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OPTIMAL BOUNDS FOR THE DUNKL KERNEL IN THE DIHEDRAL CASE

JEAN-PHILIPPE ANKER AND BARTOSZ TROJAN

Abstract. We establish sharp upper and lower estimates of the Dunkl kernel in the case of dihedral groups.

The heat kernel plays a central role in several branches of mathematics, e.g. in (harmonic) analysis and
PDE, in Riemannian (and sub-Riemannian) geometry or in probability theory. In many applications it is
desired to know sharp upper and lower estimates in the largest possible space-time regime, see e.g. [7]
for a comprehensive presentation. For Riemannian symmetric spaces of non-compact type, the global
behavior of the heat kernel was determined in [2] and [3]. In the present paper we are interested in the heat
kernel arising in the rational Dunkl theory, which generalizes spherical Fourier analysis on Riemannian
symmetric spaces of Euclidean type. In this theory we deal with a finite root system 𝑅 in a Euclidean
space 𝔞. The heat kernel is the fundamental solution of the differential-difference equation

𝜕𝑡ℎ(𝑡; 𝑥, 𝑦) = Δ𝑥ℎ(𝑡; 𝑥, 𝑦) +
∑︁
𝛼∈𝑅+

𝜅(𝛼)
(
2
⟨𝛼,∇𝑥ℎ(𝑡; 𝑥, 𝑦)⟩

⟨𝛼, 𝑥⟩ + |𝛼 |2 ℎ(𝑡; 𝑠𝛼.𝑥, 𝑦) − ℎ(𝑡; 𝑥, 𝑦)
⟨𝛼, 𝑥⟩2

)
where Δ denotes the Laplacian on the underlying Euclidean space, 𝑅+ the collection of positive roots, 𝜅
the multiplicity function and 𝑠𝛼 the orthogonal reflection with respect to 𝛼⊥. The one dimensional case
was carefully investigated in [1]. The general case has been recently studied in [5] where the authors
obtained the following estimates: there is an explicit rational function 𝑄(𝑡; 𝑥, 𝑦) and there are constants
𝐶1, 𝐶2 > 0 and 𝑐1 > 𝑐2 > 0 such that

𝐶1𝑄(𝑡; 𝑥, 𝑦)𝑔−𝑐1
𝑑 (𝑥,𝑦)2

𝑡 ⩽ ℎ(𝑡; 𝑥, 𝑦) ⩽ 𝐶2𝑄(𝑡; 𝑥, 𝑦)𝑒−𝑐2
𝑑 (𝑥,𝑦)2

𝑡 (0.1)

where
𝑑 (𝑥, 𝑦) = min

{
|𝑥 − 𝑤.𝑦 | : 𝑤 ∈ 𝑊

}
denotes the orbital distance under the Weyl group action.

However, since the constants 𝑐1 and 𝑐2 are different, the estimates (0.1) are not optimal. Let us recall
the expression

ℎ(𝑡; 𝑥, 𝑦) = 1

𝑐𝑘 (2𝑡)𝛾+
𝑁
2

exp

{
− |𝑥 |2 + |𝑦 |2

4𝑡

}
𝐸

(
𝑥

√
2𝑡
,

𝑦
√
2𝑡

)
of the heat kernel in terms of the Dunkl kernel 𝐸 , see [8]. The latter is an eigenfunction of all Dunkl
operators, which are first order differential-difference operators. In this paper we establish optimal
estimates of 𝐸 (which imply optimal estimates of ℎ𝑡 ) in the dihedral case 𝐼𝑛.

Our paper is organized as follows. The main result is stated in Theorem 12. Its proof is carried out in
Section 3. The overall strategy is explained in Section 2 and the basic notation recalled in Section 1.

Statement. This work started as a joint project with J. Dziubański which aimed at understanding the
behavior of the heat kernel in the rational Dunkl setting beyond the one dimensional case considered
in [1]. In 2017 we obtained an upper bound of the Dunkl kernel for 𝐴2 which was announced by J.
Dziubański during his talk at the conference “Analysis and Applications” organized in honor of E.M.
Stein in September 2017 in Wrocław (https://math.uni.wroc.pl/analysis2017). Later on, J.
Dziubański and A. Hejna followed another approach and obtained sharp upper and lower estimates for the
heat kernel which, although not optimal, were sufficient for their needs (see [5]). Meanwhile we realized
that our upper bound for 𝐴2 was also a lower bound. At the same time we obtained similar results for 𝐵2.
Finally in June 2023, P. Graczyk and P. Sawyer informed us that they were obtaining an upper and lower
bound for 𝐴2 by a completely different method, relying on a positive integral formula (see [6]).

The second author acknowledges financial support from CNRS for a research trimester in 2023 in Orléans.
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2 JEAN-PHILIPPE ANKER AND BARTOSZ TROJAN

1. Elements of rational Dunkl theory

In this section we introduce the necessary notation to define Dunkl kernels. For more details we refer
to the pioneer paper [4], see also the surveys [9, 10].

Let 𝑅 be a reduced (not necessarily crystallographic) finite root system in a 𝑟-dimensional Euclidean
space 𝔞, that is, for each 𝛼 ∈ 𝑅, 𝑠𝛼 (𝑅) = 𝑅 and 𝑅 ∩ R𝛼 = {−𝛼, 𝛼}, where

𝑠𝛼 (𝑥) = 𝑥 − ⟨𝑥, 𝛼∨⟩𝛼
and

𝛼∨ =
2

⟨𝛼, 𝛼⟩𝛼.

We fix a basis {𝛼1, 𝛼2, . . . , 𝛼𝑟 } of simple roots in 𝑅. The corresponding subset of positive roots in 𝑅 will
be denoted by 𝑅+. Let 𝑊 be the finite reflection group generated by {𝑠𝛼 : 𝛼 ∈ 𝑅+}. The fundamental
domain for the action of 𝑊 on 𝔞 is the sector

𝔞+ =
{
𝑥 ∈ 𝔞 : ⟨𝛼, 𝑥⟩ > 0 for all 𝛼 ∈ 𝑅+}.

Let 𝜅 : 𝑅 → (0,∞) be a positive multiplicity function on 𝑅, that is 𝜅 is invariant under the action of 𝑊
on 𝑅. The Dunkl operators, resp. the Dunkl kernel 𝐸 (𝑥, 𝑦) are 𝜅-deformations of directional derivatives,
resp. of the exponential function 𝑒⟨𝑥,𝑦⟩ . More precisely, the Dunkl operators are defined by

𝑇𝜉 𝑓 (𝑥) = ⟨𝜉,∇ 𝑓 (𝑥)⟩ +
∑︁
𝛼∈𝑅+

𝜅(𝛼) ⟨𝛼, 𝜉⟩ 𝑓 (𝑥) − 𝑓 (𝑠𝛼𝑥)
⟨𝛼, 𝑥⟩ for every 𝜉 ∈ 𝔞,

they commute pairwise and, for every 𝑦 ∈ 𝔞, 𝐸 (·, 𝑦) is the unique smooth solution to{
𝑇𝜉 𝑓 = ⟨𝜉, 𝑦⟩ 𝑓 for all 𝜉 ∈ 𝔞,

𝑓 (0) = 1.
(1.1)

The Dunl kernel 𝐸 extends to a holomorphic function on 𝔞C × 𝔞C, which satisfies
• 𝐸 (𝑥, 𝑦) = 𝐸 (𝑦, 𝑥);
• 𝐸 (𝜆𝑥, 𝑦) = 𝐸 (𝑥, 𝜆𝑦), for all 𝜆 ∈ C;
• 𝐸 (𝑤.𝑥, 𝑤.𝑦) = 𝐸 (𝑥, 𝑦), for all 𝑤 ∈ 𝑊 ;
• 𝐸 (𝑥, 𝑦) = 𝐸 (𝑥, 𝑦).

Moreover 𝐸 (𝑥, 𝑦) > 0 when 𝑥, 𝑦 ∈ 𝔞. Our aim is to obtain sharp upper and lower estimates for 𝐸 on
𝔞 × 𝔞.

2. The strategy

In order to estimate the Dunkl kernel 𝐸 , our strategy consists in using the differential-difference
equations satisfied by 𝐸 and in constructing appropriate barrier functions. As an illustration, let us first
consider the one dimensional case.

2.1. Example : the one dimensional case. Let us recall that 𝐸 : R × R → C satisfies
𝜕

𝜕𝑥
𝐸 (𝑥, 𝑦) + 𝜅

𝑥

{
𝐸 (𝑥, 𝑦) − 𝐸 (𝑥,−𝑦)

}
= 𝑦𝐸 (𝑥, 𝑦)

𝜕

𝜕𝑥
𝐸 (𝑥,−𝑦) + 𝜅

𝑥

{
𝐸 (𝑥,−𝑦) − 𝐸 (𝑥, 𝑦)

}
= −𝑦𝐸 (𝑥,−𝑦)

for all 𝑥, 𝑦 ⩾ 0,

with the initial condition 𝐸 (𝑥, 𝑦) = 1 whenever 𝑥𝑦 = 0. Given 𝑐 > 0, we define
𝐸 (𝑥, 𝑦) = (1 + 𝑐𝑥𝑦)𝜅𝑒−𝑥𝑦𝐸 (𝑥, 𝑦),

𝐸 (𝑥,−𝑦) = (1 + 𝑐𝑥𝑦)𝜅+1𝑒−𝑥𝑦𝐸 (𝑥,−𝑦),
for all 𝑥, 𝑦 ≥ 0. Then

𝜕

𝜕𝑥
𝐸 (𝑥, 𝑦) = 𝜅

𝑥(1 + 𝑐𝑥𝑦) {𝐸 (𝑥,−𝑦) − 𝐸 (𝑥, 𝑦)}, (2.1)

𝜕

𝜕𝑥
𝐸 (𝑥,−𝑦) = 𝜅(1 + 𝑐𝑥𝑦)

𝑥
{𝐸 (𝑥, 𝑦) − 𝐸 (𝑥,−𝑦)} + (2𝜅 + 1)𝑐 + (𝜅𝑐 − 2)𝑐𝑥𝑦 − 2

1 + 𝑐𝑥𝑦
𝑦𝐸 (𝑥,−𝑦). (2.2)

Let us fix 𝑦 > 0.
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Upper bound: Let 𝑐 be small, say 0 < 𝑐 < 2
2𝜅+1 . Hence,

(2𝜅+1)𝑐+(𝜅𝑐−2)𝑐𝑥𝑦−2
1+𝑐𝑥𝑦 < 0. (2.3)

We claim that the function
𝑀 (𝑥) = max

{
𝐸 (𝑥, 𝑦), 𝐸 (𝑥,−𝑦)

}
is a decreasing function on [0,∞). Indeed, on any interval [𝑎, 𝑏] where 𝐸 (𝑥, 𝑦) ⩾ 𝐸 (𝑥,−𝑦), by (2.1) we
have 𝜕

𝜕𝑥
𝐸 (𝑥, 𝑦) ⩽ 0. Hence

𝐸 (𝑥,−𝑦) ⩽ 𝐸 (𝑥, 𝑦) ⩽ 𝐸 (𝑎, 𝑦) = 𝑀 (𝑎).
Similarly, on any interval [𝑎, 𝑏] where 𝐸 (𝑥, 𝑦) ⩽ 𝐸 (𝑥,−𝑦), by (2.3) and (2.2) we have 𝜕

𝜕𝑥
𝐸 (𝑥,−𝑦) ⩽ 0.

Hence
𝐸 (𝑥, 𝑦) ⩽ 𝐸 (𝑥,−𝑦) ⩽ 𝐸 (𝑎,−𝑦) = 𝑀 (𝑎).

In both cases, 𝑀 (𝑥) ⩽ 𝑀 (𝑎) on [𝑎, 𝑏]. Therefore, 𝑀 (𝑥) ⩽ 𝑀 (0) = 1 on [0,∞).
Lower bound: We argue similarly, assuming that 𝑐 is large, say 𝑐 > 2

𝜅
. Hence,

(2𝜅+1)𝑐+(𝜅𝑐−2)𝑐𝑥𝑦−2
1+𝑐𝑥𝑦 > 0. (2.4)

The function
𝑚(𝑥) = min

{
𝐸 (𝑥, 𝑦), 𝐸 (𝑥,−𝑦)

}
is an increasing function on [0,∞). Indeed, on any interval [𝑎, 𝑏] where 𝐸 (𝑥, 𝑦) ⩽ 𝐸 (𝑥,−𝑦), by (2.1)
we have 𝜕

𝜕𝑥
𝐸 (𝑥, 𝑦) ⩾ 0. Hence

𝐸 (𝑥,−𝑦) ⩾ 𝐸 (𝑥, 𝑦) ⩾ 𝐸 (𝑎, 𝑦) = 𝑚(𝑎).
Similarly, on any interval [𝑎, 𝑏] where 𝐸 (𝑥, 𝑦) ⩾ 𝐸 (𝑥,−𝑦), by (2.4) and (2.2) we have 𝜕

𝜕𝑥
𝐸 (𝑥,−𝑦) ⩾ 0.

Therefore,
𝐸 (𝑥, 𝑦) ⩾ 𝐸 (𝑥,−𝑦) ⩾ 𝐸 (𝑎,−𝑦) = 𝑚(𝑎).

In both cases, 𝑚(𝑥) ⩾ 𝑚(𝑎) on [𝑎, 𝑏]. Hence 𝑚(𝑥) ⩾ 𝑚(0) = 1 on [0,∞).
In conclusion we obtain the following global bound :

𝐸 (𝑥, 𝑦) ≈ 𝑒𝑥𝑦

(1 + |𝑥𝑦 |)𝜅 ×
{
1 if 𝑥𝑦 ⩾ 0,
(1 + |𝑥𝑦 |)−1 if 𝑥𝑦 ⩽ 0.

2.2. General root system. We set

𝐸𝑤 (𝑥, 𝑦) = 𝐸 (𝑥, 𝑤.𝑦)𝑒−⟨𝑥,𝑦⟩𝑄𝑤 (𝑥, 𝑦)
∏
𝛼∈𝑅+

(
1 + 𝑐⟨𝛼, 𝑥⟩⟨𝛼, 𝑦⟩

) 𝜅 (𝛼) for every 𝑤 ∈ 𝑊 and 𝑥, 𝑦 ∈ 𝔞+,

where 𝑐 is a positive constant and the 𝑄𝑤’s are barrier functions, to be determined, which are positive
rational functions on 𝔞+ × 𝔞+. Taking 𝜉 = 𝑥 in (1.1), we get

⟨𝑥,∇𝑥⟩𝐸 (𝑥, 𝑤.𝑦) +
∑︁
𝛼∈𝑅+

𝜅(𝛼)
{
𝐸 (𝑥, 𝑤.𝑦) − 𝐸 (𝑟𝛼.𝑥, 𝑤.𝑦)

}
= ⟨𝑥, 𝑤.𝑦⟩𝐸 (𝑥, 𝑤.𝑦),

thus
⟨𝑥,∇𝑥⟩𝐸𝑤 (𝑥, 𝑦)

𝐸𝑤 (𝑥, 𝑦)
= ⟨𝑥, 𝑤.𝑦⟩ − ⟨𝑥, 𝑦⟩ + ⟨𝑥,∇𝑥⟩𝑄𝑤 (𝑥, 𝑦)

𝑄𝑤 (𝑥, 𝑦)
+

∑︁
𝛼∈𝑅+

𝜅(𝛼) 𝑐⟨𝛼, 𝑥⟩⟨𝛼, 𝑦⟩
1 + 𝑐⟨𝛼, 𝑥⟩⟨𝛼, 𝑦⟩

−
∑︁
𝛼∈𝑅+

𝜅(𝛼)
{
1 − 𝑄𝑤 (𝑥, 𝑦)

𝑄𝑠𝛼𝑤 (𝑥, 𝑦)
𝐸𝑠𝛼𝑤 (𝑥, 𝑦)
𝐸𝑤 (𝑥, 𝑦)

}
.

Hence

⟨𝑥,∇𝑥⟩𝐸𝑤 (𝑥, 𝑦) = −
∑︁
𝛼∈𝑅+

𝜅(𝛼) 𝑄𝑤 (𝑥, 𝑦)
𝑄𝑠𝛼𝑤 (𝑥, 𝑦)

{
𝐸𝑤 (𝑥, 𝑦) − 𝐸𝑠𝛼𝑤 (𝑥, 𝑦)

}
− Λ𝑤 (𝑥, 𝑦)𝐸𝑤 (𝑥, 𝑦),
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where
Λ𝑤 (𝑥, 𝑦) = ⟨𝑥, 𝑦 − 𝑤.𝑦⟩ − ⟨𝑥,∇𝑥⟩𝑄𝑤 (𝑥, 𝑦)

𝑄𝑤 (𝑥, 𝑦)

+
∑︁
𝛼∈𝑅+

𝜅(𝛼)
{

1

1 + 𝑐⟨𝛼, 𝑥⟩⟨𝛼, 𝑦⟩ −
𝑄𝑤 (𝑥, 𝑦)
𝑄𝑠𝛼𝑤 (𝑥, 𝑦)

}
.

(2.5)

Our aim is to find positive rational functions 𝑄𝑤 (𝑥, 𝑦) and constants 𝑐+ ⩾ 𝑐− > 0 such that

Λ𝑤 (𝑥, 𝑦) ⩾ 0, for all 𝑥, 𝑦 ∈ 𝔞+ and 𝑐 ∈ (0, 𝑐−), (2.6)

and
Λ𝑤 (𝑥, 𝑦) ⩽ 0, for all 𝑥, 𝑦 ∈ 𝔞+ and 𝑐 ∈ (𝑐+,∞). (2.7)

Once (2.6) and (2.7) are achieved, we deduce as in the one dimensional case that
• 𝑀 (𝑡) = max𝑤∈𝑊 𝐸𝑤 (𝑡𝑥, 𝑦) is a decreasing function of 𝑡 ∈ [0,∞) when 𝑐 ∈ (0, 𝑐−),
• 𝑚(𝑡) = min𝑤∈𝑊 𝐸𝑤 (𝑡𝑥, 𝑦) is an increasing function of 𝑡 ∈ [0,∞) when 𝑐 ∈ (𝑐+,∞),

and we conclude that
𝑀 (1) ⩽ 𝑀 (0) = 1 = 𝑚(0) ⩽ 𝑚(1) .

Currently we are able to complete this program for dihedral root systems, which are all (non necessarily
crystallographic) 2-dimensional irreducible root systems. For general root systems we intend to return to
the problem in the future.

3. The Dunkl kernel for dihedral root systems

In this section we establish optimal bounds for the Dunkl kernel in the dihedral case, which includes
in particular the root system 𝐴2 considered in [6].

3.1. Dihedral root systems. Let us start by introducing the necessary notation. Let 𝐼𝑛, 𝑛 ⩾ 3, be the
root system in 𝔞 = R2 consisting of vectors{

±
(
cos 𝜋 𝑗

𝑛
, sin 𝜋 𝑗

𝑛

)
: 𝑗 ∈ {0, 1, . . . , 𝑛 − 1}

}
.

Let us observe that the ends of the vectors in 𝐼𝑛 represent the vertices of the regular (2𝑛)-gon in R2. We
set

𝛼 𝑗 =
(
cos 𝜋 𝑗

𝑛
, sin 𝜋 𝑗

𝑛

)
, for 𝑗 ∈ {0, 1, . . . , 𝑛 − 1}.

Then {𝛼0, 𝛼1, . . . , 𝛼𝑛−1} is the set of positive roots in 𝐼𝑛. The positive Weyl chamber is

𝔞+ =
{
𝑥 ∈ R2 : ⟨𝛼0, 𝑥⟩ > 0 and ⟨𝛼𝑛−1, 𝑥⟩ > 0

}
.

The corresponding Weyl (or Coxeter) group has presentation

𝑊 = ⟨𝑟, 𝑠 : 𝑟𝑛 = Id = 𝑠2, 𝑠𝑟𝑠 = 𝑟−1⟩.
In fact, the group 𝑊 is the dihedral group which consists of 𝑛 rotations

𝑟 𝑗 = 𝑟 𝑗 =

(
cos 2𝜋 𝑗

𝑛
− sin 2𝜋 𝑗

𝑛

sin 2𝜋 𝑗

𝑛
cos 2𝜋 𝑗

𝑛

)
, 𝑗 ∈ Z/𝑛Z,

and 𝑛 reflections (or symmetries)

𝑠 𝑗 = 𝑠𝑟 𝑗 =

(
− cos 2𝜋 𝑗

𝑛
sin 2𝜋 𝑗

𝑛

sin 2𝜋 𝑗

𝑛
cos 2𝜋 𝑗

𝑛

)
, 𝑗 ∈ Z/𝑛Z.

If 𝑛 is odd then all roots are in the same 𝑊-orbit while, if 𝑛 is even there are two 𝑊-orbits: 𝑊.𝛼0 and
𝑊.𝛼1. Thus, if 𝑛 is odd, we set 𝜅 > 0 to be the joint multiplicity of all roots while, if 𝑛 is even, we let
𝜅0 > 0, respectively 𝜅1 > 0, to be the multiplicity of the roots in 𝑊.𝛼0, respectively in 𝑊.𝛼1. Set

𝜅min =

{
𝜅 if 𝑛 is odd,
min{𝜅0, 𝜅1} if 𝑛 is even,

and 𝜅max =

{
𝜅 if 𝑛 is odd,
max{𝜅0, 𝜅1} if 𝑛 is even.

See Figure 1 for a picture of 𝐼5.
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s2
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Figure 1. The case 𝑛 = 5

Given 𝑥, 𝑦 ∈ 𝔞+ and 𝑗 ∈ Z/𝑛Z, we define
𝜌 𝑗 = ⟨𝑥, 𝑦 − 𝑟 𝑗 .𝑦⟩, 𝜎𝑗 = ⟨𝑥, 𝑦 − 𝑠 𝑗 .𝑦⟩,

𝐷𝑟 𝑗 = 1 + 𝑐𝜌 𝑗 , 𝐷𝑠 𝑗 = 1 + 𝑐𝜎𝑗 .

Let
𝐷𝑅 =

∏
𝑗∈Z/𝑛Z

𝐷𝑟 𝑗 , 𝐷𝑆 =
∏

𝑗∈Z/𝑛Z
𝐷𝑠 𝑗 ,

𝔇𝑅 =
∑︁

𝑗∈Z/𝑛Z

1

𝐷𝑟 𝑗

, 𝔇𝑆 =
∑︁

𝑗∈Z/𝑛Z

1

𝐷𝑠 𝑗

,

and
𝔖 =

∏
𝑗∈Z/𝑛Z

𝜎𝑗 .

Let us observe that both 𝜌 𝑗 and 𝜎𝑗 are non-negative for every 𝑗 ∈ Z/𝑛Z. Moreover, 𝜌0 = 0 and 𝐷𝑟0 = 1
are trivial. The following two lemmas allows us to compare the 𝜌 𝑗’s and 𝜎𝑗’s

Lemma 1. The following properties hold, for all 𝑥, 𝑦 ∈ 𝔞+:
𝜎0 = 2⟨𝛼0, 𝑥⟩⟨𝛼0, 𝑦⟩,
𝜎1 = 2⟨𝛼𝑛−1, 𝑥⟩⟨𝛼𝑛−1, 𝑦⟩,
𝜎𝑗 ≈ ⟨𝑥, 𝑦⟩, for all 𝑗 ∈ {2, . . . , 𝑛 − 1},

and


𝜌1 = 2

(
sin 𝜋

𝑛

)
⟨𝑟.𝑥, 𝑦⟩,

𝜌𝑛−1 = 2
(
sin 𝜋

𝑛

)
⟨𝑥, 𝑟.𝑦⟩,

𝜌 𝑗 ≈ ⟨𝑥, 𝑦⟩, for all 𝑗 ∈ {2, 3, . . . , 𝑛 − 2},
where 𝑟 is the rotation about the origin in R2 by the angle ( 𝜋2 − 𝜋

𝑛
), that is

𝑟 =

(
sin 𝜋

𝑛
− cos 𝜋

𝑛

cos 𝜋
𝑛

sin 𝜋
𝑛

)
. (3.1)
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Proof. Since for each 𝑗 ∈ {0, 1, . . . , 𝑛 − 1}, 𝑠− 𝑗 is the reflection with respect to 𝛼⊥
𝑗
, we get

𝜎− 𝑗 = 2⟨𝛼 𝑗 , 𝑥⟩⟨𝛼 𝑗 , 𝑦⟩.

If 0 < 𝑗 < 𝑛 − 1, then both 𝜎− 𝑗 and ⟨𝑥, 𝑦⟩ reach (strictly) positive extrema, as 𝑥 and 𝑦 run through the
compact set

S(𝔞+) =
{
𝑧 ∈ 𝔞+ : |𝑧 | = 1

}
.

Hence, by homogeneity, we deduce that

𝜎− 𝑗 ≈ ⟨𝑥, 𝑦⟩, for all 𝑥, 𝑦 ∈ 𝔞+.

Let us now turn to rotations. Notice that

Id−𝑟 𝑗 = 2
(
sin 𝜋 𝑗

𝑛

) ( sin 𝜋 𝑗

𝑛
cos 𝜋 𝑗

𝑛

− cos 𝜋 𝑗

𝑛
sin 𝜋 𝑗

𝑛

)
where the matrix represents the rotation about the origin in R2 by the angle ( 𝜋 𝑗

𝑛
− 𝜋

2 ). We deduce on the
one hand that {

𝜌1 = 2(sin 𝜋
𝑛
)⟨𝑥, (𝑟)−1.𝑦⟩,

𝜌𝑛−1 = 2(sin 𝜋
𝑛
)⟨𝑥, 𝑟.𝑦⟩.

On the other hand, for 1 < 𝑗 < 𝑛 − 1, the image (Id−𝑟 𝑗).S(𝔞+) doesn’t meet S(𝔞+), thus arguing as for
reflections we arrive at

𝜌 𝑗 ≈ ⟨𝑥, 𝑦⟩, for all 𝑥, 𝑦 ∈ 𝔞+. □

Lemma 2. For each 𝑗 ∈ Z/𝑛Z ∖ {0}, there is 𝑘 ∈ Z/𝑛Z such that

𝜌 𝑗 ⩾ 𝜎𝑘 , for all 𝑥, 𝑦 ∈ 𝔞+.

Proof. Let 𝑗 ∈ Z/𝑛Z ∖ {0}. As 𝑟− 𝑗 ≠ Id, there exists a positive root 𝛼ℓ such that 𝑟− 𝑗 .𝛼ℓ is negative. Let
𝑘 ≡ 𝑗 − ℓ (mod 𝑛), so that 𝑠𝑘− 𝑗 = 𝑠−ℓ is the reflection with respect to 𝛼⊥

ℓ
. Then

𝜌 𝑗 − 𝜎𝑘 = ⟨𝑥, 𝑠𝑘 .𝑦 − 𝑟 𝑗 .𝑦⟩
= ⟨𝑥, 𝑠𝑘− 𝑗 (𝑟 𝑗 .𝑦) − 𝑟 𝑗 .𝑦⟩
= −2 ⟨𝛼ℓ , 𝑥⟩︸ ︷︷ ︸

⩾0

⟨𝛼ℓ , 𝑟 𝑗 .𝑦⟩︸     ︷︷     ︸
⩽0

⩾ 0. □

Later we will also need the following lemma.

Lemma 3. For 𝑚1, . . . , 𝑚𝑘 ∈ Z/𝑛Z, we set

𝐼 (𝑚1, . . . , 𝑚𝑘) =
∑︁

𝑗1 ,..., 𝑗𝑘 ∈Z/𝑛Z
distinct

𝑒i
2𝜋
𝑛

(𝑚1 𝑗1+...+𝑚𝑘 𝑗𝑘 ) . (3.2)

Then
(a) 𝐼 (𝑚1, . . . , 𝑚𝑘) is real valued and symmetric under permutations of 𝑚1, . . . , 𝑚𝑘;

(b) 𝐼 (𝑚1, . . . , 𝑚𝑘) =
{
(𝑛 − 𝑘 + 1)𝐼 (𝑚1, . . . , 𝑚𝑘−1) if 𝑚𝑘 ≡ 0 (mod 𝑛),
−∑

1⩽𝑖<𝑘 𝐼 (𝑚1, . . . , 𝑚𝑖 + 𝑚𝑘 , . . . , 𝑚𝑘−1) if 𝑚𝑘 . 0 (mod 𝑛);
(c) for every 𝑚1, . . . , 𝑚𝑘 ∈ Z/𝑛Z, there exists 𝑐 ∈ Z such that

𝐼 (𝑚1, . . . , 𝑚𝑘) = 𝑐𝐼 (𝑚1 + . . . + 𝑚𝑘);

(d) for every 𝑚 ∈ Z/𝑛Z,

𝐼 (𝑚) =
{
𝑛 if 𝑚 ≡ 0 (mod 𝑛),
0 if 𝑚 . 0 (mod 𝑛).

Proof. (d) is elementary. (a) is easily deduced from the definition (3.2). Same for the first claim in (b).
The second claim in (b) follows from the second claim in (d). Finally (c) is deduced from (b) by
induction. □
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Next, in what follows we need the elementary symmetric polynomials e 𝑗 on 𝑛 variables, namely,
e0(𝑋1, . . . , 𝑋𝑛) ≡ 1,

e𝑘 (𝑋1, . . . , 𝑋𝑛) =
∑︁

1⩽ 𝑗1<...< 𝑗𝑘⩽𝑛

𝑋 𝑗1𝑋 𝑗2 · · · 𝑋 𝑗𝑘 , 1 ⩽ 𝑘 < 𝑛

e𝑛 (𝑋1, . . . , 𝑋𝑛) = 𝑋1𝑋2 · · · 𝑋𝑛.

(3.3)

A straightforward argument shows that for 𝑘 ∈ {1, . . . , 𝑛 − 1},

e𝑘 (𝑋1, . . . , 𝑋𝑛) =
1

𝑘!

∑︁
1≤ 𝑗1 ,..., 𝑗𝑘≤𝑛

distinct

𝑋 𝑗1𝑋 𝑗2 · · · 𝑋 𝑗𝑘 .

Recall that the elementary symmetric polynomials generate the algebra of symmetric polynomials in 𝑛

variables.
The following lemma allows us to compare symmetric polynomials in 𝜌 𝑗’s and 𝜎𝑗’s.

Lemma 4. For each 𝑘 ∈ {0, 1, . . . , 𝑛 − 1},
e𝑘 (𝜌0, . . . , 𝜌𝑛−1) = e𝑘 (𝜎0, . . . , 𝜎𝑛−1)

while e𝑛 (𝜌0, . . . , 𝜌𝑛−1) = 0 and e𝑛 (𝜎0, . . . , 𝜎𝑛−1) = 𝔖.

Remark 5. Let us observe that for all 𝑘 ∈ {0, 1, . . . , 𝑛 − 1}, e𝑘 (𝜌0, 𝜌1, . . . , 𝜌𝑛−1) = e𝑘 (𝜌1, . . . , 𝜌𝑛−1).

Proof of Lemma 4. First of all, the result is immediate when 𝑘 = 0 or 𝑘 = 𝑛. Since∑︁
𝑗∈Z/𝑛Z

𝑟 𝑗 = 0,

we deduce that e1(𝜌0, . . . , 𝜌𝑛−1) and e1(𝜎0, . . . , 𝜎𝑛−1) are equal to 𝑛⟨𝑥, 𝑦⟩. Let us turn to the remaining
cases where 1 < 𝑘 < 𝑛 and which are more involved. Let us consider the linear operators

𝑆 = 𝑠 ⊗ · · · ⊗ 𝑠︸       ︷︷       ︸
𝑘 factors

and
𝑅 =

∑︁
𝑗1 ,..., 𝑗𝑘 ∈Z/𝑛Z

distinct

𝑟 𝑗1 ⊗ · · · ⊗ 𝑟 𝑗𝑘

acting on the space S𝑘 (C2) of symmetric tensors in ⊗𝑘C2. Notice that 𝑆 is an involution which commutes
with 𝑅. We claim that

𝑅 = 𝑆𝑅 = 𝑅𝑆 (3.4)
on S𝑘 (C2). Let

S𝑘 (C2) = 𝐸+1 ⊕ 𝐸−1
be the eigenspace decomposition of 𝑆. Then 𝑅(𝐸±1) ⊂ 𝐸±1. Since, (3.4) trivially holds true on 𝐸+1, it is
enough to show that 𝑅 = 0 on 𝐸−1.

For the proof, we introduce suitable bases for our computations. For every 0 ⩽ ℓ ⩽ 𝑘 , let us denote
by 𝜏ℓ the sum of tensors 𝑣1⊗ · · · ⊗ 𝑣𝑘 where 𝑣1, . . . , 𝑣𝑘 are equal to 𝑣+ = (𝑖, 1) or 𝑣− = (−𝑖, 1) with ℓ

occurrences of 𝑣+ and (𝑘−ℓ) of 𝑣−. Then {𝜏ℓ : 0 ⩽ ℓ ⩽ 𝑘} is a basis of S𝑘 (C2). Moreover, as 𝑠(𝑣±) = 𝑣∓,
we have 𝑆(𝜏ℓ) = 𝜏𝑘−ℓ . Hence {𝜏ℓ + 𝜏𝑘−ℓ : 0 ⩽ ℓ ⩽ 𝑘/2} is a basis of 𝐸+1, and {𝜏ℓ − 𝜏𝑘−ℓ : 0 ⩽ ℓ < 𝑘/2}
a basis of 𝐸−1. Moreover, as

𝑟 𝑗 (𝑣±) = 𝑒±i
2𝜋 𝑗

𝑛 𝑣±,

for each 𝑗 ∈ Z/𝑛Z, we obtain

𝑅
(
𝜏ℓ − 𝜏𝑘−ℓ

)
= 𝑅(𝜏ℓ) − 𝑅(𝜏𝑘−ℓ)
= (Re 𝐼𝑘,ℓ) (𝜏ℓ − 𝜏𝑘−ℓ) + i(Im 𝐼𝑘,ℓ) (𝜏ℓ + 𝜏𝑘−ℓ)

for each 0 ⩽ ℓ < 𝑘/2 where 𝐼𝑘, ℓ denotes the exponential sum (3.2) with

𝑚𝑖 =

{
1 ℓ times,
−1 (𝑘 − ℓ) times.
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Notice that 𝑚1 + . . . +𝑚𝑘 = 2ℓ − 𝑘 . 0 (mod 𝑛), as 0 ⩽ 2ℓ < 𝑘 < 𝑛. By applying (c) and (d) in Lemma
3, we deduce that 𝐼𝑘,ℓ = 0.

In summary, 𝑅 vanishes on 𝐸−1 and consequently (3.4) holds true. By applying∑︁
𝑗1 ,..., 𝑗𝑘 ∈Z/𝑛Z
distinct

𝑟 𝑗1 ⊗ . . . ⊗ 𝑟 𝑗𝑘 =
∑︁

𝑗1 ,..., 𝑗𝑘 ∈Z/𝑛Z
distinct

𝑠 𝑗1 ⊗ . . . ⊗ 𝑠 𝑗𝑘 .

to 𝑦 ⊗ . . . ⊗ 𝑦 and taking the inner product with 𝑥 ⊗ . . . ⊗ 𝑥, we obtain

e𝑘
(
⟨𝑥, 𝑟0.𝑦⟩, . . . , ⟨𝑥, 𝑟𝑛−1.𝑦⟩

)
= e𝑘

(
⟨𝑥, 𝑠0.𝑦⟩, . . . , ⟨𝑥, 𝑠𝑛−1.𝑦⟩

)
for every 1 < 𝑘 < 𝑛. Notice that this equality holds true for 𝑘 = 0 and 𝑘 = 1 too. We conclude that

e𝑘
(
𝜌0, . . . , 𝜌𝑛−1

)
= e𝑘

(
𝜎0, . . . , 𝜎𝑛−1

)
(3.5)

for every 0 < 𝑘 < 𝑛, by expressing both sides of (3.5) as the same polynomial in

e𝑘′
(
⟨𝑥, 𝑟0.𝑦⟩, . . . , ⟨𝑥, 𝑟𝑛−1.𝑦⟩

)
= e𝑘′

(
⟨𝑥, 𝑠0.𝑦⟩, . . . , ⟨𝑥, 𝑠𝑛−1.𝑦⟩

)
with 0 ⩽ 𝑘 ′ ⩽ 𝑘 and the lemma follows. □

Corollary 6. 𝐷𝑅 = 𝐷𝑆 − 𝑐𝑛𝔖.

Proof. On the one hand,
𝐷𝑅 =

∑︁
0⩽𝑘<𝑛

𝑐𝑘e𝑘 (𝜌0, . . . , 𝜌𝑛−1),

and on the other hand,
𝐷𝑆 =

∑︁
0⩽𝑘⩽𝑛

𝑐𝑘e𝑘 (𝜎0, . . . , 𝜎𝑛−1)

with e𝑛 (𝜎0, . . . , 𝜎𝑛−1) = 𝔖. Then Lemma 4 allows us to conclude. □

Corollary 7. 𝐷𝑅𝔇𝑅 = 𝐷𝑆𝔇𝑆 .

Proof. This is obtained by expressing

𝐷𝑅𝔇𝑅 =
∑︁

0⩽ 𝑗<𝑛

𝐷𝑟0 . . . 𝐷𝑟 𝑗−1𝐷𝑟 𝑗+1 . . . 𝐷𝑟𝑛−1

and
𝐷𝑆𝔇𝑆 =

∑︁
0⩽ 𝑗<𝑛

𝐷𝑠0 . . . 𝐷𝑠 𝑗−1𝐷𝑠 𝑗+1 . . . 𝐷𝑠𝑛−1

as the same polynomial in terms of

e𝑘 (𝜎0, . . . , 𝜎𝑛−1) = e𝑘 (𝜌0, . . . , 𝜌𝑛−1)
with 0 ⩽ 𝑘 < 𝑛. □

3.2. Sharp estimates. In this section we prove our main result. To do so, we introduce the following
barrier functions:

𝑄𝑤 =


1 if 𝑤 = Id,

𝐷𝑠 𝑗 if 𝑤 = 𝑠 𝑗 (0 ⩽ 𝑗 < 𝑛),
𝐷𝑟 𝑗

𝐷𝑆

𝐷𝑅
if 𝑤 = 𝑟 𝑗 (0 < 𝑗 < 𝑛).

(3.6)

We follow the overall strategy presented in Section 2.
Recall that ΛId ≡ 1. We are going to determine the sign of Λ𝑤 (𝑤 ≠ Id) depending whether 𝑐 > 0 is

small or large.
• Assume that 𝑤 = 𝑠 𝑗 with 𝑗 ∈ Z/𝑛Z. In this case (2.5) writes

Λ𝑠 𝑗 = 𝜎𝑗 −
𝑐𝜎 𝑗

𝐷𝑠 𝑗

− 𝜅(𝛼 𝑗)
{
𝐷𝑠 𝑗 − 1

𝐷𝑠 𝑗

}
−

∑︁
𝑘∈Z/𝑛Z
𝑘≠ 𝑗

𝜅(𝛼𝑘)
{

𝐷𝑠 𝑗

𝐷𝑟𝑘− 𝑗

𝐷𝑅

𝐷𝑆
− 1

𝐷𝑠𝑘

}
,

hence
Λ𝑠 𝑗 ⩾ 𝜎𝑗 − 𝐴 𝑗 − 𝜅max𝐵 𝑗 and Λ𝑠 𝑗 ⩽ 𝜎𝑗 − 𝜅min𝐵 𝑗 ,
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where
𝐴 𝑗 =

𝑐𝜎 𝑗

𝐷𝑠 𝑗

and 𝐵 𝑗 = 𝐷𝑠 𝑗 − 1
𝐷𝑠 𝑗

+
∑︁

𝑘∈Z/𝑛Z
𝑘≠ 𝑗

{
𝐷𝑠 𝑗

𝐷𝑟𝑘− 𝑗

𝐷𝑅

𝐷𝑆
− 1

𝐷𝑠𝑘

}
.

Lemma 8. We have 𝐵 𝑗 = 𝑐𝜎𝑗𝐶 𝑗 with 21−𝑛 ⩽ 𝐶 𝑗 ⩽ 𝑛 + 1.

Proof. We have

𝐵 𝑗 = 𝐷𝑠 𝑗 − 1
𝐷𝑠 𝑗

+
𝐷𝑠 𝑗

𝐷𝑅

𝐷𝑆

∑︁
𝑘∈Z/𝑛Z
𝑘≠0

1
𝐷𝑟𝑘

−
∑︁

𝑘∈Z/𝑛Z
𝑘≠ 𝑗

1
𝐷𝑠𝑘

=
𝐷𝑠 𝑗

𝐷𝑆
(𝐷𝑆 − 𝐷𝑅) +

𝐷𝑠 𝑗
𝐷𝑅

𝐷𝑆
𝔇𝑅 −𝔇𝑆 .

Using Corollaries 6 and 7, we obtain

𝐵 𝑗 =
𝐷𝑠 𝑗

𝐷𝑆
𝑐𝑛𝔖 + (𝐷𝑠 𝑗 − 1)𝔇𝑆 = 𝑐𝜎𝑗𝐶 𝑗

where
𝐶 𝑗 =

( ∏
𝑘∈Z/𝑛Z
𝑘≠ 𝑗

𝑐𝜎𝑘

𝐷𝑠𝑘

)
+𝔇𝑆 .

To conclude, we notice that on the one hand 𝐶 𝑗 < 𝑛 + 1. On the other hand, if 𝑐𝜎𝑘 ⩾ 1 for every
𝑘 ∈ Z/𝑛Z, then 𝐶 𝑗 ⩾ 21−𝑛; otherwise, there is 𝑘 ∈ Z/𝑛Z such that 𝑐𝜎𝑘 < 1, thus 𝐶 𝑗 >

1
𝐷𝑠𝑘

> 1
2 which is

⩾ 21−𝑛. □

Corollary 9. We have
(a) Λ𝑠 𝑗 ⩾ 0, if 0 < 𝑐 ⩽ 1

𝜅max (𝑛+1)+1 ;
(b) Λ𝑠 𝑗 ⩽ 0, if 𝑐 ⩾ 2𝑛−1

𝜅min
.

Proof. On the one hand,
Λ𝑠 𝑗 ⩾ 𝜎𝑗

{
1 − 𝑐 − 𝑐𝜅max(𝑛 + 1)

}
,

which is non-negative provided that 𝑐 ⩽ 1
𝜅max (𝑛+1)+1 . On the other hand,

Λ𝑠 𝑗 ⩽ 𝜎𝑗

{
1 − 𝑐𝜅min2

1−𝑛
}
,

which is non-positive provided that 𝑐 ⩾ 2𝑛−1

𝜅min
. □

• Assume that 𝑤 = 𝑟 𝑗 with 𝑗 ∈ Z/𝑛Z ∖ {0}. In this case, (2.5) writes

Λ𝑟 𝑗 = 𝜌 𝑗

∑︁
𝑘∈Z/𝑛Z

𝑐𝜎𝑘

𝐷𝑠𝑘

+
∑︁

𝑘∈Z/𝑛Z∖{0}
𝑘≠ 𝑗

𝑐𝜌𝑘
𝐷𝑟𝑘

−
∑︁

𝑘∈Z/𝑛Z
𝜅(𝛼𝑘)

{
𝐷𝑟 𝑗

𝐷𝑠𝑘− 𝑗

𝐷𝑆

𝐷𝑅
− 1

𝐷𝑠𝑘

}
hence

Λ𝑟 𝑗 ⩾ 𝜌 𝑗 − 𝐴 𝑗 − 𝜅max𝐵 𝑗 and Λ𝑟 𝑗 ⩽ 𝜌 𝑗 − 𝜅min𝐵 𝑗 ,

where
𝐴 𝑗 =

∑︁
𝑘∈Z/𝑛Z

𝑐𝜎𝑘

𝐷𝑠𝑘

∑︁
𝑘∈Z/𝑛Z∖{0}

𝑘≠ 𝑗

𝑐𝜌𝑘
𝐷𝑟𝑘

and
𝐵 𝑗 =

∑︁
𝑘∈Z/𝑛Z

{
𝐷𝑟 𝑗

𝐷𝑠𝑘− 𝑗

𝐷𝑆

𝐷𝑅
− 1

𝐷𝑠𝑘

}
=

{
𝐷𝑟 𝑗

𝐷𝑆

𝐷𝑅
− 1

}
𝔇𝑆 .

Lemma 10. We have

𝐴 𝑗 =
𝑐𝜌 𝑗

𝐷𝑟 𝑗

+ 𝑐𝑛𝔖
𝐷𝑆

𝔇𝑅, 𝐵 𝑗 = 𝑐𝜌 𝑗𝔇𝑅 + 𝑐𝑛𝔖
𝐷𝑆

𝔇𝑅,

and
1 ⩽ 𝔇𝑅 ⩽ 𝑛.
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Proof. On the one hand, from∑︁
𝑘∈Z/𝑛Z

𝑐𝜎𝑘

𝐷𝑠𝑘

= 𝑛 −𝔇𝑆 and
∑︁

𝑘∈Z/𝑛Z

𝑐𝜌𝑘
𝐷𝑟𝑘

= 𝑛 −𝔇𝑅

we deduce that

𝐴 𝑗 =
∑︁

𝑘∈Z/𝑛Z

𝑐𝜎𝑘

𝐷𝑠𝑘

−
∑︁

𝑘∈Z/𝑛Z

𝑐𝜌𝑘
𝐷𝑟𝑘

+ 𝑐𝜌 𝑗

𝐷𝑟 𝑗

=
𝑐𝜌 𝑗

𝐷𝑟 𝑗

+𝔇𝑅 −𝔇𝑆 ,

hence by Corollaries 6 and 7,

𝐴 𝑗 =
𝑐𝜌 𝑗

𝐷𝑟 𝑗

+
(
1 − 𝐷𝑅

𝐷𝑆

)
𝔇𝑅

=
𝑐𝜌 𝑗

𝐷𝑟 𝑗

+ 𝑐𝑛𝔖
𝐷𝑆

𝔇𝑅 .

On the other hand,

𝐷𝑟 𝑗
𝐷𝑆

𝐷𝑅
− 1 = 𝑐𝜌 𝑗

𝐷𝑆

𝐷𝑅
+ 𝐷𝑆

𝐷𝑅
− 1

= 𝑐𝜌 𝑗
𝐷𝑆

𝐷𝑅
+ 𝑐𝑛𝔖

𝐷𝑅
.

Now using again Corollaries 6 and 7, we obtain

𝐷𝑟 𝑗
𝐷𝑆

𝐷𝑅
− 1 = 𝑐𝜌 𝑗

𝐷𝑆

𝐷𝑅
+ 𝐷𝑆

𝐷𝑅
− 1

= 𝑐𝜌 𝑗
𝐷𝑆

𝐷𝑅
+ 𝑐𝑛𝔖

𝐷𝑅
,

and

𝐵 𝑗 = 𝑐𝜌 𝑗
𝐷𝑆𝔇𝑆

𝐷𝑅
+ 𝑐𝑛𝔖

𝔇𝑆

𝐷𝑅

= 𝑐𝜌 𝑗𝔇𝑅 + 𝑐𝑛𝔖
𝐷𝑆

𝔇𝑅 .

Finally, since

𝐷𝑟0 = 1 and 𝐷𝑟𝑘 ⩾ 1 for all 𝑘 ∈ {1, 2, . . . , 𝑛 − 1},

we have 1 ⩽ 𝔇𝑅 ⩽ 𝑛 and the lemma follows. □

Corollary 11. We have

(a) Λ𝑟 𝑗 ⩾ 0, if 0 < 𝑐 ⩽ 1
2(1+𝜅max )𝑛 ,

(b) Λ𝑟 𝑗 ⩽ 0, if 𝑐 ⩾ 1
𝜅min

.

Proof. On the one hand,

Λ𝑟 𝑗 ⩽ 𝜌 𝑗

{
1 − 𝑐𝜅min

}
,

which is non-positive if 𝑐 ⩾ 1
𝜅min

. On the other hand, according to Lemma 2, there is 𝑘 ∈ Z/𝑛Z such that
𝜌 𝑗 ⩾ 𝜎𝑘 , and so

Λ𝑟 𝑗 ⩾ 𝜌 𝑗

{
1 − 𝑐(1 + 𝜅max𝑛)

}
− (1 + 𝜅max)𝑛 𝑐𝑛𝔖

𝐷𝑆

= (𝜌 𝑗 − 𝜎𝑘)
{
1 − 𝑐(1 + 𝜅max𝑛)

}
+ 𝜎𝑘

{
1 − 2𝑐(1 + 𝜅max)𝑛

}
,

which is non-negative provided that 0 < 𝑐 ⩽ 1
2(1+𝜅max )𝑛 . □

In conclusion, we obtain the following global upper and lower bound for the Dunkl kernel.
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Theorem 12. For every 𝑤 ∈ 𝑊 and 𝑥, 𝑦 ∈ 𝔞+,

𝐸 (𝑥, 𝑤.𝑦) ≈ 𝑒⟨𝑥,𝑦⟩
( ∏
𝛼∈𝑅+

(1 + ⟨𝛼, 𝑥⟩⟨𝛼, 𝑦⟩)−𝜅 (𝛼)
)

×



1 if 𝑤 = Id,
1

1+⟨𝛼0,𝑥⟩⟨𝛼0,𝑦⟩ if 𝑤 = 𝑠0,
1

1+⟨𝛼𝑛−1,𝑥⟩⟨𝛼𝑛−1,𝑦⟩ if 𝑤 = 𝑠1,
1

1+⟨𝑥,𝑦⟩ if 𝑤 = 𝑠 𝑗 with 1 < 𝑗 < 𝑛,
1+⟨𝑥,𝑟 .𝑦⟩

(1+⟨𝛼0,𝑥⟩⟨𝛼0,𝑦⟩) (1+⟨𝛼𝑛−1,𝑥⟩⟨𝛼𝑛−1,𝑦⟩) (1+⟨𝑥,𝑦⟩) if 𝑤 = 𝑟1,

1+⟨𝑟 .𝑥,𝑦⟩
(1+⟨𝛼0,𝑥⟩⟨𝛼0,𝑦⟩) (1+⟨𝛼𝑛−1,𝑥⟩⟨𝛼𝑛−1,𝑦⟩) (1+⟨𝑥,𝑦⟩) if 𝑤 = 𝑟𝑛−1,

(1+⟨𝑟 .𝑥,𝑦⟩) (1+⟨𝑥,𝑟 .𝑦⟩)
(1+⟨𝛼0,𝑥⟩⟨𝛼0,𝑦⟩) (1+⟨𝛼𝑛−1,𝑥⟩⟨𝛼𝑛−1,𝑦⟩) (1+⟨𝑥,𝑦⟩)2 if 𝑤 = 𝑟 𝑗 with 1 < 𝑗 < 𝑛 − 1,

where 𝑟 is defined in (3.1).

Proof. According to the choice (3.6), we have proved that

𝐸 (𝑥, 𝑤.𝑦) ≈ 𝑒⟨𝑥,𝑦⟩
( ∏
𝛼∈𝑅+

(1 + ⟨𝛼, 𝑥⟩⟨𝛼, 𝑦⟩)−𝜅 (𝛼)
)
×


1 if 𝑤 = Id,

1
1+𝜎 𝑗

if 𝑤 = 𝑠 𝑗 with 𝑗 ∈ Z/𝑛Z,∏
0<𝑘<𝑛
𝑘≠ 𝑗

(1+𝜌𝑘 )∏
0⩽𝑘<𝑛 (1+𝜎𝑘 ) if 𝑤 = 𝑟 𝑗 with 𝑗 ∈ Z/𝑛Z ∖ {0},

and the theorem is a consequence of Lemma 1. □
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