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ABSTRACT 
This paper aims at introducing a new methodology to 

analyse aeroelastic stability of transonic fans while nonlinear 

friction on contact interfaces is taken into account. This 

methodology consists in an iterative procedure where the 

nonlinear dynamics of the structure and aerodynamic forces are 

respectively computed while imposing each one to the other in a 

fixed point loop. Hence, both physics are resolved while taking 

into account the nonlinearities of the other one, leading to a 

description of the fully coupled fluid structure system nonlinear 

dynamics. To do so, a harmonic description of the structure 

dynamics is performed using nonlinear complex modes, while 

the fluid is evaluated in temporal domain solving Unsteady 

Reynolds Averaged Navier-Stokes (URANS) equations. 

Aeroelastic simulations are performed on the whole annulus, in 

Arbitrary Lagrangian Eulerian (ALE) formulation. An 

application of this methodology is performed on an industrial 

state of the art transonic fan to demonstrate its capability of 

predicting flutter induced Limit Cycle of Oscillations (LCO). 

Keywords: Aeroelasticity, Fan blade flutter, Nonlinear blade 

root friction, Nonlinear complex modes, Limit Cycle of 

Oscillations (LCO) 

NOMENCLATURE 
C damping matrix 

K stiffness matrix 

M mass matrix 

f force vector 

x displacement 

Ψ modal deformation shape 

Z multiharmonic stiffness matrix 

X  harmonic coefficients of displacement 

𝑁ℎ harmonics number 

β nonlinear damping 

ω frequency 

•𝑛𝑙 nonlinear component 

1. INTRODUCTION
Aeroelastic stability of turbomachinery compressor rows

has been studied for decades and is yet not fully understood. In 

order to achieve fuel consumption reduction objectives sought 

by engine manufacturers, it has become more and more critical 

to gain knowledge about the operability limits of such systems 

to perform dry masses reductions without compromising the 

lifecycle or the performances of the engine. 

In the past decade, the intensive use of Computational Fluid 

Dynamics (CFD) allowed to get better understanding of physical 

mechanisms inducing flutter of transonic fan stages. Some 

studies [1,2,3,4] showed that shock/boundary layer interaction is 

a key mechanism inducing energy transfer between the fluid and 

the structure in such operating conditions. This interaction may 

lead to boundary layer separation, resulting in positive energy 

transfer areas from the fluid to the blades, hence instability. This 

phenomenon is often referred as transonic stall flutter in 

compressor applications [5]. Another key mechanism of fan 

blade flutter has been revealed more recently and is due to inlet 

fan acoustic interactions [2,4,6,7]. As the latter vibrates, it may 

be at the origin of acoustic waves propagating through the intake 

of the engine. The propagation of such acoustic waves along the 

duct depends on the mean flow, the intake geometry and the 

frequency of the source. It is then possible to describe the 

acoustic propagation in terms of duct acoustic modes, 

characterized by a cut-on frequency 𝝎𝒄𝒖𝒕−𝒐𝒏 [8]. In particular,

an acoustic mode will propagate through the duct if the source 

frequency at its origin is greater than 𝝎𝒄𝒖𝒕−𝒐𝒏, otherwise it will

decay. Acoustic reflection occurs at the intake opening, leading 

to a reflected wave going back to the fan. The relationship 

between the emitted wave and the reflected one onto the fan may 

have a great impact on flutter stability in very narrow operating 

conditions, hence the term flutter bite. 
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 While fan flutter may lead to critical failure of the engine, it 

has been shown in some studies that nonlinear phenomena may 

reduce its impact by saturating the vibrating amplitudes of the 

blades. Firstly discussed on simple models [9], it has been shown 

on state of the art compressors and turbines that the effects of 

nonlinear friction on contact interfaces may improve flutter 

stability by giving rise to periodic oscillations called Limit Cycle 

of Oscillations (LCO). LCOs occur beyond the stability limits 

predicted in the scope of a linear structure [10,11,12]. For such 

systems, nonlinear friction has several effects: first, it leads to 

energy dissipation in the form of heat, which contributes to the 

aeroelastic stabilization of the row as the energy provided by the 

fluid to the structure is dissipated by friction. Secondly, it 

changes the free dynamics of the system, as it is responsible to a 

reduction of the free frequency of vibration 𝝎 and changes in its 

deformation shapes 𝚿. In the context of fluid structure 

interactions, such changes may modify the fluid dynamics, and 

thus the stability of the whole aeroelastic system. The impact of 

such changes may be even more important in the context of inlet 

fan acoustic interactions. 

 In this paper, we are interested in describing the effects of 

nonlinear friction at blade roots on the aeroelastic stability of a 

transonic fan. As the free vibration frequency and deformed 

shape of the blades may differ from their linear dynamics due to 

blade disk friction, an impact is expected on the energy transfer 

between the fluid and the structure. The aeroelastic stability is 

also expected to change as dissipation occurs at blade roots. In 

order to predict these changes, a new fluid structure coupling 

methodology using nonlinear complex modes [13,14] is 

proposed. This methodology is applied on an industrial case to 

demonstrate its ability to predict flutter induced LCO. 

 
2. DESCRIPTION OF NONCONSERVATIVE 

AUTONOMOUS SYSTEMS WITH NONLINEAR 
CONTACT INTERFACES 

2.1 Nonlinear Complex Modes 
 Nonlinear complex modes [13] are a tool allowing 

describing the free dynamics of a system having some nonlinear 

contact interfaces. Let us consider a structure discretized 

according to a finite element formalism. The equation that 

characterizes its dynamics is the equation (1):  
 

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 + 𝑓𝑛𝑙(𝑥, �̇�) = 0               (1) 

 
where 𝑀,𝐶 and 𝐾 are respectively the mass, damping and 

stiffness matrices of the structure. The displacement vector of the 

structure is represented by 𝑥 and 𝑓𝑛𝑙 is the vector of temporal 

nonlinear dry friction forces which may depend on the structure 

displacement and velocity. 

 By analogy with the free vibration of a damped linear 

structure, nonlinear complex modes are defined as a decaying 

multiharmonic expansion of the displacement. If we consider 𝑁ℎ 

harmonics of motion, it may be written as in equation (2):  
 

𝑥 = a0 + ∑ (𝑎𝑘 cos(𝑘𝜔𝑡) + 𝑏𝑘 sin(𝑘𝜔𝑡))
𝑁ℎ
𝑘=1 𝑒−𝑘𝛽𝑡 

   (2) 

 
As friction nonlinearities depend on vibration amplitudes of the 

structure, the harmonic coefficients vectors 𝑎𝑘 and 𝑏𝑘 depend on 

it as well. Likewise, both nonlinear decay coefficient 𝛽 and free 

frequency 𝜔 are unknowns which depend on the level of 

nonlinearities activated in the system. Hence, the more friction 

appears in the system, the greater is the evolution of these terms. 

 Under the assumption that there are two different time scales 

so that 𝜔 ≫ 𝛽 is verified, it is possible to express the differential 

equation (1) into an algebraic one by the means of a Galerkin 

procedure. The inner product of square integrable complex 

functions, expressed in equation (3), is used as a scalar product 

for the Galerkin procedure:  
 

∀𝑓, 𝑔 ∈ 𝐶ℂ (0;
2𝜋

𝜔
)
2
, 〈𝑓|𝑔〉 =

𝜔

𝜋
∫ 𝑓(𝑡)𝑔(𝑡)̅̅ ̅̅ ̅̅ 𝑑𝑡

2𝜋

0
       (3) 

 
whereas the Fourier basis functions are used as projection basis. 

Equation (1) is then expressed in the frequency domain as 

follow: 
 

𝑍(𝜔, 𝛽)𝑋 + 𝐹𝑛𝑙(𝑋, 𝜔, 𝛽) = 0                  (4) 

 
where the multiharmonic stiffness matrix 𝑍 is built from the 

structural matrices of equation (1). 

 In equation (4), the unknowns are 𝑋 (vector containing the 

harmonic terms 𝑎𝑘 and 𝑏𝑘), 𝜔 and 𝛽. As there are two more 

unknowns than equations, it is necessary to add two relations to 

make the problem well posed. Many constraint equations may be 

used, as they will allow finding solutions with different 

approaches by setting continuation techniques [15]. Sequential 

continuation may be the simplest way to perform the 

continuation, whereas arc-length continuation may be more 

robust, especially if bifurcations as turning points are expected. 

To solve equation (4), an initialization of the structure dynamics 

is mandatory. A convenient way to get this dynamics is to 

consider the asymptotical linear case where only small vibrations 

of the structure are reached. Thus, there is not enough energy in 

the system to trigger friction and the blade root interface stay 

stuck. A classical Newton-Raphson algorithm allows one to find 

the nonlinear dynamics of the system [15]. 

 

2.2 Aeroelastic stability with nonlinear contact 
interfaces 
 In this study, we are interested in adding an external 

contribution to the nonlinear complex mode formulation. It is 

expected to represents the aerodynamic forces coming from the 

free interaction between the fluid and the nonlinear dynamics of 

the structure. Hence, the updated nonlinear complex mode taking 

into account aerodynamic forces is sought in the form: 
 

𝑍(𝜔, 𝛽)𝑋 + 𝐹𝑛𝑙(𝑋, 𝜔, 𝛽) = 𝐹𝑎(𝑋, 𝜔, 𝛽)          (5) 
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where 𝐹𝑎 represents aerodynamic forces applied on the structure 

in the harmonic domain. As it is a free interaction force, it 

depends on the structure dynamics, hence its nonlinear 

movement 𝑋, its free frequency 𝜔 and possibly the nonlinear 

decay coefficient 𝛽. The main problem is now to get an 

expression for 𝐹𝑎. To do so, a partitioned coupling approach has 

been considered in this work, consisting in a strong coupling 

between a temporal CFD solver and a harmonic Computational 

Structural Mechanics (CSM) solver to compute nonlinear 

complex modes. 

 

2.3 Strong coupling strategy: frequency-time 
partitioned approach 
 A strong partitioned coupling procedure taking profit of the 

previously described numerical tool is proposed here, illustrated 

in FIGURE 1. It consists in a classical fixed point loop between 

the two solvers respectively computing the nonlinear dynamics 

of the structure and the one of the fluid. The algorithm is similar 

to the one used by Berthold et al.[12] as part of the extended 

energy method , apart from the fluid solver which is harmonic in 

their study while a time accurate solver is considered for the fluid 

in this work. Another major difference between the two studies 

is that nonlinear complex modes have been chosen to describe 

the structure dynamics in the present work instead of a modal 

representation in accordance with the Extended Periodic Motion 

Concept [12]. 

 

 

 
FIGURE 1: STRONG COUPLING PARTITIONED PROCEDURE 

 

First, the nonlinear dynamics of the structure is computed 

by the use of nonlinear complex modes while the structure is 

supposed to be in vacuum condition. It is thus a classical 

computation of nonlinear complex mode, as already described in 

other studies [13,14]. As the nonlinear dynamics of the structure 

is energy dependent, there exists a nonlinear deformed shape 𝑋 

and free vibration frequency 𝜔 for each energy levels (i.e each 

vibration amplitude). Those quantities change continuously with 

respect to the energy level in the system.  

 Then, the nonlinear deformed shape 𝑋 as well as the 

free frequency 𝜔 are sampled for a chosen set of energy levels 

leading to a discretization of the nonlinear complex mode with 

respect to the energy level. Each of these dynamics (X and 𝜔) is 

imposed to the structure in a time accurate aeroelastic 

computation, which gives the corresponding aerodynamic forces 

applied on the structure. The decay coefficient 𝛽 is not taken into 

account in this computations as 𝜔 ≫ 𝛽. At each period of 

vibration of the blade, a Fourier analysis is performed on the 

computed aerodynamic forces to get the corresponding harmonic 

aerodynamic forces coefficients 𝐹𝑎. These terms are associated 

with the free nonlinear movement of the blades: they represent 

the free interaction forces between the fluid and the structure. 

When a sufficiently high number of period has been reached, one 

can expect to observe a convergence of the harmonic coefficients 

𝐹𝑎. The converged harmonic forces coefficients may then be 

extracted and used to update the previous nonlinear complex 

mode in vacuum. The sampled values of 𝐹𝑎 are interpolated 

against the energy levels so they may change continuously 

during the nonlinear complex mode update described by 

equation (5). It is particularly convenient when a sequential 

continuation is employed, as we may set the force-energy 

dependency law so that 𝐹𝑎 is constant for a given value of a 

control degree of freedom (thus the jacobian remains the same 

because 𝐹𝑎 is constant). In terms of equations, this statement can 

be written by fixing the amplitude and phase of a certain degree 

of freedom of a physical node 𝑛𝑜𝑏𝑠: it is thus assumed that there 

exists only one energy level for a given amplitude of vibration. 

For instance, if we choose a null phase for the corresponding 

degree of freedom, the sequential continuation takes the form of 

equation (6) where 𝜆 stands for a continuation parameter which 

sets the amplitude of motion.  
 

{

𝑍(𝜔, 𝛽)𝑋 + 𝐹𝑛𝑙(𝑋, 𝜔, 𝛽) = 𝐹𝑎(𝜆)

𝑎𝑘,𝑛𝑜𝑏𝑠
= 𝜆

𝑏𝑘,𝑛𝑜𝑏𝑠
= 0

             (6) 

 

 When using a sequential continuation in our partitioned 

approach, it is then considered that 𝐹𝑎 is constant for a chosen 

value of the continuation parameter 𝜆. It is thus not necessary to 

derive the jacobian of 𝐹𝑎 against the structure nonlinear 

dynamics 𝑋 and 𝜔 since it is constant for a given value of 𝜆. 

However, it should be kept in mind that sequential continuation 

may be limited in case of turning point bifurcations. In such 

cases, other continuation techniques such as arc length 

continuation may allow performing the computation without 

trouble, but it would need a derivation of the jacobian of 𝐹𝑎 
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against 𝑋 and 𝜔 which is not trivial. To the knowledge of the 

authors, such bifurcations well known for geometrical 

nonlinearities (Duffing oscillator) does not occur when it comes 

to dry friction nonlinearities, which led to the choice of 

sequential continuation. 

 Once the updated nonlinear dynamics of the structure has 

been computed, it is possible to repeat this procedure until 

convergence of the whole nonlinear fluid structure system is 

reached. In the end, the nonlinear dynamics of the structure is 

obtained while taking into account free interaction forces 

between the fluid and the structure. Careful attention must be 

paid to the conservation of the phase condition between 

aeroelastic and structural computations: the Fourier analysis of 

aerodynamic forces must be carried out with the same phase 

movement as the one supplied by the structural computation. 

Otherwise, the phase error between the movement and 

aerodynamic forces will introduce inconsistency between the 

fluid and the structure, leading to the algorithm failure. It should 

also be mentioned at this point that the method is meaningful 

only if the harmonic aerodynamic forces coefficients 𝐹𝑎 are 

converged, meaning that a sufficiently high number of period of 

vibration are required for all aeroelastic computations. However, 

there is no rule to determine a priori the number of period of 

vibration to use to ensure the convergence of the coefficients 𝐹𝑎, 

as it may depend on the considered bladed row, operating point 

or deformation shape. 

 
3. CASE MODELLING 
3.1 Flow solver 

The fluid dynamics is characterized by 3D compressible 

Unsteady Reynolds Averaged Navier-Stokes (URANS) 

equations, written as:  
 

𝜕𝑊

𝜕𝑡
+ 𝑑𝑖𝑣⃗⃗⃗⃗⃗⃗ . ℱ(𝑊) = 0                         (7) 

 
where 𝑊 is the vector of conservative variables (𝜌 𝜌𝑈 𝜌𝐸)𝑇 

and ℱ(𝑊) the flux vector written as :  
 

ℱ(𝑊) = (

𝜌𝑈
𝜌𝑈⨂𝑈 + 𝑃. 𝐼 − τ

𝜌𝐸𝑈 + 𝑃.𝑈 − 𝜏. 𝑈 + 𝑞
)                 (8) 

 

In equation (8), 𝑃 stands for static pressure, 𝜏 for the viscous 

stress tensor and 𝑞 for the heat flux. We consider the fluid being 

a perfect gas and its viscosity evolving according to the 

Sutherland law. The equations are solved using the finite volume 

solver elsA developed at ONERA [16]. Turbulence is modelled 

using the two equations k-l of Smith model [17], while the Roe 

upwind flux-difference splitting scheme [18] is used with the 

Van Albada limiter [19] for the fluxes evaluation. 

 A state of the art fan made of 18 blades provided by Safran 

Aircraft Engines has been used for this study. An aerodynamic 

mesh of the whole annulus assembly has been built and is 

illustrated in FIGURE 2. It is made from two meshes, one for the 

inlet and the other for the fan, connected to each other upstream 

of the fan in the intake (red line on FIGURE 2). As the two 

meshes do not match both radially and azimuthally at the 

interface, an interpolation of the field is made at each timestep 

of unsteady computation. The fan mesh does not rotate in the 

simulations: fan rotation is taken into account by adding source 

terms in the Navier-Stokes equations in the relative frame linked 

to the fan mesh. 

 

 

 

FIGURE 2: SLICE OF THE MESH USED IN ELSA SIMULATIONS 

 

 The whole mesh has about 11 million cells, with 3 million 

cells for the intake mesh and 410000 cells per blade passage 

downstream of the interface. FIGURE 3 illustrates the blade 

mesh and its tip. As we do not want the boundary conditions to 

have spurious interactions with possible acoustic waves, a mesh 

coarsening has been applied outside of the inlet and downstream 

of the fan with a 1.2 expansion ratio in the axial direction for 

primary and secondary flows and in all directions outside of the 

engine. The external domain is thus 30 times greater than the fan 

diameter.  

 We are interested in studying aeroelastic stability of the fan 

at 75% part speed, as it has been seen during experiments that 

flutter occurred at this speed range near surge. Adiabatic rigid 

walls are considered for the structure while the fluid being 

viscous. Static pressure distribution is imposed considering 

radial equilibrium equations of momentum on primary and 

secondary outlets, which allows selecting the operating point on 

the 75% part speed of the fan characteristic. A complete set of 

conservative variables are imposed on farfield boundaries, 

allowing to obtain an axial Mach number of 0.1 and standard sea 
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level conditions (total temperature of 288.15 K and total pressure 

of 101325 Pa). Unsteady computations are initialized with 

results obtained from steady computations, and conducted using 

Dual Time Stepping scheme for the integration in time.  

 

 

 
FIGURE 3: MESH DETAILS ON THE BLADE SURFACE AND 

ITS TIP (ELSA SIMULATIONS) 

 

3.2 Aeroelastic model 
In this study, aeroelastic computations are done with respect 

to the Arbitrary Lagrangian Eulerian (ALE) [20] formulation of 

Navier-Stokes equations while prescribing a predetermined 

movement to the fan blades.  

In classical approaches, a linearization of aerodynamic 

forces is assumed, allowing to study separately the aeroelastic 

stability of each structural mode. The structure is deformed 

according to the studied mode shape at its eigenfrequency, 

assuming that the aeroelastic system is weakly coupled and that 

the structure dynamics is not changed by the fluid (except its 

stability). This method allows building stiffness and damping 

aerodynamic matrices using the coefficient of influence method 

[11,21,22]. It has been used in this study in order to predict the 

stability limit of the fan in the scope of a linear structure. 

Especially, the first bending mode with 2 and 3 diameters 

(respectively called 1F2D and 1F3D when considering cyclic 

symmetry hypothesis) has been studied, as the former has been 

detected as unstable at 75% part speed near surge while the latter 

did not. 

When the nonlinear dynamics of the structure will be 

considered using nonlinear complex modes in the scope of the 

frequency-time partitioned approach, a multiharmonic 

movement will be imposed to the blade according to the level of 

amplitude reached by the structure. 

Whether the linear or nonlinear dynamics of the structure is 

employed in the aeroelastic computations, the number of 

timesteps has been chosen so that 50 vibration periods are 

achieved and the steady state is reached for each computation. 

The convergence is checked by looking at the evolution of the 

generalized aerodynamic forces (resulting from the projection of 

aerodynamic forces on the modal deflection shapes Ψ) in terms 

of amplitude and phase during the computation. 

 

3.3 Structural nonlinear model 
A finite element model of the fan blade disk sector has been 

used to build the structural nonlinear model. It involves two 

distinct parts, the blade on one hand and the disk on the other, 

with a coincident mesh on the contact interfaces at blade roots. 

FIGURE 4 illustrates this model.  

 

 

  
FIGURE 4: FINITE ELEMENT MODEL USED TO BUILD THE 

NONLINEAR STRUCTURAL MODEL 

 

As the whole blade disk finite element model depicted in 

FIGURE 4 has a high number of degrees of freedom, reduced 

order models (ROM) using Craig Bampton (CB) substructuring 

method [23] has been built for both blade and disk model to 

perform faster computations. The CB substructuring method 

consists in expressing the motion in a combination of normal 

modes with fixed interfaces Ψ0 and static constraint modes Ψ𝐶 , 

such as in equation (9).  
 

𝑥 = Φ𝐶𝐵𝑥𝐶𝐵     with     Φ𝐶𝐵 = (
𝐼 0

Ψ𝐶 Ψ0
)         (9) 

 

15 and 30 normal modes with fixed interfaces have 

respectively been kept for the disk and blade ROMs, while 180 

physical nodes (i.e static constrained modes) have been kept at 

blade root contact interfaces for both models. 125 additional 

physical nodes have been kept on the blade skin so that the blade 

movement may be extracted without using the CB matrix Φ𝐶𝐵. 

A final reduction is applied on the model allowing one to solve 

the whole nonlinear blade disk dynamics by considering only the 

relative movement of the substructures on the contact interfaces 

[24]. Hence, the number of kept linear d.o.f is not relevant in the 

computational cost of the method as the size of the system to be 
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solved is determined by the number of nonlinear d.o.f (i.e the 

number of kept nodes at blade roots). The influence of the 

number of retained modes in the CB ROMs on the coupling 

strategy has been investigated. However, it is beyond the scope 

of this work [25] and will be addressed in more details in a 

further paper.  

The ROMs created with the help of CB reduction are used 

to solve equations (4) and (5). An analysis upon the convergence 

of the nonlinear complex mode in vacuum against the number of 

harmonics 𝑁ℎ revealed that 3 harmonics is enough to get a good 

representation of nonlinear friction forces and thus of the 

nonlinear dynamics of the structure. Hence, all the results 

reported in this work regarding nonlinear complex modes have 

been obtained considering 3 harmonics of motion. Equation (4) 

is solved to get the structure dynamics in vacuum while equation 

(5) allows taking into account aerodynamic forces in the 

computation of the blade nonlinear dynamics. Nonlinear forces 

are applied on the kept physical nodes at blade roots when 

creating the ROM. They are computed thanks to the Dynamic 

Lagrangian Frequency Time method (DLFT) [24] which allows 

applying exact Coulomb friction laws, without regularization. A 

natural structural damping is considered on each linear mode of 

each substructures in the form of a diagonal matrix in the modal 

subspace. The same damping value of 0.05% is considered for 

each linear mode. 

 

4. NUMERICAL RESULTS 
4.1 Steady computations 
 Steady computations of the transonic fan have been 

performed on the 75% part speed characteristic. Normalized 

results are displayed in FIGURE 5, and may be compared to 

experimental data. More precisely, the experimental 

characteristics are the ones obtained for 70%, 74.8% and 80% 

part speed.  

 

 

 
FIGURE 5: NORMALIZED CHARACTERISTICS OF THE 

STUDIED FAN 

 

 A good agreement is observed between steady numerical 

results and experimental data near stall line. Discrepancies 

appear between them for higher massflow rates. This may be due 

to the boundary conditions, which are better suited to 

representing near stall operating conditions. As we are more 

interested in working points near stall, we consider that we are 

sufficiently close to measured data to pursue the study with this 

model.  

 For unsteady computations, we are interested in describing 

the aeroelastic stability of operating points near stall. TABLE 1 

sums up which massflow rates were studied on the 75% part 

speed. 

 

Name dp19 dp20 dp21 dp22 dp23 

�̇�𝑎𝑑𝑖𝑚 0.894 0.889 0.884 0.878 0.873 

TABLE 1: OPERATING POINTS ON THE 75% PART SPEED FOR 

AEROELASTIC COMPUTATIONS 
 

The flow topology on the blade pressure and suction sides 

for the nearest operating point to stall (named dp23 according to 

TABLE 1), is depicted in FIGURE 6. A colormap of the 

isentropic Mach number onto the blade may be seen, 

superimposed with the surface streamlines. 

 

 

 
FIGURE 6: ISENTROPIC MACH NUMBER AND SURFACE 

STREAMLINES ON THE BLADE SUCTION AND PRESSURE 

SIDES ON DP23 OPERATING POINT 

 

Given by equation (10), the isentropic Mach number 

represents the Mach number we would have on the blade skin 

without any loss (i.e for an isentropic flow without viscous 

friction on solid surfaces). 𝑃𝑡
∞ is the total pressure in the farfield, 

𝑃 is the static pressure on blade skin and 𝛾 is the specific heat 

ratio. 
 

Machis = √((
𝑃𝑡

∞

𝑃
)

𝛾−1

𝛾
− 1) .

2

𝛾−1
              (10) 

 

The isentropic Mach number in FIGURE 6 shows a strong shock 

on the blade suction side, close to its leading edge (indicated by 

the bold black curve). The shock becomes stronger when 
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approaching the blade tip, as a deviation of the surface 

streamlines may be observed around 90% blade height. 

However, no boundary layer separation has been noticed. Still, 

we will see in the next subsection that the shock plays a major 

role in the aeroelastic stability of the transonic fan, as it is 

accompanied by high energy transfer between the fluid and the 

structure. 

 

4.2 Aeroelastic stability in the scope of a linear 
structure 

 As mentioned earlier, the aeroelastic stability of both 

1F2D and 1F3D structural linear modes have been studied on the 

75% part speed. For a given eigen mode vibrating at amplitude 

𝑞0, the aeroelastic stability of the mode may be described by 

equation (11).  
 

𝜉𝑎𝑒𝑟𝑜 = −
𝑊

2𝜋𝜇𝜔0
2|𝑞0|2

                      (11) 

 

 𝜉𝑎𝑒𝑟𝑜 represents the aerodynamic damping, 𝜇 the 

generalized mass and 𝜔0 the eigen frequency of the eigen mode. 

𝑊 stands for the work of aerodynamic forces on the blades for a 

vibration of the considered mode at the amplitude 𝑞0. The 

aerodynamic damping associated with these modes is illustrated 

in FIGURE 7, a negative value designating unstable operating 

conditions (i.e the fluid gives energy to the structure). 

 

 

 
FIGURE 7: AEROELASTIC STABILITY OF 1F2D AND 1F3D 

MODES ON THE 75% PART SPEED 

 

 As expected, FIGURE 7 shows that an unstable behavior of 

the aeroelastic system is expected while approaching the stall 

line for the 1F2D mode. Especially, dp20 is the least stable 

operating point. Hence, even if it is not the nearest operating 

point to stall, we will focus on this operating point for the rest of 

the study as it is the worst case scenario from a stability point of 

view on the considered 75% part speed. The 1F3D mode on the 

other hand remains always stable. FIGURE 8 illustrates the 

normalized aerodynamic work per unit of surface on the blade 

pressure and suction sides for the 1F2D mode on dp20 operating 

point. As mentioned in the previous subsection, one may observe 

that the most destabilizing area (depicted in red in FIGURE 8) is 

located around the suction side leading edge shock. The 

oscillation of the shock due to the blade vibration as well as an 

appropriate inter blade phase angle are responsible of the energy 

transfer between the fluid and the structure. However, they are 

not the only mechanisms inducing flutter at 75% part speed for 

studied transonic fan. 

 

 

 
FIGURE 8: AERODYNAMIC WORK ON DP20 OPERATING 

POINT FOR THE 1F2D MODE 

 

A previous study from the authors [26] showed that acoustic 

interactions is expected between the fan and the engine intake for 

the 1F2D mode at 75% part speed near stall. Even if the acoustic 

description of the case is not the subject of this study and will 

not be addressed here, we are nevertheless insured that acoustic 

interactions occur on operating point dp20 for the 1F2D mode 

and have an impact on the fan stability. Moreover, inlet acoustic 

propagation does not occur for an isolated operating points, but 

on the whole compressor map as soon as the acoustic source 

frequency is above the cut-on frequency [7]. In our case, all the 

operating points around dp20 operating point are close enough 

to each other in terms of characteristics (see FIGURE 5) to 

approximate that the cut-on frequencies of each points are the 

same. For equivalent working conditions and cut-on frequencies, 

we thus expect that inlet fan acoustic interactions have 

approximately the same impact on aeroelastic stability for those 

operating points. This approximation seems to be confirmed by 

FIGURE 7 where one can see similar stability results in a 

neighborhood of dp20 operating point. Since dp20 operating is 

the least stable according to FIGURE 7 and since acoustic 

interactions are expected to produce the same effects on all 

operating points around dp20, this operating point will be 

considered to apply the coupling strategy with the nonlinear 

structure in order to find flutter induced LCO. Especially, we will 

see that even the least stable operating point can be stabilized 

when taking into account nonlinear friction at blade roots.  
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4.5 Strong coupling procedure 
 The strong coupling procedure has been applied using the 

ROM on dp20 operating point. To do so, five samples of energy 

level (multiharmonic movement and free frequency) have been 

extracted from the nonlinear complex mode in vacuum, and used 

in aeroelastic simulations to evaluate aerodynamic forces. At this 

point, it should be mentioned that it was not possible to deform 

the aerodynamic grid for the highest amplitudes as negative cells 

kept occurring at blade tip shroud gap. Hence, aeroelastic 

computations were made at lower amplitude values, while 

resulting aerodynamic forces where brought to the 

corresponding high amplitude levels using a linearity hypothesis. 

It does not change the generality of the strong coupling 

procedure, as it has only been done to bypass the deformation 

algorithm limitations. The results were used to create a 

continuous law of aerodynamic forces against the amplitude of 

movement at tip leading edge on a node called 𝑛𝑜𝑏𝑠, and compute 

a new nonlinear complex mode taking into account aerodynamic 

forces. Several iterations of the strong coupling procedure have 

been done to assess the so-called aeroelastic nonlinear complex 

mode convergence. Each aeroelastic computation was run on 

112 cores, for a total wall clock time of 7 days per computation. 

Results of the strong coupling procedure are shown in FIGURE 

9 and may be compared to the ones obtained in vacuum. In this 

figure are plotted the evolution of free frequency and nonlinear 

damping defined as 𝛽/𝜔 against a normalized value of 𝑛𝑜𝑏𝑠 

amplitude. The normalization factor comes from an 

experimentally observed LCO on the studied working 

conditions: a normalized amplitude of 1 represents the mean 

stabilized LCO amplitude value observed during experiment. 

However, the comparison of numerical results with experimental 

data is beyond the scope of this study and will be addressed in 

more details in another paper. Especially, the chosen values of 

friction coefficient or structural natural damping may have an 

impact on the predicted LCO amplitude.  

 First, let us discuss about the vacuum case depicted by the 

darker blue curve in FIGURE 9. This case represents the 

classical application of nonlinear complex modes using equation 

(4). It allows one to visualize how the system dynamics changes 

with respect to the system energy level (i.e its vibration 

amplitude) when no aerodynamic forces are taken into account. 

For the lowest amplitudes, the system is asymptotically linear as 

the vibration amplitude is not high enough to trigger friction. In 

such conditions, the normalized free frequency is approximately 

equal to the eigen frequency of the corresponding eigen mode. It 

is not exactly 1 due to the CB reduction, which leads to a small 

frequency error in comparison to the Full Order Model (FOM). 

This error is however lower that 0.5% of the FOM free 

frequency, which will not alter the acoustic inlet reflection 

properties and hence which is acceptable. Concerning the 

nonlinear damping for the lowest amplitude values, it 

approximately equals the linear natural damping of the 

substructures for stuck conditions, hence resulting in a positive 

value around 0.05% for the asymptotical linear mode. 

 When considering results of the strong coupling procedure 

(depicted by the other curves in FIGURE 9), quick changes are 

observed on the nonlinear dynamics of the structure from a null 

amplitude. This numerical artifact has no physical meaning and 

exists due to the interpolation of aerodynamic forces: since no 

evaluation of these forces has been provided for a null amplitude, 

the system is equivalent to the structure in vacuum. This explains 

why all the nonlinear complex modes start from the same point 

when the amplitude equals 0. As soon as the amplitude increases, 

the interpolation law gives non zero aerodynamic forces, which 

have an impact on the nonlinear complex mode computation: 

aerodynamic stiffness and damping take place in the system, thus 

changing the free frequency and the overall nonlinear damping. 

When using the strong coupling procedure, it then should be kept 

in mind that true physical meaning is only obtained beyond the 

first interpolation point (from an amplitude of 0.6 in FIGURE 9 

for instance).  

 

 

 
FIGURE 9: APPLICATION OF THE STRONG COUPLING 

PROCEDURE ON DP20 OPERATING POINT. : EXTRACTION 

POINTS FROM THE NONLINEAR DYNAMICS IN VACUUM 
 

 In spite of some local discrepancies between the curves, 

especially for small amplitudes whether the coupled or 

uncoupled cases are considered, each one of them have the same 

trends with respect to the vibration amplitude. Especially, one 

may observe the system being softer as the free frequency 

decreases with increasing values of vibration amplitude. This is 

due to the activation of friction at high amplitude values, which 

causes the liberation of some d.o.f at blade roots leading to a less 

stiff blade disk system. This behavior is typical of mechanical 

system with friction [27]. The same observations can be made 

regarding the nonlinear damping. Some discrepancies between 

the coupled and uncoupled cases are visible, especially for small 

amplitude values, but the global trends remain the same. With 

increasing values of vibration amplitude comes increasing values 

of nonlinear damping as dissipation occurs by dry friction at 

blade roots. A negative value of nonlinear damping means that 

the system is self-excited (i.e unstable considering equation (2)) 
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while a positive value means the system is damped (i.e stable). 

Hence, the more the system vibrates, the more relative 

displacements appear at blade roots and thus the more energy is 

dissipated by friction, leading to a more stable system. 

 The case in vacuum is always stable, as the nonlinear 

damping is positive from small amplitude of vibrations. 

However, the coupled cases are unstable (resp. stable) for 

normalized amplitude values below (resp. above) 1.2 as the 

nonlinear damping is negative (resp. positive) in this range of 

amplitude. The zero damping amplitude (around a normalized 

value of 1.2) reveals the presence of a stable LCO on the 

considered dp20 operating point, as lower or higher amplitude 

values will be respectively accompanied with self-excited or 

damped dynamics. 

 

 
FIGURE 10: MODAL ASSURANCE CRITERION APPLICATION 

ON THE HARMONICS OF DISPLACEMENT OF PHYSICAL D.O.F 

ON THE LCO 

FIGURE 9 also gives some insights about the convergence 

of the strong coupling procedure. The depicted number of 

iterations represents how many times the aerodynamic response 

has been evaluated to update the nonlinear complex mode (i.e 

how many time the CFD box has been gone through in FIGURE 

1). It can be seen from an iteration to another that all the 

aeroelastic nonlinear complex modes are superimposed. When 

looking at the LCO especially, which is the point in which we 

are the most interested, it is predicted at the same amplitude of 

vibration with the same free frequency, regardless of the number 

of strong coupling procedure iteration. Thus, the aeroelastic 

nonlinear complex mode seems to be converged since the first 

strong coupling iteration. FIGURE 10 allows to get more 

information about the procedure convergence when it comes to 

determine the LCO. It represents the Modal Assurance Criterion 

(MAC) computed between the harmonics of displacement of the 

predicted LCO on operating point dp20 from a strong coupling 

iteration to another. The MAC is computed as in equation (12). 
 

MAC(Φ1, Φ2) =
(Φ1

𝐻Φ2)
2

(Φ1
𝐻Φ1)(Φ2

𝐻Φ2)
                 (12) 

 

 FIGURE 10 shows that independently of the iteration 

number, the second harmonic presents similarities in its 

deformation shape with both harmonics 1 and 3. On the other 

hand, harmonic 1 and harmonic 3 do not seem to have similar 

shapes. When looking at the MAC between iterations, one may 

notice that the displacement topologies remain the same as each 

harmonic k has a MAC above 0.99 from an iteration i to an 

iteration j. Some discrepancies may be observed from the MAC 

values between different harmonics from an iteration to another, 

especially between harmonics 1 and 2, and harmonics 2 and 3; 

but it remains of second order. From a design point of view, the 

strong coupling procedure seems to be converged since the first 

iteration as the LCO remains the same in terms of vibration 

amplitude, deflection shape and free frequency at first order. 

 

 
FIGURE 11: ENERGY DISSIPATED (IN JOULE) AT BLADE 

ROOTS DURING A PERIOD OF VIBRATION OF THE LCO 

REACHED ON OPERATING POINT DP20 
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The topology of dissipated energy at flattened blade roots on the 

LCO is displayed in FIGURE 11. The height of each bars as well 

as the colormap represents the amount of local dissipated energy 

at blade roots on the LCO. The white zone in the middle 

represents the blade location. It appears that dissipation topology 

differs whether we consider the contact interface on the suction 

side (SS) or the pressure side (PS). On the suction side, 

dissipation occurs closer to the leading edge (LE) than the 

trailing edge (TE). This behavior was expected as the blade has 

not particular symmetry properties. Dissipation occurs mainly on 

the top of contact interfaces where an opening of the dovetail 

joints is expected due to centrifugal forces: as normal contact 

forces are consequently supposed to be lower than on the other 

part of the interfaces, saturation of friction forces is reached 

sooner, giving rise to dissipation. 

 

              
       Harm. 1                  Harm. 2                 Harm. 3 
FIGURE 12: MODULE OF HARMONICS DISPLACEMENT ON 

THE CONVERGED LCO FOR DP20 OPERATING POINT 

 

Lastly, FIGURE 12 illustrates the blade motion on the predicted 

LCO obtained from the physical degree of freedom kept on the 

blade skin when creating the ROMs. It can be seen that for the 

first harmonic, the blade motion keeps its bending topology. It is 

interesting to see that a torsion deflection shape occur on the 

third harmonic. 

 

5. CONCLUSION 
 In this study, a new methodology has been developed for 

predicting fan blade flutter induced LCOs by taking into account 

nonlinear friction forces at the blade roots. This methodology 

allows for an evaluation of the fluid behavior based on the 

nonlinear dynamics of the structure (such as deformation shape 

and movement frequency), ensuring that the entire nonlinear 

aeroelastic system is consistent once convergence is achieved. 

As a result, it is possible to analyze the dynamics of the 

aeroelastic system beyond the stability limits predicted for a 

linear structure. Specifically, this methodology enables us to 

determine whether the system vibrations will increase 

exponentially or if stable periodic oscillations (LCO) will occur. 

 Additionally, dry friction nonlinearities may affect the 

aeroelastic stability by influencing the inlet fan's acoustic 

interactions. Since the free vibration frequency can be changed 

by dry friction, there may be an impact on the open duct's 

acoustic reflection, which largely depends on the frequency of 

the acoustic source. The coupling strategy presented in this study 

accounts for the influence of frequency shifts on the acoustic 

inlet fan interaction. In a future study, we will examine this effect 

in more detail. 

 Lastly, we will compare the methodology outlined in this 

paper to a previous methodology described by the authors [26] 

and assess its validity using experimental data. 
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