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Abstract

Black-box optimization methods like Bayesian optimization are often em-
ployed in cases where the underlying objective functions and their gradient
are complex, expensive to evaluate, or unavailable in closed form, making it
difficult or impossible to use traditional optimization techniques. Fixed-wing
drone design problems often face this kind of situations. Moreover in the lit-
erature multi-fidelity strategies allow to consistently reduce the optimization
cost for mono-objective problems. The purpose of this paper is to propose
a multi-fidelity Bayesian optimization method that suits to multi-objective
problem solving. In this approach, low-fidelity and high-fidelity objective
functions are used to build co-Kriging surrogate models which are then opti-
mized using a Bayesian framework. By combining multiple fidelity levels and
objectives, this approach efficiently explores the solution space and identi-
fies the set of Parcto-optimal solutions. First, four analytical problems were
solved to assess the methodology. The approach was then used to solve a
more realistic problem involving the design of a fixed-wing drone for a spe-
cific mission. Compared to the mono-fidelity strategy, the multi-fidelity one
significantly improved optimization performance. On the drone test case,
using a fixed budget, it allows to divide the inverted generational distance
metric by 6.87 on average.

Keywords: Bayesian optimization, Multi-fidelity, Multi-objective,
Multi-disciplinary optimization, Kriging, Fixed-wing drone
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1. Introduction

Fixed-wing drones, are a significant advancement in the field of drone
technology. Unlike their rotary-wing counterparts, they have a wing struc-
ture similar to traditional airplanes, enabling them to achieve sustained and
efficient flight. They are characterized by their improved stability, longer
flight endurance, and increased payload capacity. Then, fixed-wing drones
have revolutionized the way we approach tasks that require extensive cov-
erage and endurance in the aerial domain. Thanks to their characteristics,
fixed-wing aircraft drones have become increasingly popular in recent years
and have found versatile applications in various industries such as military
[1, 2] for target tracking, agriculture [3, 4] for crop imaging, earth observation
[5] (bathymetry, geodesy, ...), biodiversity monitoring [6] (species sampling)
or infrastructure monitoring [7, 8] of high-voltage lines. As the demand for
drone technology continues to grow, there is a need to ensure that the design,
performance, and operation of these vehicles are optimized for their intended
applications. Multi-disciplinary design optimization (MDO) [9] is a tech-
nique that combines multiple engineering disciplines to improve the overall
performance of a system by solving the complex coupling between the dis-
ciplines. Elucidating the coupling between the disciplines is called solving a
multi-disciplinary design analysis (MDA). A multi-disciplinary approach is
necessary to ensure that the disciplines are considered and optimized in a
coordinated manner. In the context of drone technology, leveraging MDO
allows to create fixed-wing drones that are optimized for their purposeful
applications, providing improved performance, efficiency, and safety by con-
sidering disciplines such as aerodynamic, structure, propulsion, intended mis-
sion, operational safety,...

In fixed-wing drone design like in many real-world applications, there
are multiple objectives that need to be considered simultaneously, and these
objectives may be conflicting. For example, increasing the manufacturing
cost of a drone may be necessary to achieve greater efficiency; or the increase
of drone’s performance for some applications may reduce the performance for
other applications. In this work we will consider constrained multi-objective
problems such as:
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where d is the number of dimensions, f gathers the ny,; multiple objective
functions f; to f,,,;, e represents equality constraints and g; inequality con-
straints. These problems are difficult to solve, especially when the functions
are expensive-to-evaluate black-boxes (complex models, wind tunnel experi-
ments) and have many local optima which can be the case in the drone design
context. Bayesian optimization [10] is a powerful approach in this context.
In [11] the authors used a Bayesian optimization framework to solve multi-
disciplinary, single-fidelity and single-objective optimization problems for air-
craft design. Next, Bayesian optimization approach also showed good results
solving multi-objective problems [12, 13]. It is likely that using a multi-
fidelity Bayesian optimization approach regarding multi-objective problems
will further reduce the computational cost of the overall optimization, as is
the case for single-objective problems [14, 15, 16, 17, 18, 19]. Some works
started to investigate the interest of using multi-fidelity Bayesian optimiza-
tion to solve multi-objective problems [20, 21, 22, 23, 24, 25, 26, 27]. In [22]
the fidelity level is considered as a continuous variable of the problem and
is applied only on unconstrained problems. The method from [27] is also
applied on unconstrained problems. In [26], the authors proposed two multi-
fidelity and multi-objective criteria, one aggregating the variable fidelity ex-
pected improvement matrix through a simplified hypervolume based aggre-
gation scheme and the other using a modified hypervolume definition. The
objective of this study is to build upon these approaches and to apply the
proposed method to a constrained multi-disciplinary fixed-wing drone design
optimization problem. First, Section 2 recalls multi-fidelity Kriging and a
mono-objective multi-fidelity Bayesian optimization method called MFSEGO
(Multi-Fidelity Super Efficient Global Optimization). Next, in Section 3 we
start by describing a multi-objective, mono-fidelity Bayesian optimization
method named MO-SEGO (Multi-Objective Super Efficient Global Opti-
mization). Then we propose an extension of this method to multi-fidelity &
multi-objective Bayesian optimization method (MFMO-SEGO). Afterwards,
Section 4 defines the analytical test cases, their experimental setup and asso-
ciated results. Parallely, Section 5 proposes a test case for a fixed-wing drone
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in the specific category, with associated experimental setup and results. The
specific category covers moderate-risk operations. Finally, Section 6 con-
cludes and discusses these results.

2. A review of existing multi-fidelity Kriging for efficient global
optimization

In this section we present multi-fidelity Kriging and the Multi-Fidelity
Super Efficient Global Optimization (MFSEGO) method. This algorithm is
an elementary building block for the methodology proposed in the following.
The method is presented in such a way that the reader is assumed to be
familiar with the Gaussian process (GP) interpolation technique, also known
as Kriging models [28, 29, 30], as well as with classical Bayesian single-fidelity
optimization methods based on Kriging, such as the Efficient Global Opti-
mization (EGO) algorithm [31] for unconstrained problems and the Super
Efficient Global Optimization (SEGO) algorithm [32, 33, 34] for constrained
problems.

2.1. Multi-Fidelity Kriging

The Kriging model was extended to handle multivariate functions through
the co-Kriging technique, which was first developed in geostatistics by [35,
36]. Later, [37] proposed a method of simplifying multi-fidelity problems by
assuming relationships between different levels of accuracy. In this section,
we focus on Le Gratiet’s recursive formulation [38, 39], which we used to con-
struct multi-fidelity Kriging models. This strategy ensures better prediction
capabilities than its predecessors by considering the low-fidelity functions in
the Kriging regression term. Suppose we have L + 1 levels of fidelity to ap-
proach the f function, labeled fy, through f; from lowest to highest, and
L + 1 corresponding design of experiments (DoE), one for each fidelity level
denoted (D;)i—o...r, with D; = ((zo, fi(0)), -y (x5, fi(25)), oy (2N, filzn,))T,
N; being the number of points in D;. The same philosophy can also be ap-
plied to the constraint functions g; and g.. We assume that the DoEs are
nested, meaning that every point evaluated at a higher fidelity level is also
evaluated at all the lower fidelity levels: D7 C D7_, € ... C Df where
D? = (xg, ..., xj, ..., xy,)T corresponds to the inputs part of D;. This nesting
property helps to express the surrogate model variance in a closed form. To
link the different fidelity levels, we use an assumption first introduced by [37]
for the bi-fidelity case.



firi(@) = pufi(x) + 61 (w) such that  fy Loy VI=0,.,L—1 (2)

where ;41 (x) is a discrepancy function that captures the difference between
the [ + 1-th and the [-th fidelity levels while p; is a scaling factor applied to
Ji-

Le Gratiet [38, 39] suggested including the lower fidelity function in the set of
basis functions (h;);=1.. , used in the universal Kriging regression term. Then
each fidelity level regression term (i.e: mean a priori) is written as follows:

e = ¥ (@) +fodita) M=0nZ=1
i=1,...,p

The parameters (3, serve as estimates for p;, while (/3;);=1., represents a
group of unspecified multiplier coefficients. To determine these coefficients,
likelihood maximization [40, 41] is employed. Assuming that a nested DoE
structure was implemented, the surrogate model’s fidelity levels are deemed
independent. This allows to derive a recursive formulation [38, 39] for the
mean (fi;41) and variance (67,,) of each GP surrogate model at a given fidelity

level:

fir = pufy + fls
V=0, ... L—1 f i P 4
{ o = t0E+ 0, W

In this case, we treat p; as a constant even though it may vary based on =,
ie., pr: x> p(x) [19]. The learning process consists in training each fidelity
level separately which allows for parallelization. Since the variances can be
expressed using a closed form expression, the contribution of each fidelity
level to the overall variance of the multi-fidelity surrogate model can be
found. This is one of the Le Gratiet’s recursive formulation most significant
benefit. Denoting acont(l,x) as the variance contribution of the I fidelity
level at point z, and 050 as og, we have:

Vi=0,..L-1 o,(l,x)=0}( H p; and o2,,(L,x) =0} (x)

(5)
This expression of the variance contribution will be useful to the fidelity
level choice at each iteration of the Bayesian optimization process. This
multi-fidelity Kriging (MFK) model is available in the Surrogate Modelling
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Toolbox (SMT) [42]. SMT also provides an extension of MFK that makes
use of the Partial Least Square dimension reduction technique (MFKPLS)
in order to tackle high dimension. MFKPLS adapts the Kriging with partial
least square (KPLS) technique [43] relying on the PLS method [44, 45] to
multi-fidelity. The PLS analysis performs a base change allowing to pass from
input variables to latent variables. Only the first latent variables, which are
those that explain the most variance, are kept. Then every point expressed
in the initial space can be projected on the truncated latent space reducing
the number of dimensions. Using too much latent variables does not improve
the precision since almost all of the variance is captured by a lower number of
latent variables. On the other hand, not using enough of them will strongly
reduce the prediction capability of the model. The only difference between
KPLS and MFKPLS is that for MFKPLS, the PLS analysis step to find the
latent space is not applied on all of the dataset but only on the HF dataset
in order to ensure robustness to poor correlations between the fidelity levels.
Next the projection step is the same as in KPLS and it applies on HF and
LF datasets. Now that we described the multi-fidelity Kriging model that
is used in this work, lets explain the mono-objective & multi-fidelity super
efficient global optimization methodology.

2.2. Multi- Fidelity Super Elfficient Global Optimization

To perform multi-fidelity Bayesian optimization, one needs to determine
the most promising point and the appropriate fidelity level at which to eval-
uate it. The approach in works such as [19, 14, 15, 16] involves breaking
this problem down into two steps. First, a classical acquisition function is
optimized to find the point, as in mono-fidelity Bayesian optimization:

¥ = argmax a(z) with z € Qg N Qg (6)
zeQ)

where « is a mono-fidelity acquisition function (also called infill criterion).
The most common acquisition functions are the expected improvement (FT)
or the probability of improvement (PI). It also exists some regularized infill
criteria like Watson and Barnes 2 (W B2) [46] and scaled Watson and Barnes
2 (WB2S) [47]. Constraint management is handled in the same way [33,
34, 47, 32| by building co-Kriging models for the constraints and searching
at each iteration the new point to add optimizing the acquisition function
on a feasible domain g, N Qg where Qy, = {z,a4(r) = 0} and Qg =
{z, ag,(x) < 0}. The feasibility criteria ag, : R? — RP and ag, : R — R™ (p

6



equality and m inequality constraints) are usually defined with the posterior
means of the GPs that modelize the constraints as feasibility criterion: og, =
fige and ag = fig;.

Then, the variance contribution to each fidelity level is analyzed to make
an informed decision on which fidelity level to use. To be more specific,
let co,...,cr, represent the querying costs associated with all fidelity levels
fo, -+, f1, respectively. Additionally, let o ,(I, z*) denote the variance reduc-
tion of the high fidelity model when the point 2* is evaluated using all fidelity
levels < [, in order to maintain the nested DoE structure

[ L—1
ola(la®) = o5 () [ 2 (7)
i=0 j=i

In [38] the author first introduced a strategy to select the fidelity level of
enrichment by penalizing the uncertainty reduction by the computational
cost. Next, [19] proposed to penalize the variance reduction (which is the
standard deviation squared) by the cost squared which leads to the following
enrichment level criterion used in [14, 15, 16].

2 L. r*
* = argmax Zredlh @) ®)
1€0,.L (D ._qci)?

Eq.(8) represents a compromise between reducing variance and minimiz-
ing computational cost. The cost ratios between the various fidelity levels are
therefore crucial parameters in this approach. This two-step process [14, 19|
is referred to as Multi-Fidelity Super Efficient Global Optimization (MF-
SEGO). In the next section multi-objective handling will be addressed.

3. New theoretical developments for Multi-Fidelity & Multi-Objective
Super Efficient Global Optimization

In this section, we start by recalling and explaining the mono-fidelity,
multi-objective super efficient global optimization, then we extend this method-
ology to the multi-fidelity case.

3.1. Mono-Fidelity, Multi-Objective Super Efficient Global Optimization

Compared to mono-fidelity & mono-objective Bayesian optimization, there
are two main changes when using mono-fidelity & multi-objective Bayesian



optimization. First, surrogate models must be constructed for each of the
objectives. Second, the chosen infill criteria must be adapted to the multi-
objective case. Several multi-objective infill criteria exist in the literature,
most of the time they are extensions of mono objective infill criteria. For ex-
ample, the probability of improvement (P1) [48] is extended to the minimal
probability of improvement (M PI) [49], the expected hypervolume improve-
ment (EHVI) [50, 51] derives from the expected improvement (EI) [31],
the Pareto active learning (PAL) criterion [52, 53] from the upper confi-
dence bound (UCB) criterion, and the multi-objective stepwise uncertainty
reduction criterion [54] from the stepwise uncertainty reduction criterion
(SUR) [55]. Let as be one of these multi-objective infill criteria, in [12] the
authors extend the W B2S regularized infill criterion [47] to multi-objective
by using the ay multi-objective infill criterion in the W B2S formula:

QwB2s.ar = Mg — YP(fig(x)) (9)

A € Ris a constant parameter and ji¢ : R? — R is the GP prediction
of all of the objectives gathered in f. ¢ : R"»% — R is a scalarization
operator on the different objective predictions. For example, ¢ could be a
maximization function or a sum function.

In this paper, we used the W B2S regularized multi-objective criterion
from [12]. We could couple it with various subcriteria such as PI, M PI or
EHVI. In this work we decided to use M PI (M PI = ax) as it gives the best
results. Hence we describe the M P1I infill criterion in the following. To do so
we need to introduce some definitions. Let P.S be the current approximation
of the Pareto set. x; < xo means that x; dominates x5. x; || z2 means
that x; and x5 are mutually non-dominated. z; =< 9 translates into 7 is
non-dominated by x,. It can either mean that z; dominates x5 or that z;
and xo are mutually non-dominated by each other. As a recall, the minimal
probability of improvement at a point x (M PI(x)) is defined as the minimal
probability (over all of the points of the Pareto set) that the point x is non
dominated by the current point of the Pareto set:

MPI(z) = minP(x < u) (10)

uEPS

This M P1I criterion can be expressed in closed form as follow:

. : gi(x) = yi(w)

e < —

MPI(x) urg}lD%P(x_u) min 11_[ o 5:(7) ) (11)
i=1..n0;



Now that we recalled the mono-fidelity multi-objective methodology, we
can extend it to multi-fidelity.

3.2. Extension to Multi-Fidelity & Multi-Objective Super Efficient Global Op-
timization
Our methodology called MFMO-SEGO for Multi-Fidelity & Multi-Objective

Super Efficient Global Optimization relies on both the MFSEGO method-
ology [16, 15, 14, 19] described in Section 2.2 and the single fidelity multi-
objective SEGO methodology [12] described in Section 3.1. We mixed these
two methods in order to be able to tackle constrained multi-fidelity & multi-
objective, black-box optimization problems. The proposed algorithm MFMO-
SEGO is summarized with the help of a diagram in Fig. 1.

Compute initial DoE for each of the L+1
fidelity levels

/ Build/Rebuild Multi-fidelity Kriging \ (For K= 0L, forcach objectiveand )

model for each objective and each

constraint,

each constraint: add (Xyexr, Vi next) t0

+ Build the lower fidelity Kriging model

*  For k=1..L :Build k-th fidelity
Kriging model by learning (k-1)-th
scaling factor and k-th discrepancy

\ function
—

|

Is the budget reached ?

l Yes

End of the algorithm
» Return database Pareto front

!

multi-fidelity Kriging model

Post BO step: NSGAIIl algorithm on the
»  Return predicted Pareto front

No

.

the k-th DoE

For k=0 ...1": Run the k-th level
model
Yk next = fk(xnext)

t

Optimize fidelity criterion to find the
highest level to be evaluated [*

t

Optimize a multi-objective acquisition
function on the approximated feasible

L domain to find Xpexe

Figure 1: Diagram of the MEMO-SEGO methodology.

It is similar to the MFSEGO algorithm with four major differences. First
a multi-fidelity Kriging model must be built for each of the objectives and
constraints since we now deal with several objectives. Second, a multi-
objective infill criterion must be used when solving the enrichment problem
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at each iteration. In this paper we used the multi-objective regularized infill
criterion from [12] detailed in Eq.(9) with af chosen as in Eq.(10) based on
the M PI acquisition function. Third, some changes must be made to the
level choice criterion. Indeed the criterion in Eq.(8) from Section 2.2 used in
MFSEGO cannot be used anymore since the variance reduction is computed
only for a single surrogate model. In the mono-objective case this single
surrogate corresponds to the only objective, but in the multi-objective case,
we need to take into account the variance reduction for each of the GP ob-
jective. The fourth difference comes at the end of the iteration process and
consists of applying an evolutionary optimization algorithm like NSGAII [56]
not directly to the expensive models but to the final multi-fidelity Kriging
models (objectives and constraints). Since this latter optimization applies
directly to the surrogate models, its cost is negligible compared to the cost
of the iterative process that calls the expensive models multiple times. In
the end we get a NSGAII predicted Pareto front and a database from which
we can extract the database Pareto front. This post Bayesian optimization
process step is referred as post-BO step in the following. Its goal is to derive
a denser Pareto front than the database one and to use the behavior of the
surrogate models to deduce areas of the Pareto front that are not necessarily
represented in the database Pareto front. This is useful since Bayesian op-
timization alone is often performed with a small budget which not allows to
populate a dense and complete Pareto front even if the surrogates capture
well the behavior of the objective functions and constraints. Nevertheless,
note that there is no guarantee that the predicted Pareto front will be actu-
ally accurate enough. Indeed, if the surrogate model is of poor accuracy, the
same will probably be true for the predicted Pareto front.

For the level choice criterion modification, an extension of Eq.(8) has
been proposed. The strategy is to compute for each objective the fidelity
level I with which to evaluate the point as if we had several mono-objective
problems. We choose [* to be the maximum for all 0 = 1, ..., n; of the [}

= max{l], .., 5, .., L, } (12)
where
U?ed o(l7 ‘T*)
Vo=1,...n0; [,=argmax -——7——— (13)
1€0,..L (D g Cio)?
with o7,,,(/,2*) being the variance reduction of the o-th objective surro-

gate model at point z* using fidelity level [ and ¢; , being the associated cost.
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Note that Eq.(12) relative to the maximization step could lead to enrich all
objectives at a high fidelity level while it would be useful only for one of the
objectives.

4. Understanding the performance of MFMO-SEGO

The MFMO-SEGO methodology from Section 3.2 has been assessed on
four analytical test cases: ZDT1, ZDT2, ZDT3 and DTLZ5 problems in 6-
dimension (d = 6). The optimization problems that we want to solve in this
analytical test case section are of the following form:

Tz = argmin[leF(x), 2HF(x)]T (14)
z€[0;1]6

such that giHF(x) <0

These analytical test cases aim to validate the methodology before moving
to a more realistic drone design problem.

4.1. Problems description

The three ZDT problems (see Table A.9 in Appendix A) are uncon-
strained problems in dimension 6 with two fidelity levels. They have been
chosen in order to verify that our methodology could tackle different kinds
of Pareto fronts. Indeed the ZDT1 analytical Pareto front is convex while
the ZDT2 one is concave and the ZDT3 is discontinuous. The DTLZ5 prob-
lem, which is also in dmension 6 (see Table A.9 in Appendix A), has been
augmented with a constraint to check that our method is capable of han-
dling constrained multi-objective problems. It also has two fidelity levels.
For the ZDT problems, the high fidelity objective function fHF is of the
form fAF(x) = u(z)v(fHF (x),u(x)). For all of the analytical problems, Ta-
ble A.9 in Appendix A sums up the expressions of the high fidelity objective
functions fHF (x), f¥(z) and the constraint while Table A.10 in Appendix
A gives the expression of u(z) and v(z), two useful functions to construct
the objective functions. In a multi-fidelity framework, the optimization is
assisted by one or more low-fidelity functions. Here we consider two fidelity
problems. Table A.11 in Appendix A sums up the expressions of the low
fidelity functions f£F(z) and fL¥(z) and the associated constraint for all of
the analytical test cases.
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4.2. Fxperimental setup

For each test case we made 10 mono fidelity optimization runs and 10
multi-fidelity ones varying the initial DoE. For the multi-fidelity runs we
considered nested DoEs as explained in Section 2.1. To build these nested
DoEs, we used latin hypercube sampling (LHS) [57] using the SMT tool-
box [42, 58]. SMT can construct LHS thanks to different methods, in this
paper we used the Enhanced Stochastic Evolutionary algorithm (ESE) [59].
To perform the optimization, we used the Super Efficient Global Optimiza-
tion with Mixture Of Experts (SEGOMOE) framework developed between
ONERA and ISAE-SUPAERO [60, 33, 34, 47].

Since the number of design variables is relatively high in our problems it
is useful to use a dimension reduction technique in order to better solve the
hyperparameters estimation based on likelihood maximization. Each analyt-
ical test case uses the MFKPLS dimension reduction technique described in
Section 2.1 with the same truncated latent space dimension equals to 2. The
surrogate models have been built with SMT [42] with a constant trend and
a square exponential kernel.

The initial DoE sizes for the analytical test cases are summarized in Ta-
ble 1. Using an initial HF DoE size equals to around three times the number
of latent variables seems to be a good choice. For each run, the mono-fidelity
initial DoE and the HF initial DoE are identical. Since the quality of the
initial DoE has an impact on the convergence speed, this allows to compare
legitimately the mono and multi-fidelity Bayesian optimization efficiencies.
The budget allowed to the optimization algorithm for each analytical test
case is detailed in Table 2, where the unit for the budget corresponds to the
cost of one HF evaluation. We chose different budgets for each test case since
they are more or less difficult to solve. Indeed, budgets are chosen so that the
predicted Parecto fronts obtained using the multi-fidelity approach converge
(mean of the IGD metric < 0.1).

Table 1: Initial DoE size for each analytical test case.

ZDT1 | ZDT2 | ZDT3 | DTLZ5
Initial HF DoE 6 6 6 6
Initial LEF DoE 12 12 12 12

For the analytical test cases, the cost ratios between the high and low
fidelity levels have been set to 100.
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Table 2: Bayesian optimization budget, problem dimension and latent space dimension
for the analytical test cases. One unit is equivalent to the cost of a HF evaluation.

ZDT1 | ZDT2 | ZDT3 | DTLZ5
Budget 6 12 20 10
Problem dimension 6 6 6 6
Latent space dimension 2 2 2 2

4.3. Performance metrics

Three performance metrics have been used to assess the performance
of the MO-SEGO and MFMO-SEGO algorithms on all of the test cases:
the hypervolume, the inverted generational distance (/G D) and the inverted
generational distance plus (IGD™T) [61]. The means over the 10 runs of the
hypervolume, IGD and IGD% metrics are computed for both the predicted
and database Pareto fronts and for the two MO-SEGO and MFMO-SEGO
algorithms. We call database Pareto front the Parcto front that we got at
the end of the iterative process, before applying NSGAII to the final surro-
gate models. In parallel, the predicted Pareto front refers to the Pareto front
obtained after applying NSGAII to the end of iterative process surrogate
models. Note that the hypervolume metric computes a departure from a
reference point while the /GD and IGD™ metrics compute a departure from
the reference Pareto front. Hence we search for the largest hypervolume and
for the smaller IGD and IGD™" values (ie the smaller departure from the
reference Pareto front). The reference point used for the hypervolume com-
putation could depend on the test case. For all of the analytical test cases,
we chose the same reference point R = (1.2,1.2). The hypervolume metric
has some limitations as it is possible, due to a bad prediction capability of
the surrogate models that the predicted Pareto front dominates the reference
Pareto front. Then the predicted Pareto front will have a larger hypervolume
than the reference one. In this case, the hypervolume metric can not tell if
the predicted Pareto front is better thanks to a good optimization or because
of a bad prediction. On the other hand /G D computes a departure from the
reference Pareto front so it does not suffer of this limitation. The counterpart
is that to compute IGD we need a reference Pareto front not required for
the hypervolume. Moreover the IGD metric is not weakly Pareto compli-
ant. The /G D™ metric uses a modified distance in order to ensure the weak
Pareto compliancy property. But using this modified distance comes at the
cost of suffering of the same kind of limitation as the hypervolume indicator
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in the sense that if the predicted Pareto front dominates the reference Pareto
front due to bad prediction capabilities, these two fronts will have the same
IG DY value equals to zero. It can be noted that the predicted Pareto front
can not have a lower I/GD™ value than the reference Pareto front, even if
it dominates the latter. After analysing the pros and cons of each of these
indicators, we give more importance to the /G D metric as our method uses a
prediction step. Remark that if we are not confident in the predicted Pareto
front we can still evaluate some points of the predicted Pareto front in order
to check if they really belong to the Pareto Front. As the solutions are known
analytically (see Appendix A), the algorithm results will be compared to the
reference solutions. The reference Pareto front is obtained by applying the
HF objective functions to the reference Pareto set.

4.4. Numerical results

Table 3 summarizes the /G D performance metric values of the MO-SEGO
and MFMO-SEGO algorithms on the analytical test cases. Table D.12 and
Table D.13 sum up the performances respectively using the hypervolume and
IGD™ indicators. As the reference Pareto set is known, we applied to it the
HF and the LF model to compare the values in the objective space with the
ones of the mono and multi-fidelity optimization. Figures 2a and 3a show, re-
spectively for the ZDT2 and ZDT3 problems, the reference Pareto front, the
outputs of the LF model applied to the reference Pareto set points and the
mono and multi-fidelity predicted Pareto fronts obtained using MO-SEGO
and MFMO-SEGO algorithms. Next, respectively for the ZDT2 and ZDT3
and problems, the mono-fidelity database Pareto fronts obtained using MO-
SEGO algorithms are depicted on Fig. 2b and 3b while the multi-fidelity
database Pareto fronts obtained using MFMO-SEGO are on Fig. 2¢ and 3c.
The figures relating to the ZDT1 and DTLZ5 problems are available in Ap-
pendix C.

The predicted Pareto fronts are closer to the reference solution than the
database Pareto front for all analytic test cases, regardless of the metric we
evaluate (hypervolume, IGD, or IGD™), and regardless of the number of
fidelity levels used in the optimizations. This highlights the usefulness of the
NSGAII optimization performed on the surrogate models obtained at the end
of the SEGOMOE iterative process. Analysis of the database Pareto fronts
reveals that points on the extremes of the front are often added during BO
last iterations (green color dots). For every test case, the database Pareto
fronts obtained using multi-fidelity optimizations are better than the ones
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Figure 2: 2F (multi-fidelity) predicted Pareto front outperforms 1F (mono-fidelity) pre-
dicted Pareto front (a) (/GD value divided by 7.51 on this specific run and by 2.81 in av-
erage) and 2F (multi-fidelity) database Pareto front (c) underperforms 1F (mono-fidelity)
database Pareto front (b) (IGD value multiplied by 1.91 on this specific run and by 1.83
in average), illustration on one of the ten ZDT2 runs. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)

obtained with mono-fidelity optimizations whatever the metric checked is,
except for ZDT2. Still, the ZDT2 predicted Pareto fronts outputted by
the multi-fidelity strategy are better than the ones from the mono-fidelity
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Figure 3: 2F (multi-fidelity) predicted Pareto front outperforms 1F (mono-fidelity) pre-
dicted Pareto front (a) (IGD value divided by 44.97 on this specific run and by 7.64 in
average) and 2F (multi-fidelity) database Pareto front (c¢) outperforms 1F (mono-fidelity)
database Pareto front (b) (I/GD value divided by 3.27 on this specific run and by 5.33 in
average), illustration on one of the ten ZDT3 runs. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

regarding every metrics. Hence, the NSGAII run on the final surrogate model
during the post-BO step seems to be even more interesting in a multi-fidelity
context. For all the test cases, the predicted Pareto fronts from multi-fidelity
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Table 3: Mean and standard deviation (between parenthesis) of the IGD metric for ana-
lytical test cases over the 10 runs. The lowest values are indicated in bold.

ZDT1 ZDT2 ZDT3 | DTLZ5
Reference Pareto front 0 0 0 0
MO-SEGO database 0.3755 0.4148 0.9058 0.2653
(0.2075) | (0.1900) | (0.6297) | (0.0836)
~ MO-SEGO predicted | 0.1177 | 0.1693 | 0.7166 | 0.1050
(0.1235) | (0.2335) | (0.5301) | (0.0748)
MFMO-SEGO database | 0.2214 0.7611 0.1698 0.0809
(0.0829) | (0.4344) | (0.0700) | (0.0347)

MFMO-SEGO predicted | 0.0154 | 0.0603 | 0.0938 | 0.0046
(0.0075) | (0.0629) | (0.0639) | (0.0019)

optimizations are closer to the reference analytical Pareto front than the ones
from mono-fidelity optimizations. Indeed the use of multi-fidelity allows to
respectively divide the predicted Pareto front IGD value by a factor 7.64,
2.81, 7.64 and 22.82 for the ZDT1, ZDT2, ZDT3 and DTLZ5 problems as
seen in Table 3. The same conclusions can be drawn from the two other
performance indicators (see Appendix D). Interpreting the hypervolume and
IGD™" metrics is less straightforward. Regarding the ZDT2 problem (Table 3
and Fig. 2a), the predicted Pareto front hypervolume mean obtained from the
multi-fidelity strategy is larger than the reference Parcto front hypervolume.
One possible explanation is that the final surrogate models used by NSGAIIL
at the end of the iterative process may have limited predictive accuracy and
underestimate some objectives that need to be minimized. The predicted
Pareto front could then lie below the reference Pareto front. On Fig. 2a,
the grey curve, representing the LF reference Pareto set evaluations, plunges
on its right side compared to the black curve, representing the HF reference
Pareto set evaluations. Since the multi-fidelity surrogate models are partly
driven by the LF function, this explains why the predicted Pareto front from
the multi-fidelity strategy also plunges on the right side. However, IGD
indicator cannot be misled by a falsely predicted Pareto front that would
dominate the actual reference Pareto front. Therefore, we can still conclude
that the multi-fidelity strategy overtakes the mono-fidelity approach even on
the ZDT2 test case. In fact, the final mono-fidelity surrogate models may
have even more limited predictive capabilities than the multi-fidelity ones and
overestimate some objectives to minimize instead of underestimating them.
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5. MDO of an electric drone

The MFMO-SEGO methodology has also been evaluated on a multi-
fidelity and multi-objective fixed-wing electric drone optimization test case,
considering an operation in the specific category: inspecting given positions
of a high voltage line. The objectives and constraints of this optimization
problem are calculated using electric drone models that have been developed
to compute these quantities of interest, among others. Electric propulsion is
attractive for drones [62, 63, 64, 65, 66]. In fact, it has a number of benefits,
including reduced noise, a small thermal footprint, and the potential to be
a carbon-free energy source (depending on the energy mix). However, it
also has some drawbacks, including endurance, which may be overcome by
combining it with fuel cells [64, 67, 68, 69]. This endurance drawback is
also attenuated by our choice to design fixed-wing aircraft drones which are
known for their ability to cover larger distances. In this section the developed
electric drone models are described as well as the optimization problem.

5.1. The drone model

For the purpose of this work, two fixed-wing drone models have been
developed: a high fidelity model (built upon medium fidelity disciplinary
modules) and a low fidelity one. Both of them couple different disciplines
(aerodynamic, structure, masses, geometry, mission, electric propulsion, cost)
which are computed more or less accurately. The models take as inputs ge-
ometrical, structural, efficiency, manufacturing or battery variables. It out-
puts a lot of quantities of interest like: the final state of charge of the drone’s
battery (SOC') at the end of a specific mission (defined as a succession of
checkpoints the drone must pass by), the maximal range the drone can cross
using 75% of the battery making loops on the specified mission, the drone
financial cost, the structural failure constraints and the mass of every lifting
surfaces (wing and tail), the mission time, ... The models have been de-
veloped in Python using OpenMDAO, an open source MDO framework [70]
from NASA Glenn and DYMOS [71], a framework for the simulation and op-
timization of dynamical systems within the OpenMDAO environment. The
Extended Design Structure matrix (XDSM) [9] diagrams of our OpenMDAO
analyses have been made thanks to WhatsOpt [72] which is a web applica-
tion developed at ONERA to define and share multi-disciplinary analyses
in terms of disciplines and data exchange. The aerostructural discipline re-
lies on a tool called OpenAeroStruct (OAS) [73, 74, 75] developed by NASA
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and the University of Michigan. It is an open source lightweight tool that
performs aerostructural analysis and optimization using OpenMDAOQO. It cou-
ples a vortex-lattice method (VLM) and a 6 degree of freedom 3-dimensional
spatial beam model to simulate aerodynamic and structural analyses using
lifting surfaces. To deal with the mission in the multi-disciplinary process,
the low fidelity model relies on the electric Breguet range equation while the
high fidelity model requires to solve an optimal control problem which is tack-
led using DYMOS. These two models are direct improvements of the drone
models that we developed in previous work (see [16]). The additions made to
these models concern the drone cost which is now modeled and the battery
characteristics which now depend on a design variable and are not entirely
fixed anymore. The low and high fidelity drone models are briefly described
in Section 5.1.1 and Section 5.1.2 that focus on the new developments made
on these models for the purpose of this work. To get more details about the
LF and HF drone models, especially on the trajectory optimal control, please
refer to our previous work [16].

5.1.1. Low fidelity electric drone model
Figure 4 depicts the LF model workflow with the different disciplinary
modules. Regarding performance during mission computation, this model
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Figure 4: XDSM for the low fidelity drone model with the different disciplinary modules
involved.

relies on an adaptation of the Breguet range equation to electric aircraft.
The electric adaptation is given by:

C a
RangeMax = FannmnESC@ Mbatt
D g

(15)
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with 7,, 1, and ngsc being respectively the efficiency coefficients for the
propeller, the motor and the electronic speed controller. e, is the battery
specific energy, g the gravitational acceleration, my. the battery mass, and
m is the total mass of the aircraft. This equation is valid in the steady level
flight case. The low fidelity workflow is therefore the following. First, the
RootChordTail sub-analysis balances the tail root chord in order to ensure
longitudinal stability for the drone. Next, the battery characteristics like its
mass, capacity, tension, maximal power and battery specific energy are de-
duced from the battery variables. The battery capacity is fixed to 15Ah.kg~?.
The maximal battery power depends on the battery power per kg which is
set to 3000W.kg~!. The battery tension depends on the chosen number of
battery blocks of 3.7V and 5kg each. The battery block number is allowed
to be continuous even if in practical life it must be discrete. Afterwards,
the aerostructure component uses an OpenAeroStruct call to compute the
lift and drag coefficients (the flight point used in the aerostructure compo-
nent considers a 5 degree angle of attack and a speed of 20 ms™!), the wing
and tail failure values and the wing and tail masses which are passed to the
masses component which deduces the overall drone mass. Then the elec-
tric Breguet range equation is applied to find the maximum range and the
functions component is used to make approximation of the SOC" at the end
of the mission and of the maximal range using 75% of the battery. In this
work the main improvement made to the previously developed [16] drone
models is the drone cost model module. It is split in four different parts:
the battery cost Cya, the electric engine cost C),ot0r, the material cost C,,qy
and the manufacturing cost Ci,rg. Others important cost areas of the drone
like engineering, flight test operations, quality control or business support
functions are not modelled here since we consider that the cost of these areas
will not vary a lot depending on the chosen drone design. Each part of the
cost model is detailed here.

Battery cost: The battery cost is a simple multiplication between the bat-

tery capacity in term of energy quantity (J) and the price of a lithium-
ion battery per kW h.

Chart = capalet® s CPTMWI 5 3600 x 1000 (16)

= (capag;;}tmy8 X tensionp) X C’f;;kWh x 3600 x 1000 (17)
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where capa<"?¥ represents the battery capacity in term of energy quan-
tity (J), capag;?mge represents the battery capacity in term of electric
charge quantity (Coulomb) and tensiony, represents the battery ten-
sion (Volt). We multiply by 3600 x 1000 to convert J in kWh. The
battery cost per kWh is chosen to be equal to 150€/kWh since it is
approximately the early 2023 cost of an overall Li-ion battery pack per
kW h.

Electric motor cost: The cost of the electric engine is a multiplication
between the output power of the motor and the price of such an electric
engine per kW.

CperkW
C'motor = Pmotor X 177608(8” (18)
GperkW
erk motor
= (masspat X Loy * X MESC X Mmotor) X 1000 (19)

where Py, represents the output power of the electric engine (Watt).
CPr*W represents the approximated cost of an electric engine per kW

it is chosen to be equal to 150€/kW as in [76]. massy.: represents the
battery mass carried by the drone. Pgﬁ;kg represents the battery power
per kilogram. 7,,.10r and npgc are respectively the motor and electric
speed controller efficiency coefficients. We divide by 1000 to convert W

in kWh.

Material cost: The cost of the material is a multiplication between the
airframe mass obtained from the drone structural model and the price
of carbon fiber per kilogram

Cmat = MAaSSairframe X Operkg (20)

carbon
where C’fj:ffn represents the approximated cost of aeronautical carbon
fiber per kg. We fixed it to 16€/kg which is the current price of
carbon fiber. massgi, frame represents the airframe mass of the drone

in kilogram.

Manufacturng cost: The cost of the manufacturing is a multiplication be-
tween the needed manufacturing hours and the labour cost of a manu-
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facturing hour
C(mfg - hmfy X Tmfg X infllg_23 (21)

where 7,7, Tepresents the labour cost of a manufacturing hour. In
France according to the INSEE (french National Institute of Statistic
and Economical Studies), the 2019 average gross salary of a qualified
worker is of 32900€ per year. The legal number of hours worked by a
full time employee is 1607h and we can approach the employer’s charges
to 25% of the gross salary. which leads to choose 7,y = % =
25.59€ /h. inflig_93 = 1.16 is the value of the inflation between decem-
ber 2019 (year of the data from INSEE) and january 2023 (year of this
document). Its value has been obtained thanks to the US Bureau of
Labor Statistics CPI inflation calculator. h,,f, represents the approxi-

mated number of manufacturing hours needed to build the drone.

0.82 0.484
air frame X VMAT[; " X Narope X flapeoety

X (14025 feomp) > Fogy T rone) x (14 0.25 fgn) - (22)

erp

himgpg = 7.37Tmass

To compute h,,, we used Eq.(22) data driven model from [76]. Table 4
defines and set the input values of Eq.(22) manufacturing hours model.
Typically, Fi,, € [0.8,1]. In the LF model we suppose that we do not
have any information on the F;, value, so we set it to 0.9, the central
value of its living interval.

Table 4: Input values of the manufacturing hours model definition.

Variable description Value Unit
vmaxf Maximal speed at level flight 50 m/s
Ndrone Number of drone to build 1 0
flapeoess Coeff to take into account the flap 1 0

construction difficulty
Jeomp Proportion of composite material used 1 0
Fewp Experience effectiveness factor 0.85 (HF) or 0.9 (LF) | 0
Fryp Proportion of hybrid propulsion system 1 0
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5.1.2. High fidelity electric drone model

The HF drone model takes the mission the drone must perform into ac-
count more precisely than the LF model. This mission is defined by some
control points the drone must pass by and the HF model computes the opti-
mal trajectory in term of energy consumption allowing to respect the mission
definition, i.e.: to pass through the waypoints. The optimal control problem
is solved using DYMOS [71], the OpenMDAO package for optimal control. A
constraint is added to the optimal control problem in order to ensure that the
maximum possible thrust is not exceeded during the mission. In this work,
the considered mission over which the model is evaluated is one of the specific
missions tested in [16]. It consists in a climb phase, a cruise phase and a de-
scent phase. An overview of this mission is available in Fig. B.9 in Appendix
B. Figure 5 shows the XDSM diagram of the high fidelity drone model with
the main disciplinary modules involved. The workflow of the high fidelity
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| 4 vars StructuralSizing f 2 vars lifa?f
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Figure 5: XDSM for the high fidelity drone model with the different disciplinary modules
involved.

model is as follows. First, as with the low fidelity model, the tail root chord
is balanced to ensure the longitudinal stability of the drone and the battery
characteristics are computed. To do this, we used exactly the same modules
as for the low-fidelity model. Next, we perform the structural sizing using a
call to OpenAeroStruct at the most critical flight point (maximum speed and
maximum angle of attack) since it is the flight point where the structure is
most likely to break. This component computes the wing and tail failure con-
straints and the wing and tail masses. The same aerostructural description
is used as in the LF model (same mesh, same material, same safety margin).
Afterwards, the mission is completed by solving the optimal control problem
using DYMOS instead of using the electric Breguet range equation as in the
LF model. The corresponding component provides the mission time and the
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end of mission battery SOC'. The maximal range the drone can cover using
75% of the battery and making loops over the specified mission is extrapo-
lated from the end of mission SOC'. Finally, the drone cost is evaluated in
the same way as in the LF model except that for the HF model we consider
that we have been able to evaluate the experience-related worker effectiveness
parameter F,,,. It is estimated to 0.85 for all drone configurations. Table 5
summarizes the differences between the LF and the HF model.

Table 5: Differences between the LF and the HF model.

LF HF
Mission Based on electric Solve an optimal control
Breguet range problem with DYMOS
equation to perform the mission
Structural sizing OAS call OAS call at the most critical
(AoA =5 degrees, | flight point (AoA = 15 degrees,
airspeed = 20 ms™1) airspeed = 50 ms™1)

Drone cost model Fepp =109 Fopp = 0.85

5.2. Problem description

In the drone test case, the optimization problem that we aim to solve
consists in minimizing simultaneously the drone cost and the opposite of
the maximal range the drone can cover using 75% of the battery. This
problem is constrained with two inequality structural constraints to ensure
that neither the wing nor the tail fail during the flight. These constraints
compare the Von Mises stress computed by OAS to the yield stress divided
by a fixed coefficient. The yield stress depends on the material chosen for the
structural spar. In our model we chose high modulus carbon fiber as material
which leads to the following values [77]: Young modulus £ = 85¢9 Pa,
shear modulus G = 25¢9 Pa, material density of 1.6e3 kgm ™ and yield
stress equals to 350e6 Pa. The fixed coefficient acts as a safety margin and
is chosen equal to 2.5. To compute failure constraints, OAS provides two
methods. The most direct way to proceed is to check the Von Mises stress at
cach node of the mesh. But we used the other method that aggregates the
individual nodal failure constraints using a Kreisselmeier-Steinhauser (KS)
function [78]. The KS function produces a smoother constraint than using
a max() function to find the maximum point of failure, which is useful to
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produce a better-posed optimization problem. For each surface (wing or
tail) we have a constraint of the following form:

failure = fuax + 3 log(Bies(exp(p(G — 1 — funax)))) <0 (23)

2.5
with S being the set of mesh nodes for the associated lifting surface (wing
or tail). oum,; is the Von Mises stress at the i-th node of S. We also define

frmax = m%x ot | —1. The p parameter controls how conservatively the KS
1€ 5

2

function aggregates the failure constraints. A lower value is more conservative
while a greater value is more aggressive (closer approximation to the max()
function). We consider 20 design variables which are essentially wing and
tail geometrical variables except for the number of battery blocks composing
the drone battery. For this last variable, even if in practice it should be a
discrete variable, in this work it is fully treated as a continuous one since our
optimization methodology is not able to address integer variables yet. All
the design variables are summarized in Table 6.

Finally, the optimization problem associated with the drone test case can
be expressed as:

z* = argmin [DroneCost”? (z), —RangeMaxity, (v)]"
z€QCR20

(24)
such that {

Wingfailure(m) S 0
tailfa,ilure (CE‘) S 0

All the necessary quantities of interest for this problem can be computed
using the drone models detailed in Section 5.1.

5.3. Ezperimental setup

The drone test case experimental setup is quite similar to the one of
analytical test cases. The modifications considered for the Drone problem
are detailed in Table 7.

To assess the cost ratio for the drone test case, 100 points (i.c. drone
configurations) have been chosen randomly according to a uniform distribu-
tion within the design space. Then they have been computed to deduce both
the CPU time mean values for HF and LF models. The deduced cost ratio
between the two values is 116. Note that in order to take into account the
nested DoE assumption, the cost of the HF model is considered as the sum of
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Table 6: Definition of the 20 design variables.

variables design space unit | quantity
wing span [5, 6] m 1
root chord wing [1,1.2] m 1
wing taper ratio [0.6,1] no unit 1
wing sweep angle [0, 5] degree 1
tail sweep angle [0, 5] degree 1
wing dihedral angle [—3, 3] degree 1
tail dihedral angle [—3, 3] degree 1
structural tube thickness [0.001,0.01]* m 3

control points
along wing span
structural tube thickness [0.001,0.01] m 3
control points
along tail span

twist control points [1,1.5] x [0.5,1] x [0,0.5] | degree 3
along wing span
twist control points [1,1.5] x [0.5,1] x [0,0.5] | degree 3
along tail span
Number of battery blocks 2,4] 1
Total number of design variables 20

Table 7: Drone test case experimental setup.

HF init Dok size 10

LF init DoE size 20

BO budget 10

Input space dimension 20
Truncated latent space dimension | 3

cost ratio 116

the cost of an LF evaluation and an HF evaluation. The drone problem solu-
tion is not known analytically. Then to get a reference solution to compare
with, we ran the NSGAII algorithm with a budget of 2000 HF evaluations
on the drone problem.

26



5.4. Discussion of numerical results

The same hypervolume, IGD and IG D™ performance metrics have been
used to assess the performance of the MO-SEGO and MFMO-SEGO algo-
rithms on this drone test case. A different reference point R = (70000, 22000)
has been chosen to evaluate the hypervolume for this problem. Table 8 sum-
marizes the hypervolume, IGD and IGD+ values of the MO-SEGO and
MFMO-SEGO algorithms for the drone test case. Figure 6a shows the ref-
erence Pareto front, the outputs of the LF model applied to all of the points
from the reference Pareto set and the mono and multi-fidelity predicted
Pareto fronts obtained using MO-SEGO and MFMO-SEGO algorithms. We
can sece that the LF model is significantly different from the HF model even if
they have a comparable trend. Next Fig. 6b and 6¢ show, also for the drone
problem, the mono and multi-fidelity database Pareto fronts obtained using
MO-SEGO and MFMO-SEGO algorithms.

Table 8: Mean and standard deviation (between parenthesis) of the hypervolume, IGS
and /G D+ metrics for the drone test case over the 10 runs. The closest best values are
indicated in bold.

Hypervolume | IGD IGD+

Ref Pareto front 2.0141e9 0 0
MO-SEGO database Parcto front 1.0806¢9 14340.81 | 8374.15
(111250596) (3072) (4556)
~ MO-SEGO predicted Pareto front | 1.7274e9 | 2088.79 | 1728.31

(53339581) (960) (1033)
MFEFMO-SEGO database Pareto front 1.1618¢e9 12541.71 | 4256.73
(102595746) (2436) (2344)

MFEFMO-SEGO predicted Pareto front 1.9833e9 608.21 | 137.18
(46231133) (172) (163)

This more realistic drone design optimization test case confirms the be-
haviors observed in the analytical ones. The predicted Pareto front out-
performs the database Pareto front regardless of the number of fidelity lev-
els used or the metric considered. The multi-fidelity optimization approach
yields better database Pareto fronts compared to mono-fidelity optimization,
and the predicted Pareto fronts from multi-fidelity optimization also out-
perform those from mono-fidelity optimization. Specifically, multi-fidelity
optimization reduces the /G D value of the database Pareto front by a factor
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Figure 6: 2F (multi-fidelity) predicted Pareto front outperforms 1F (mono-fidelity) pre-
dicted Pareto front (a) (IGD value divided by 2.96 on this specific run and by 3.43 in
average) and 2F (multi-fidelity) database Pareto front (c¢) outperforms 1F (mono-fidelity)
database Pareto front (b) (IGD value divided by 1.05 on this specific run and by 1.14 in
average), illustration on one of the ten drone runs. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

of 1.14, the IGD™ value by a factor of 1.97, and increases the hypervolume
value by a factor of 1.08. Similarly, for the predicted Parcto front, multi-
fidelity optimization reduces the IGD value by a factor of 3.43, the IGD™
value by a factor of 12.60, and increases the hypervolume value by a fac-
tor of 1.15. Thus, the drone test case provides further evidence that the
multi-fidelity methodology outperforms the mono-fidelity approach. As an
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indication, three noteworthy designs from the optimal predicted Pareto set
of one of the ten multi-fidelity runs are described in Fig. 7. Their position
on the corresponding predicted Pareto front can be visualized on Fig. 8. The
first design (magenta dotted line) corresponds to a design that focuses on
minimizing the drone cost, the second (orange dashed line) focuses on min-
imizing the opposite of the maximal achievable range while the third one
(cyan solid line) is a compromise between both objectives. One can remark
that the number of battery blocks variable is of great interest for both ob-
jectives. A bigger battery will increase maximal range but will also increase
the drone cost. It is worth noting that some variables like the ones defining
the tail design do not have a big impact on both objectives. This highlights
that the use of a dimension reduction technique is a wised choice for our
application.

6. Conclusion and perspectives

In this work, we proposed a multi-fidelity & multi-objective optimization
algorithm based on Bayesian optimization. We evaluated the performance of
this methodology with some comparisons to the mono-fidelity counterpart on
analytical constrained or unconstrained problems in dimension 6. The results
obtained on the four problems with different Pareto front characteristics such
as convexity and continuity confirmed the effectiveness of the proposed strat-
egy. We then applied both methodologies to a more realistic drone design
problem in dimension 20 with two constraints. We improved the accuracy of
the low-fidelity and high-fidelity drone models used in previous studies by in-
cluding battery characteristics and financial cost computations. Our numer-
ical results showed that the multi-fidelity & multi-objective MFMO-SEGO
methodology outperforms the single-fidelity & multi-objective MO-SEGO
methodology. This performance comparison holds either if we consider only
the Bayesian optimization step of the method (database Pareto front) or if we
consider both the Bayesian optimization step and the post-BO optimization
of the surrogate model step using NSGAII (predicted Pareto front). Fur-
thermore, our study highlights the significant improvements brought by the
post-BO NSGALII surrogate model optimization step to the Pareto front. In
future work, we plan to implement additional multi-objective fidelity level
selection criteria to investigate whether we can achieve similar optimization
results with less use of the high fidelity model. Moreover, it is also planned to
investigate the use of an uncoupled multi-objective fidelity level selection cri-
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Figure 7: Radar plot of three noteworthy Pareto optimal designs. The first design (ma-
genta dotted line) corresponds to a design that focuses on minimizing the drone cost, the
second (cyan solid line) focuses on minimizing the opposite of the maximal achievable
range while the third one (orange dashed line) is a compromise between both objectives.

terion by testing a configuration where each objective is given by a dedicated
model. Finally, we aim to expand the algorithm’s capabilities by coupling it
with mixed variables Bayesian optimization techniques.
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Appendix A. Analytical functions

The following tables describe the analytical functions used in this paper.
Table A.9 shows the expressions of the high fidelity analytical objective func-
tions and constraints. Table A.10 gathers the u and v function definitions for
each test case. Table A.11 shows the expressions of the low fidelity analytical
objective functions and constraints.
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Table A.9: Expressions of the high fidelity analytical functions and constraint.

Problem Al (z) = S (x) = Constraint
ZDT1 xy u(x)v(z) -
ZDT2 Ty u(z)v(x) -
ZDT3 Ty u(z)v(x) -
DTLZ5 | (1 + u(zq))cos(0.57x1) | (14 u(zg))sin(0.57xq) | [ (x) <0.5

The ZDT1 optimal problem solution is given by the following Parcto sct:
{reR’ (0<a1<1) A (27=0 for i=2,...,6)}

The ZDT2 solution is given by the following Pareto set:
{reR (0<a;<1) A (27=0 for i=2,...,6)}

The ZDT3 solution is given by the following Pareto set:

{z €RS, (7 €[0,0.083] U[0.1822,0.2577] U [0.4093,0.4538] U [0.6183, 0.6525]
U[0.8233,0.8518]) A (27 =0 for i=2,...,6)}

For the DTLZ5 test case, x¢ denotes the vector of the last (d—nq;+1) design
variables. For example, if d = 6, ng; = 2, then zg will be the vector of the
last five design variables in x. The constraint used in the DTLZ5 problem
consists in ensuring that the first HF objective is lower than or equal to
0.5: fIF < 0.5. Considering this constraint we are still able to express
the analytical Pareto set for this test case by restricting the unconstrained
DTLZ5 Pareto set (given by {x € [0,1]% 29 = 73 = 24 = 75 = 25 = 0.5}) to
the points where z; < 0.5. Indeed, x; living in [0, 1], cos(0.57z1) < 0.5 <
x1 € [0, 05]

Appendix B. Mission overview

The following Fig. B.9 is an overview of the mission used in the drone
design test case. This mission is the same as in [16].
Appendix C. Additional result figures

This section presents additional figures: Fig. C.10 for the ZDT1 test case
and Fig. C.11 relative to DTLZ5 test case.
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Table A.10: Expressions of functions g and h.

Problem u(z) v(w)
ZDT1 |1+ d?lizz i 11— IZZX )
ZDT2 | 1+ d?h:g..,d% 1! i?g )ye
ZDT3 |1+ = ) PRI —\/ ifg ) _ {;Z)x) sin(10m f7F ()
DTLZ5 | S (1 — 0.5) -
i

Table A.11: Expressions of the low fidelity analytical functions and constraint.

Problem L (z) () Constraint
ZDT1 0.9z, + 0.1 (0.8u(z) — )( 2v(x) +0.2) -
ZDT2 0.82; + 0.2 (0.9u(z) + 0.2)(L1v(z) — 0.2) -
ZDT3 0.75z1 + 0.25 u(z)(1.250(z) — 0.25) -

DTLZ5 | (1 +0.8u(zg))cos(0.5mxy) | (14 1.1u(zg))sin(0.5mz1) H(z) <0
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Figure B.9: Mission overview (4 control points)

Appendix D. Additional result tables

In this section we gather additional results for the analytical test cases
(Table D.12 and Table D.13). These results concern the means of the hyper-
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Figure C.10: 2F (multi-fidelity) predicted Parcto front outperforms 1F (mono-fidelity)
predicted Pareto front (a) (IGD value divided by 13.05 on this specific run and by 7.64 in
average) and 2F (multi-fidelity) database Pareto front (¢) outperforms 1F (mono-fidelity)
database Pareto front (b) (IGD value divided by 2.54 on this specific run and by 1.7 in
average), illustration on one of the ten ZDT1 runs. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

volume and /G DT metrics over the analytical test cases.
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Figure C.11: 2F (multi-fidelity) predicted Pareto front outperforms 1F (mono-fidelity)
predicted Pareto front (a) (IGD value divided by 23.06 on this specific run and by 22.82 in
average) and 2F (multi-fidelity) database Pareto front (c¢) outperforms 1F (mono-fidelity)
database Pareto front (b) (IGD value divided by 5.28 on this specific run and by 3.28 in
average), illustration on one of the ten DTLZ5 runs. (For interpretation of the colors in
the figure(s), the reader is referred to the web version of this article.)
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Table D.12: Mean and standard deviation (between parenthesis) of the hypervolume metric
for analytical test cases over the 10 runs. The closest values to the reference hypervolume

values are indicated in bold.

ZDT1 ZDT2 ZDT3 | DTLZ5
Reference Pareto front 1.1014 0.7683 1.6365 0.3545
MO-SEGO database Pareto front 0.6012 0.3820 0.5457 0.1335
(0.2358) | (0.0.1306) | (0.3926) | (0.1004)

~ MO-SEGO predicted Pareto front | 1.0395 | 0.5920 | 0.6845 | 0.3900
(0.2177) | (0.2277) | (0.4291) | (0.0856)
MFMO-SEGO database Pareto front | 0.8230 0.2085 1.4082 0.2896
(0.0650) | (0.2330) | (0.1340) | (0.0315)

" MFMO-SEGO predicted Parcto front | 1.0932 | 0.8456 | 1.4628 | 0.3496
(0.0209) | (0.1719) | (0.1063) | (0.0066)

Table D.13: Mean and standard deviation (between parenthesis) of the IGD™ metric for
analytical test cases over the 10 runs. The lowest values are indicated in bold.

ZDT1 ZDT2 ZDT3 | DTLZ5
Reference Pareto front 0 0 0 0

MO-SEGO database 0.2742 0.2339 0.8470 0.1387
(0.1896) | (0.1191) | (0.6482) | (0.0809)

- MO-SEGO predicted | 0.0666 | 0.1107 | 0.6848 | 0.0120
(0.0714) | (0.1445) | (0.5346) | (0.173)
MFMO-SEGO database | 0.1374 0.6493 0.0942 0.0350
(0.0429) | (0.4508) | (0.0651) | (0.0181)

- MFMO-SEGO predicted | 0.0081 | 0.0211 | 0.0763 | 0.0030
(0.0067) | (0.0495) | (0.0527) | (0.0017)
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