charge and the
potential. In order to check the influence of the pseudo-
potentials, we optimized several distinct configurations
(AFE, FE, PE as described in section B) by using opti-
mized norm-conserving pseudopotentials (ONC) [4] with
a 90 Ry cutoff for the Kohn-Sham states and 360 Ry for
the charge and the potential, either in the PBE or in the
hybrid PBE0 approximations. The optimized structures
are very similar as far as the equilibrium lattice parame-
ters, bond lengths and OH slanted angle θ are concerned.
The total energy behaves quantitatively the same as a
function of the c lattice parameter.

In order to represent both antiferro-electric (AFE) and
ferro-electric (FE) configurations in a single computa-
tional setup, we considered a cell with doubled lattice
parameter 2a. We use orthorhombic cells containing 8
NaOH (NaOD) units (2a ' 6.9 Å, b ' 3.4 Å, 9.6 Å ≤ c ≤
13.7 Å), with a ‖ x̂, b ‖ ŷ, and c ‖ ẑ. We adopt a (2, 3, 1)

k-point sampling centred at Γ. A finer k-point sampling
does not influence significantly the energy differences be-
tween the NaOH structures that are sketched in Fig. B
and we considered as benchmarks.

B. OH ordering.

From structural optimization at T = 0 K, we can dis-
tinguish several local minima, differing by the alignment
of the hydroxyl groups. The main ones are drawn in
Fig.1. Top left, the most stable antiferro-electric (AFE)
structure: the OH groups lie in the (bc) plane and form
hydrogen bonds between successive NaOH stacks along c;
the OH groups are antiparallel when considering neigh-
boring chains along the a axis. In the ferro-electric (FE)
configuration (bottom, left), the OH groups are all paral-
lel to each other. By doubling the dimension of the unit
cell along (c), we also considered an intermediate struc-
ture between the AFE and FE, the in-plane FE/out-of-
plane AFE (top, right), in which the hydroxyl groups
are all parallel within the (bc) plane, while they are an-
tiparallel when moving along c. This structure is almost
degenerate with the FE one, which shows that the or-
dering of the HBs on different stacks is secondary with
respect to the ordering of HBs in antiparallel chains when
moving along (a).

In all of the three AFE, FE and the in-plane FE/out-
of-plane AFE configurations, hydrogen bonds are formed
between two successive NaOH bilayers; the OH groups
form an angle ±θ with the c axis. In the para-electric
(PE) structure (bottom, right), the OH are all parallel
to the c axis (θ = 0) and do not form hydrogen bonds
between the NaOH bilayers. Along the dynamics and
depending on the temperature, the orientation of the OH
groups can be considered as a statistical mix of the four
configurations here depicted (see, e.g. Fig.5 in the main
text).

C. Potential Energy Surfaces

The potential energy surface E(θ, c) that is shown in
Fig.1 (b) in the main text was computed by constrained
structural optimizations at fixed hydroxyl angle θ and
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FIG. 1. OH ordering in four different structures: antiferro-
electric (AFE), mixed antiferro-ferro-electric (FE parallel to
the a. axis, AFE parallel along the c axis, ferro-electric (FE),
and para-electric (PE). Panel a: atomic structures, Na are
in light blue, O in red and H in white. Hydrogen bonds are
drawn as dashed lines. The directions of the a, b, c vectors
are indicated as blue arrows. Panel b. schematic representa-
tion of the OH-dipole orientation projected in the ab-plane
for the three relevant in-plane ferro-electric order configura-
tions.

lattice parameters for the AFE configuration, by varying
θ in the (−50◦, 50◦) range and c ∈ (9.8, 12.6) Å.

By relaxing the constraint on the θ angle, the poten-
tial energy surface becomes a function of the lattice pa-
rameter c. Depending on the initial choice of the OH
orientations, we obtained distinct curves for the AFE,
FE and PE configurations, which correspond to distinct
space groups. Moreover, we conducted a detailed com-
parison between the PBE generalized gradient and PBE0
hybrid approximations to the exchange and correlation
energy (Fig. 2).

In the PBE calculations, the lattice parameters a and b,

as well as the atomic positions, are fully optimized in each
configuration and for each c value. At the PBE0 level, the
a and b lattice parameters are fixed at their PBE values
[5], while the atomic positions are fully relaxed. The
resulting PBE and PBE0 curves are very similar: the
AFE configuration is slightly more stable than the FE
one, for all c values. Their minima are at c0 ' 10.37 Å;
EFE(c0) − EAFE(c0) = 3.5 meV/unit within the PBE
and 2.5 meV/unit at the PBE0 level. For this value of
the c lattice parameter, the para-electric configuration
is higher in energy by about 40-50 meV/unit, that is,
roughly twice the thermal energy at room temperature.
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FIG. 2. T = 0 K energy versus lattice parameter c in the PBE
(upper frame) and PBE0 approximations (lower frame). The
energy is plotted separately for the antiferro-electric (AFE),
ferro-electric (FE), and para-electric (PE) configurations.

Both AFE and FE curves merge into the PE one
around c ' 12 Å, very close to the minimum of the PE
energy curve, in both PBE and PBE0 approximations.
We can conclude that the potential energy surfaces that
are relevant for the dynamics are very close at PBE and
PBE0 theory levels.

We then focus on the lowest-energy curve E0(c), that
corresponds to the AFE configuration for c ≤ 12 Å
and PE configuration for for c > 12 Å, both in PBE
and PBE0 . E0(c) can be fitted via a Morse poten-
tial V0(c) = D0(1 − e−(c−c0)/λ)2, with D0 = 0.30 eV,
c0 = 10.37 Å and λ= 1.15 Å. Hence, E0(c) adheres to a
universal binding curve that has been originally proposed
for metallic binding [6] and then extended to carbon-
based systems with strong covalent bonds [7, 8]. In all
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these cases, the binding energy is given as a function
of an inter-atomic distance or, when possible, a lattice
parameter. The bond rupture occurs at the inflexion
point of the energy versus distance curve; in the case
of sodium hydroxide, the critical lattice parameter is
ccr = c0 + λ ln 2 ' 11.2Å, which corresponds to a max-
imum for the inter-layer attractive force that occurs at
a given threshold value (O..H)cr of the Hydrogen bond
length. For further expansion beyond ccr, the inter-layer
attractive force weakens, which causes rupture.

In order to validate such a picture, we compute the
static elastic constants in the PBE approximation at
varying c lattice parameter: first, the structure is fully
optimized at constrained c in the lowest-energy PES;
then, for each c, we vary the lattice parameters (the typ-
ical deformations are 0.5%) and, by interpolation of the

stress-strain relation, we compute the static C
(0)
ij elastic

constants that are shown in Fig. 3. For c > ccr, C
(0)
33 be-

comes negative (see Fig.3), which is a fingerprint of the
mechanical instability of the AFE and FE PES [9].
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FIG. 3. Static C
(0)
ij elastic constant as computed from fully

relaxed PBE calculations at fixed lattice parameter c (see text
for computational details).

Notably, E0(ccr) lies about 12 meV below the cor-
responding energy for the para-electric configuration
EPE(ccr). Such a difference corresponds to about 150 K,
and temperature fluctuations can easily drive the AFE
configuration towards higher lattice parameters than ccr
and eventually to PE-like configurations. The static elas-
tic constant softening and the concomitant proximity of
the para-electric potential energy surface are at the root
of the mechanical instability of the AFE configuration.

As the hydrogen bond length (O..H) is directly cor-
related to the c lattice parameter (see section D), the
potential V0(c) provides a criterion to pinpoint hydrogen
bond breaking in NaOH at its inflexion point.

D. O-H bond lengths and O-O distances

The minimum of E0(c) occurs at c0 = 10.375 Å. For
this value, the short (iono-covalent) OH bond length is
0.984 Å and the hydrogen bond length (O..H)=2.05 Å,
at the PBE level. Upon increasing lattice parameter c,
the hydrogen bond weakens considerably (see Fig. 4,
lower panel). Concomitantly, the iono-covalent OH bond
shortens and reaches a plateau at 0.975 Å at c ≥ 12 Å
in the para-electric configuration, where hydrogen bonds
are fully broken. Within the hybrid PBE0 approxima-
tion, the iono-covalent OH bond is shortened by ' 1%
and the hydrogen bond is very slightly expanded with
respect to the PBE. Thus, the inclusion of a fraction of
exact exchange corrects the typical PBE drawback, pro-
viding shorter OH bond lengths, that are likely closer to
the (unknown) experimental values in NaOH and NaOD.
The trend for the hydrogen bond length is very similar
in the two approximations, especially above the critical
value ccr = 11.2 Å; as a consequence, the weakening and
the rupture of the hydrogen bonds, at least at the static
level, is expected to be described in the same way in both
PBE and PBE0 approximations.
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FIG. 4. O-H bond lengths versus the lattice parameter c, in
the PBE and PBE0 approximations. Top panel: the (short)
ionio-covalent OH bond length. Bottom panel: the hydro-
gen bond length (O..H). Both graphs refer to the most stable
configuration at the lattice parameter c.

When the crystal is elongated along the c axis, one
expects that the inter-layer O-O distance stretches, as
do hydrogen bonds. Using full lattice relaxation at con-
strained lattice parameters in DFT optimization runs at
T = 0 K, we confirm that there is a monotonic relation
between the lattice parameter c and the inter-layer O-O
distance dOO (Fig. 5).

At the critical value ccr corresponding to the inflec-
tion point of the Morse curve V0(c) (see section B), the
inter-layer O-O distance is dOO (cr) =3.41 Å and the cor-

responding hydrogen bond length is (O..H)(cr) = 2.42 Å
with 168.7◦ OHO angle.
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FIG. 5. Inter-layer O-O distance in classical NaOH at T = 0 K
versus the lattice parameter c. Results are obtained via PBE
optimization runs at constrained lattice parameter c.

E. Dynamical Runs

The path-integral simulations were carried out using
the PIGLET thermostat from the i-PI package[10], with
a timestep of 0.48fs and 24 beads; we carefully checked
convergence of the kinetic and potential energies at 77K.

We first performed series of (NV T ) trajectories (either
15 ps with a classical Langevin thermostat or 5 ps with
the PIGLET method to account for quantum effects) by
varying the a, b, c lattice parameters independently in or-
der to estimate the elastic constants Cij from the stress-
strain relation. We varied a and b by ' 0.5% and c up to
4%, as the C33 and C23 elastic constants are significantly
lower (by an order of magnitude) than C11 and C22. Once
the elastic constant matrix has been determined, we esti-
mated its inverse (the elastic compliance matrix) and the
equilibrium lattice parameters a0(T ), b0(T ), c0(T ). They
are reported in Tab.I as a function of T in both NaOH
and NaOD. Through a final run at a0(T ), b0(T ), c0(T ),
we checked that the absolute diagonal stress components
|σii| < 1 kbar.

TABLE I. Optimized NaOD lattice parameters a0, b0, c0, in
Å and diagonal components σii of the residual stress in kbar
as obtained from PIGLET runs at varying temperature. All
results refer to the orthorhombic cell.

T (K) a0 b0 c0 σ11 σ22 σ33

77 3.463 3.398 10.60 0.1 -0.8 -0.2
150 3.458 3.401 10.76 0.3 0.0 -0.5
200 3.460 3.405 10.85 -0.2 -0.2 -0.0
250 3.459 3.410 10.96 -0.2 0.1 0.3
300 3.435 3.415 11.65 0.2 0.2 0.7
350 3.435 3.414 11.60 -0.7 -0.4 -0.0

The statistical uncertainty on the stress tensor over
such short trajectories is indeed of the order of ±0.5 kbar.
This implies error bars of the order of few tens of kbar
on the numerical estimates of the elastic constants. By
error propagation, we estimated the error bars on the
equilibrium lattice parameters a0(T ), b0(T ), c0(T ) that
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FIG. 6. Elastic constants Cij in kbar for NaOD, versus tem-
perature, as obtained from PIGLET runs as explained in the
text.

TABLE II. Optimized NaOH lattice parameters a0, b0, c0, in
Å and diagonal components σii of the residual stress in kbar
as obtained from PIGLET runs at varying temperature. All
results refer to the orthorhombic cell.

T (K) a0 b0 c0 σ11 σ22 σ33

100 3.415 3.393 11.35 -0.1 0.2 0.3
200 3.427 3.404 11.45 -0.6 -0.2 -0.0
300 3.434 3.415 11.60 -0.3 0.0 0.4

are reported in Fig.2 of the main text. As C33 is much
smaller than both C11 and C22, (see Fig.6) the error bar
on c0(T ) is noticeably larger than that on the other lattice
parameters.

In order to determine how lattice parameters vary with
the temperature in the classical framework, we run clas-
sical Langevin simulations (with a friction coefficient of
12ps−1 and a time step of 0.5 fs) in the range 77 K ≤ T ≤
400 K. The evolution of the lattice parameters is smooth
up to 350 K. Between 350 and 400 K, a contracts by
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TABLE III. Optimized NaOH/NaOD lattice parameters a0,
b0, c0, in Å and diagonal components σii of the residual stress
in kbar as obtained from classical Langevin runs at varying
temperature. All results refer to the orthorhombic cell.

T (K) a0 b0 c0 σ11 σ22 σ33

77 3.466 3.390 10.36 0.1 0.2 0.0
150 3.467 3.398 10.52 0.4 -0.2 0.0
200 3.469 3.406 10.66 0.2 -0.3 -0.4
250 3.469 3.413 10.86 -0.7 -0.4 -0.1
300 3.470 3.422 11.00 -0.7 -0.3 0.2
350 3.469 3.429 11.22 -0.6 0.3 -0.2
400 3.456 3.437 11.65 -0.2 0.5 -0.2

0.01 Å and the coefficient of thermal expansion along c
clearly increases, although in the classical frame we did
not detect such a sudden jump as for NaOD within the
path-integral-based simulations. Interestingly, at 400 K,
the values of c as obtained by PIMD for NaOH, NaOD
and classical Langevin simulations coincide within the er-
ror bar, showing that at this temperature the quantum
and classical descriptions converge.

F. Angular distributions and free energy

The angular distributions p(θ;T ) that we obtained
from the classical Langevin simulations at the equilib-
rium lattice parameters for each temperature (listed in
Tab.III) are shown in Fig.7. They switch from a distri-
bution with two well split maxima at 77 K to a unimodal
distribution at 400 K.
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FIG. 7. Distributions of the polar angle θ as extracted from
classical Langevin MD simulations at various temperatures.

From the (θ1, θ2) joint distributions (Fig.8), the clas-
sical system can be characterized as a perfect AFE at
77 K. Upon increasing temperature, the FE configuration
(θ1 ' θ2 ' 30◦) progressively appears beside the AFE
one, until at 300 K both AFE and FE ordering coexist

with similar probabilities. The minimum that is still vis-
ible at 350K around the PE configuration (θ1 ' θ2 ' 0◦)
becomes a maximum for T = 400 K, where the classi-
cal system reaches a dynamical para-electric state. The
AFE/PE transition is rather progressive in the classical
framework as compared to the quantum results for NaOD
presented in the main text.
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FIG. 8. Joint probability distribution of the polar angles of
hydroxyl groups at x=0 (θ1) and x=1/2 (θ2) in sodium hy-
droxide as extracted from classical Langevin MD simulations
at various temperatures.

We show in figure 9 the free energy profile F (θ, T ) =
−RT log p(θ;T ) as extracted from the marginal proba-
bility distributions as functions of the order parameter θ
in the PIMD simulations (Fig. 3 of the main text), for
NaOH and NaOD.

At low temperatures, the NaOD free energy displays
two minima: at T = 77 K they are well split by a sig-
nificant energy barrier ' 275 K, which reduces down to
160 K at T = 250 K. The curves at 300 and 350 K show a
single minimum, which is consistent with the transition
to a thermally activated paraelectric between 250 and
300 K, within our approximations.
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FIG. 9. Free energy expressed in K as a function of angle θ
and temperature for NaOH and NaOD (PIMD simulations).
The energy origins are arbitrary.

In contrast, NaOH shows a single minimum at θ=0 in
all the explored T range up to 300K. Interestingly, the
width of the NaOH free-energy profile is almost indepen-
dent of temperature, which is characteristic of a quantum
paraelectric [11].

At high temperatures the F (θ, T ) curves are very simi-
lar for NaOH and NaOD, which shows that isotope effects
vanish at room temperature. Within the PBE approxi-
mation, at T ≥ 300 K the sodium hydroxide crystal be-
comes a paraelectric where faint hydrogen bonds are no
more stable and fully overwhelmed by thermal fluctua-
tions. The classical distributions around 400 K converge
to their room-T PIMD counterparts.

G. Dielectric matrix and effective charges

We computed, from the Density Functional Perturba-
tion Theory in the harmonic approximation [12], the di-

electric and the atomic effective charge tensors, in both
AFE and PE configurations (see Tab.IV). Each config-
uration is in its fully relaxed state at T = 0 K, with
the optimized lattice parameters as listed in Tab.1 of the
main text.

We note that the zz component of the H effective
charge (along the c axis) is almost null in the paraelectric
phase, whereas it amounts to ' 0.43 in the AFE phase.
Accordingly, the zz component of the O effective charge
passes from -1.087 (PE) to -1.473 (AFE). Therefore, the

TABLE IV. Diagonal components of the dielectric tensor ε∞
and the effective charge tensors Z∗Na, Z∗O and Z∗H for antiferro-
electric (AFE) and para-electric (PE) configurations.

xx yy zz
ε∞ (AFE) 2.28 2.38 2.35
ε∞ (PE) 2.25 2.37 2.22
Z∗Na (AFE) 1.015 0.974 1.050
Z∗Na (PE) 0.981 0.962 1.049
Z∗O (AFE) -1.243 -1.435 -1.473
Z∗O (PE) -1.260 -1.379 -1.087
Z∗H (AFE) 0.218 0.451 0.428
Z∗H (PE) 0.273 0.407 0.043

existence of hydrogen bonds in the AFE configuration
implies a significant variation of the dipole moment nor-
mal to the NaOH stacks when the proton moves along
z. This is not the case for the PE configuration. Smaller
variations between the AFE and PE configurations are
also visible on the xx and yy components of the effective
charge tensors.

The total static dielectric constant ε0 is the sum of the
purely electronic contribution ε∞ and a contribution of
the ionic response to a static electric field [13]:

ε0,αβ = ε∞,αβ +
4π

Ω

∑
l,κ,γ

Z∗κ,γα
∂τl,κ,γ
∂Eβ

(1)

where α, β, γ = x, y, z, τl,κ is the position of the ion κ
within the lth cell, Ω the unit cell volume and E the
electric field. A significant contribution to the variation
of the static dielectric constant is therefore due to the
decrease of the O and H zz components of the effective
charge tensor, which affects the ionic part. As far as
the electronic contribution ε∞ to the dielectric tensor is
concerned, there is a' 5% reduction of the zz component
in the PE with respect to the AFE configuration, which
can be related to the lack of hydrogen bonds.
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