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Abstract—Cooperative game theorists propose the following
attractive process: (1) capture the abstract value of each possible
coalition of individuals, (2) write down some principles, or axioms,
on how to distribute the value (e.g., allocate importance to features
or parameters), and then, (3) find a set of allocations that
satisfy the principles. The Shapley value has received much
attention – but it is just one solution concept, satisfying one
set of principles, in one class of games. It is popular among
game theorists because the axioms, and the class of TU-games,
are reasonable in game theory. In AI and ML, we should choose
carefully what is reasonable for our own purposes. In this paper,
we highlight solution concepts in the class of multi-choice games
(MC-games). These are model agnostic, and unique to their own
set of axioms, just like the Shapley value. This paper offers
a general algorithm for constructing any MC-game framework
with polynomial time complexity in the number of parameter
levels, and an application of this algorithm that is transparent,
and can be readily generalised to local explanation frameworks
such as SHapley Additive exPlanations (SHAP).

Index Terms—Shapley, feature importance, SHAP, polynomial
regression, feature selection, game theory.

I. INTRODUCTION

Interest in the Shapley value within explainable AI (XAI),
underpins the popularity of axiomatic solutions and coopera-
tive games, for gaining model agnostic insights into feature or
parameter importances. However, the validity of such solutions
depends on accurate interpretation of the resulting values and
appropriate application of the game theoretic structure [7],
[15], [18].

While our research is interconnected with explainable AI,
we choose to tactfully avoid the complex task of defining what
constitutes an explanation or interpretation per se (refer to [5],
[19], [21]). Rather, our focus is on fostering comprehension
and transparency. Our objective, here, is to introduce a com-
prehensible game theoretic framework.

We now semi-formally introduce multi-choice (MC) games
as feature attribution frameworks, culminating in a generalized
algorithm for their usage (Algorithm 1): In the general setting,
we have a random sample Z⊤ = (Z1, . . . , Zk) of data
from some joint distribution (i.e., Z ∼ P ), and we wish to
model this distribution (e.g., for the purpose of prediction or
inference) using a function fθ(Z) (such as a supervised or
unsupervised learning model) that can be optimised over the
domain of the parameter θ. In the supervised case, we may

view the data as having a response variable Y = Z1, and k−1
features X1 = Z2, . . . , Xk−1 = Zk.

There is commonly at least one natural way to define
submodels of fθ, by marginalising [cite] or removing [cite]
features, or changing parameters (e.g., reducing the depth of
a decision tree, the number of learners in an ensemble, or the
number of hidden layers in a neural network). In general, we
are typically able to define a natural hierarchy F of submodels
of fθ, from the simplest (i.e., null) submodel, to a maximum
complexity model fθ.

To represent submodels in F , define a vector s =
(s1, . . . , sn) ∈ {0, 1}n whose ith element si indicates if
an indexed parameter (or feature) i is included, si = 1, or
excluded, si = 0, in a submodel fs,θ ∈ F . We refer to each
s as a participation profile. See Figure 1a for an example
of an ordering of binary participation profiles. If a real-
valued function v is defined, such that v(s) represents some
evaluation of the model fs,θ(Z), then the pair ({0, 1}n, v)
can be interpreted as a transferable utility (TU) game. The
Shapley value [1] of any TU-game summarises the entire
hierarchy v(F), in a vector (Sh1, . . . ,Shn), where Shi is taken
to measure the overall influence of setting si = 1.

However, many submodel hierarchies would be better suited
to non-binary profiles. For example, consider a neural network
with n hidden layers, having sℓ units in the ℓth layer. We can
define a non-binary profile s = (s1, . . . , sn), where s only
counts the number of units in each layer. Take the simple case
of n = 2 layers, and 2 units in each layer. Then, the profile s =
(2, 1) represents a subnetwork with 2 units in layer 1, and 1
unit in layer 2. The value v(2, 1) does not distinguish between
the two units in layer 1. Since the participation profiles are
non-binary, this situation represents an MC-game, rather than
a TU-game (see Table I).

TABLE I: The subnetworks of s = (2, 2), represented as a
multi-choice (MC) game. The value v(s) of each subnetwork
is assumed to be defined, and we wish to assign a worth φij to
the number of units j in each hidden layer i, for each j > 0.

s2 = 0 s2 = 1 s2 = 2 worth of s1
s1 = 0 v(0, 0) v(0, 1) v(0, 2) 0
s1 = 1 v(1, 0) v(1, 1) v(1, 2) φ11

s1 = 2 v(2, 0) v(2, 1) v(2, 2) φ12

worth of s2 0 φ21 φ22



A submodel hierarchy with indices s ∈ M ⊂ Nn
0 , together

with a function v : s 7→ R, defines an MC-game (M, v).
There must be a maximum index m ≥ s, corresponding to
the full (maximum complexity) model fm,θ = fθ. Notice that
a TU-game is the special case where M = {0, 1}n. An MC-
game solution concept is essentially a method to marginalise
the matrix of profiles M (see the margins of Table I, cf. [15]).
In Figures 1a to 1c, we compare the ordering of binary index
vectors (via Hasse diagrams), to the corresponding non-binary
index vectors.

More formally, an MC-game framework can be constructed
using Algorithm 1. Here, we focus on global explanations,
where there is a single function v : F → R. However, for local
explanations, such as SHAP [17], the algorithm generalises
with a collection of k functions vi, i = 1, . . . , k (e.g., where
index i points to a distinct observation in a sample of size k).

Algorithm 1: Constructing an MC-game framework
Data: A sample Z ∼ P , for some probability distribution P.

1 Define a hierarchy of submodels F = {fs,θ : s ∈ M},
where M = {s ∈ Nn

0 : 0 ≤ s ≤ m}, for some maximum
index m ∈ Nn. Here, s controls the complexity of the
submodels, via n model parameters (or features), and m
represents the full model.

2 Define a real-valued characteristic function v̂(s |Z),
that estimates the worth v(s) (e.g., goodness-of-fit, or
predictive performance) of each target model fs,θ . It is
required that v(0) = 0.

3 Choose an MC-game value φ,
interpreting v as an MC-game, (M, v). The value φ may
be chosen for its appeal in satisfying a set of reasonable
interpretability axioms.

4 Return a payoff matrix φ(m, v̂),
whose element φij is interpreted as the estimated influence
of parameter i at complexity level j, on the measurement
v(m). The dimension of φ(m, v̂) is n×m⊤, where m⊤
is a maximal coordinate of m.

Algorithm 1, being a global method, avoids a well-known
(and debated [12]) issue: by permuting the input data, or
computing marginal expectations, many local permutation
methods, such as KernelSHAP, create semi-synthetic data that
fall outside the generative joint distribution [6], [9], [14].
Note, Step 1 has a significant impact on the interpretation
of the resulting value. That is, when defining the submodel
hierarchy, one has the opportunity to map submodels to player-
level pairs that act on v either additively, or independently, or
both (see [15] for a detailed discussion of relatively inessential
characteristic functions, in the context of TU-games).

II. THE GENERAL SETTING OF MC-GAMES

We now formally present the setting of MC-games. Let
N = {1, . . . , n} be a fixed player set. Each player i ∈ N has a
finite set of pairwise distinct participation levels {0, . . . ,mi}.
We use m⊤ = max{mi : i ∈ N} to denote a maximal
participation level. An element s ∈ M =

∏
i∈N{0, . . . ,mi}

is referred to as a participation profile. A player i ∈ N
participates at level j ∈ {0, . . . ,mi} in profile s, if si = j.

The set M endowed with the usual binary relation ≥ on Rn

induces a (complete) lattice (see Figure 1c).
An MC-game on N is a couple (M, v), where

v : M → R

is a function, with v(0) = 0, describing the worth v(s) ∈ R
of each profile s ∈ M. Denote by G the class of MC-games.
Clearly, TU-games form a subclass of G.

A value φ : G → Rn×m⊤ is a map that assigns a unique
(n×m⊤)-dimensional payoff matrix to each (M, v) ∈ G. Each
φij(M, v), i ∈ N , j ≤ m⊤, represents the payoff obtained
by player i for its j-th participation level. By convention, we
fix φij(M, v) = 0 for any j > mi.

A. Values for MC-games

We present three distinct values for MC-games, which were
introduced by [4], [20] and [16], called the DP, PZ and LT
values, respectively. Each of these values extend the Shapley
value to the framework of MC-games.

We define these values using their expression in terms of
Harsanyi dividends. Pick any (M, v) ∈ G. The (multi-choice)
Harsanyi dividends associated with (M, v) are recursively
defined as

∀s ∈ M, ∆v(s) = v(s)−
∑
t≤s
t ̸=s

∆v(t), (1)

and ∆v(0) = 0.

The DP value was axiomatically characterized by [13],
using four axioms (see Section V). Under the DPij value [4],
player i receives a share of the Harsanyi dividend from each
coalition in which it participates at least at level j. Each share
received by player i decreases proportionally to the sum of all
participation levels in the profile.

Definition 1. For each (M, v) ∈ G, the DP value is defined
as, ∀i ∈ N, j ≤ mi,

DPij(M, v) =
∑
s∈M
j≤si

∆v(s)

∥s∥1
. (2)

The PZ value was axiomatically characterized by [20], using
five axioms (see V). Under the PZij value [20], player i
receives a share of the Harsanyi dividend of each profile where
player i participates at exactly level j. Each dividend is divided
equally among all players that have non-zero participation.

Definition 2. For each (M, v) ∈ G, the PZ value is defined
as, ∀i ∈ N, j ≤ mi,

PZij(M, v) =
∑
s∈M
j=si

∆v(s)

|{k ∈ N : sk > 0}|
. (3)

The LT value was axiomatically characterized by [16], using
five axioms (see V). Under the LTij value [16], player i
receives a share of the Harsanyi dividend of each profile for
which player i, playing at level j, has the highest participation



111

110 101 011

100 010 001

000

(a)

21

20 11 011

10 010 01

00

(b)

21

20

11

10

01

00

(c)

Fig. 1: Hasse diagrams for the transition from (a) TU-game submodel ordering with n = 3, to (c) an MC-game submodel
ordering with m = (2, 1). The transition is via (b) relabelling submodels (yellow) and removing redundant submodels (red).

level. Each dividend is divided equally among all players that
participate at level j in the profile.

Definition 3. For each (M, v) ∈ G, the LT value is defined
as, ∀i ∈ N, j ≤ mi,

LTij(M, v) =
∑
s∈M
si=j

j=maxk∈N sk

∆v(s)

|{k ∈ N : sk = j}|
. (4)

III. POLYNOMIAL REGRESSION FEATURE EXPLANATIONS

In [10], the Shapley value is applied to multiple linear
regression to decompose the coefficient of multiple correlation
R2 (a goodness-of-fit measure), for polynomials of degree
1. In this section, we trade the framework of [10] for an
MC-game, by employing a map from participation levels to
polynomials. We treat higher degree polynomial terms and
interactions as greater levels of feature participation, rather
than as separate features. This leads to a large reduction
in computational complexity, and a decomposition that suits
typical model explanation goals, as investigated further in
Section IV-A.

A. Polynomial regression MC-game framework

Here, we introduce the MC-game polynomial regression
framework, by parametrising a multiple polynomial regression
submodel hierarchy and mapping it to an MC-game structure.
Given a sample of iid observations from a random vector
Z⊤ = (Y,X⊤) with X⊤ = (X1, . . . , Xn), we define, for
each s ≤ m, m ∈ Nn, a multivariate polynomial BX(s),
where the maximal degree of variable Xi is equal to si. That
is,

BX(s) = β0 +

n∑
i=1

si∑
j=1

βijX
j
i + I(s, d, p), (5)

where β0, βij ∈ R for each i ∈ {1, . . . , n} and j ∈
{1, . . . , si}, and I(s, d, p) consists of interaction terms whose
complexity is controlled by s, and d, p ∈ N, as in,

I(s, d, p) =
∑

k∈K(s,d,p)

αk

n∏
i=1

Xki
i , (6)

in which k = (k1, . . . , kn) belongs to the set

K(s, d, p) ={k ≤ s :

n∑
i=1

1(ki > 0) ≥ 2,

n∑
i=1

ki ≤ d, maxi∈{1,...,n}(ki) ≤ p}. (7)

and αk ∈ R. The (fixed) hyperparameters d and p are
employed in I(s, d, p) to limit the complexity of higher order
interactions; we refer to these, respectively, as the degree and
maximal power of the interactions. These hyperparameters
are desirable in practical applications, where higher order
interactions (and interactions between higher degree terms)
may not be of interest. Note that all interaction terms vanish
when d < 2; and the complete n-dimensional polynomial of
degree d0 is given by d = m1 = . . . = mn = d0, p = d − 1
(and occurs when s = m).

Example 1. The parameters d = m1 = m2 = 3, p = 2 give
the complete two-dimensional polynomial of degree 3,

BX(3, 3) = β0 + β10X1 + β20X
2
1 + β30X

3
1

+ β01X2 + β02X
2
2 + β03X

3
2

+ α11X1X2 + α21X
2
1X2 + α12X1X

2
2 . (8)

Example 2. For d, p = 3, 2 and m ≥ (2, 2, 2), the full
interaction term component is,

I(m, 3, 2) =α110X1X2 + α101X1X3 + α011X2X3 +

α210X
2
1X2 + α102X1X

2
3 + α021X

2
2X3 +

α120X1X
2
2 + α201X

2
1X3 + α012X2X

2
3 +

α111X1X2X3. (9)

To each polynomial BX(s), we may associate a linear (poly-
nomial regression) model

Y = BX(s) + ε, (10)

where ε has a distribution with zero mean and finite variance.
The coefficients βij and αk can then be estimated via ordinary
least squares. For each s ≤ m, the goodness-of-fit (e.g.,



R2
Z(s), the coefficient of multiple correlation of the sub-

model (10) with sub-polynomial BX(s)) for the corresponding
BX(s) can be collected in a characteristic function

vZ :
∏
i∈n

{0, . . . ,mi} → R. (11)

See the numerical study in Section IV-A.

B. Computational complexity of framework

For simplicity, let m = m0 = {d0}n, where d0 ∈ N. The
MC-game framework requires an evaluation of each submodel
indexed by the domain of the characteristic function (11). The
number of evaluations is therefore

|dom(νZ)| =
n∏

i=1

(mi + 1) = (d0 + 1)n. (12)

In contrast, the TU-game framework of [10] requires eval-
uation of all polynomials constructed by removal of terms.
Consider the best case (no interaction terms) and worst case
(complete polynomial) scenarios. Let Tmin denote the number
of terms in the full polynomial without interaction terms (i.e.,
d = 1) and let Tmax be the number of terms in the complete
n-dimensional polynomial of degree d0. Then,

Tmin =

n∑
i=1

mi = nd0,

Tmax = nd0 + |K(m0, d0, d0 − 1)|

=

(
n+ d0
d0

)
− 1 ∈ [nd0 , (n+ d0)

d0 ] (13)

The number of submodel evaluations in the TU-game is
between 2Tmin and 2Tmax . It follows that the TU-game time com-
plexity, even in the interaction-free case 2Tmin = 2nd0 , grows
exponentially in the degree d0, while the MC-game approach
always grows polynomially in d0, as in (12), regardless of
interaction terms.

IV. COMPARING GAME FRAMEWORKS

A typical application for a feature or parameter attribution
method is to find an interesting dataset, build a popular
or useful model, compute some measure, attribute it to the
features, and then interpret the attributions, making some
argument that the attributions are reasonable or revealing (see
[8], and cf. [2]).

A prevalent view in the cooperative game theory literature is
that axiomatic characterisations, while abstract and appealing,
are difficult to justify without a clear application context (for
a detailed account, see [24]). In this view, the behaviour of a
solution concept should be explored in a collection of relevant
and transparent settings. With this in mind, the study in this
section compares the DP, PZ and LT values to the Shapley
value via simulation, across selected examples.

A. Experimental results

Here, via simulation, we highlight the differences between
the TU-game and MC-game frameworks, in the context of
polynomial regression. In each example, we use a sample
size of 1000, draw each feature independently from a given
uniform distribution, with a standard normal error term ε ∼
N(0, 1), and compute values for each solution concept, with
the coefficient of multiple correlation R2 as characteristic
function. For the MC-game, we use m = (3, 3), d = 2 and
p = 1, across all three models. For example, in this MC-
game, the profiles in which player 1 participates at level 1 are
s = (1, 0), (1, 1), (1, 2), (1, 3). These profiles correspond to
the polynomials,

BX(1, 0) = β1X1,

BX(1, 1) = β1X1 + β2X2 + β3X1X2,

BX(1, 2) = β1X1 + β2X2 + β3X1X2 + β4X
2
2 ,

BX(1, 3) = β1X1 + β2X2 + β3X1X2 + β4X
2
2 + β5X

3
2 .

For the TU-game, in each case, we treat each term of the
polynomial BX(3, 3) as a separate player – the corresponding
terms are shown in Table III.

We repeat each simulation 100 times, to achieve a mean and
95% quantile interval (QI) for the mean, for each estimated
value. Chosen to highlight key differences in the two classes
of games, the three simple models that we investigate are:

Y = X1 +X2 + ε, Xi ∼ U(−5, 1), (M1)
Y = X1 +X2 +X1X2 + ε, Xi ∼ U(4, 5), (M2)

Y = X1 +X2 +X2
2 + ε, Xi ∼ U(−5, 1). (M3)

TABLE II: MC-game values estimated via simulation, for the
three models (M1) to (M3). The 95% QI widths were all below
0.06. Greyed cells correspond to profiles that introduce terms
that do not appear in the generative model.

M S φ̂11 φ̂12 φ̂13 φ̂21 φ̂22 φ̂23

M1
DP 0.43 0 0 0.43 0 0
PZ 0.43 0 0 0.43 0 0
LT 0.43 0 0 0.43 0 0

M2
DP 0.42 0 0 0.42 0 0
PZ 0.42 0 0 0.42 0 0
LT 0.42 0 0 0.42 0 0

M3
DP 0.08 0 0 0.80 0.09 0
PZ 0.08 0 0 0.71 0.19 0
LT 0.08 0 0 0.71 0.19 0

TABLE III: TU-game Shapley values estimated via simulation,
for the three models (M1) to (M3). The 95% QI widths were
all below 0.02. Greyed cells correspond to terms that do not
appear in the generative model.

M X1 X2
1 X3

1 X2 X2
2 X3

2 X1X2

M1 0.15 0.11 0.09 0.15 0.11 0.09 0.15
M2 0.1 0.1 0.1 0.1 0.1 0.1 0.22
M3 0.04 0.03 0.02 0.22 0.31 0.3 0.06



The interaction terms are treated as separate players in the
TU-game for Table III. Alternatively, it is possible to construct
a TU-game framework in which, e.g., inclusion of the terms
X1, X2 implies inclusion of their interaction X1X2. Such a
construction necessitates more decisions, e.g., does inclusion
of X1 imply inclusion of X2

1? and, do X2
1 , X

2
2 together imply

the presence of X1X2? Designing such a framework for TU-
games is outside of our scope. However, for transparency,
we provide in Table IV the Shapley values computed in
each case for a TU-game with no interaction term player.
The corresponding MC-game values (with interaction degree
p = 1) are equal, within two significant figures, to those in
Table II.

TABLE IV: TU-game Shapley values estimated via simulation,
for the three models (M1) to (M3), without including in the
TU-game any interaction term. Greyed cells correspond to
profiles that are not present in the generative model.

M X1 X2
1 X3

1 X2 X2
2 X3

2

M1 0.18 0.14 0.11 0.18 0.14 0.11
M2 0.14 0.14 0.14 0.14 0.14 0.14
M3 0.03 0.03 0.02 0.24 0.33 0.32

B. Discussion of results

Typically, higher degree terms are added to a polynomial
model only in the presence of all lower degree terms. The MC-
game regression framework obeys this feature-degree model
hierarchy by design. In this hierarchy, the greyed cells in
Tables II to IV should all contain 0. The TU-games incorporate
no such assumptions. For this reason, terms like X2

1 , X
3
1 and

X3
2 can enter the TU-game alone, and receive credit for their

performance in the absence of lower level terms.
Regarding interaction terms, comparing (M1) to (M2) in

Tables II and III, we see that, while the MC-game is un-
informative about the interaction term, the Shapley value of
the interaction term is maximal for both (M1) (which has no
interaction term), and (M2). Again, this reflects the freedom
for the interaction term to enter a profile independently of the
other terms.

Between the three MC-game solution concepts (DP,PZ and
LT), the choice of solution has played a minor role compared
to the difference in results across the two game structures
(TU and MC games). This highlights the significance of the
game structure itself, though further work could determine
appealing axioms for feature importance. Recent examples of
such efforts include [26] and [11].

The DP,PZ and LT values are all equal to two significant
figures, for (M1), (M2) in Table II. For (M3), the DP value
concentrates more worth in the lower level φ21. The concep-
tual differences are discussed further in Section V, where we
compare the solution concepts axiomatically.

V. AXIOMATIC CHARACTERISATIONS

The analytic and numerical approaches act as a sanity check
for axiomatic approach – in this view, the axioms should

inform us to search for applied counterexamples, while the
examples should inform us to search for improved axioms.

Here, we ground the MC-game values axiomatically, with
characterizations of the DP, PZ and LT values. Several axioms
are discussed, some of them being straightforward extensions
of axioms from TU-games to MC-games.

MC-Efficiency For each (M, v) ∈ G,∑
i∈N

∑
j≤mi

φij(M, v) = v(m).

MC-Additivity For each (M, v), (M, w) ∈ G,

φ(M, v + w) = φ(M, v) +φ(M, w).

The next axiom requires that if the maximal participation
level of each player reduces to a certain level j, then the payoff
of each player for their j-th participation level should remain
unchanged.

Independence of higher levels For each (M, v) ∈ G,

∀j ≤ m⊤, φij(M, v) = φij((min{j,mk})k∈N , v).

If a player’s participation at a certain level produces nothing, it
seems reasonable to penalize them accordingly. [20] introduce
an axiom indicating that non-productive participation levels
should not receive anything from the value.

Non-productive level For each (M, v) ∈ G, if there is a i ∈
N and j ≤ mi that verifies

∀s ∈ M, v(s−i, j − 1) = v(s−i, j),

then φij(M, v) = 0.

A player’s participation level is said to be inessential if that
player stops being productive past that level. [13] introduce an
axiom indicating that inessential participation levels should not
receive anything from the value.1 The following is a weaker
axiom than Non-productive level.

Inessential level For each (M, v) ∈ G, if there is a i ∈ N
and a j ≤ mi that verifies

∀s ∈ M,∀l ≥ j, v(s−i, l − 1) = v(s−i, l),

then φij(M, v) = 0.

A necessary level represents the level of participation of a
player under which the worth of any profile is null. [25]
introduce an axiom stating that two necessary levels should
receive the same payoffs.2

Necessary level For each (M, v) ∈ G, if there are two i, i′ ∈
N and two j ≤ mi, j′ ≤ mi′ , verifying

∀s ∈ M, si < j and/or si′ < j′, v(s) = 0,

then φij(M, v) = φi′j′(M, v).

1This axiom and the Non-productive level level axiom are both equivalent
to the Null player axiom [23] when m = 1.

2This axiom is equivalent to the Necessary player axiom [3] when m = 1.



If a player has the same performances at two distinct partic-
ipation levels, then it seems reasonable that these two levels
obtain the same payoff.

Intra symmetry For each (M, v) ∈ G, if there is a i ∈ N
and j, j′ ≤ mi verifying, ∀s ∈ M,

v(s−i, j)− v(s−i, j − 1) = v(s−i, j
′)− v(s−i, j

′ − 1),

then φij(M, v) = φij′(M, v).

[20] propose a straightforward extension of Anonymity from
TU-games to MC-games. Denote by G the sub-class of MC-
games in which all player have the same number of participa-
tion levels. This is just for convenience, as fictive participation
levels could be introduced to equalize the number of levels for
each player.3

MC-Anonymity For each (M, v) ∈ G, each t ∈ M and each
order π ∈ P (N), we define πt as πtπ(i) = ti for each i ∈ N ,
and πv as πv(πt) = v(t). Then, it holds that

φij(M, v) = φπ(i)j(m,πv).

[16] propose an axiom which guarantees that two players with
the same performance at a given participation level should
receive the same payoff for that level.4

MC-Symmetry For each (M, v) ∈ G, if there are two i, i′ ∈
N and a j ≤ mi, j ≤ mi′ , verifying, ∀s ∈ M,

v(s−i, j)− v(s−i, j − 1) = v(s−i′ , j)− v(s−i′ , j − 1),

then φij(M, v) = φi′j(M, v).

[13] provide a characterization of the DP value.

Theorem 1 ( [13]). A value φ on G satisfies MC-Efficiency,
MC-Additivity, Necessary level and Inessential level if and
only if φ = DP.

[20] provide an axiomatic characterization of the PZ value.

Theorem 2 ( [20]). A value φ on G satisfies MC-Efficiency,
MC-Additivity, MC-Anonymity, Non-productive level and Intra
symmetry if and only if φ = PZ.

We provide a characterization of the LT value.

Theorem 3. A value φ on G satisfies MC-Efficiency, MC-
Additivity, MC-Symmetry, Independence of higher levels and
Inessential level if and only if φ = LT. The proof is direct
from Theorem 1 and Corollary 1 in [16].
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