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Main Existing Datasets for Open Brain Research on Humans

Baptiste Couvy-Duchesne ©, Simona Bottani, Etienne Camenen,

Fang Fang, Mulusew Fikere ®, Juliana Gonzalez-Astudillo ©,

Joshua Harvey ®, Ravi Hassanaly, Irfahan Kassam ©, Penelope A. Lind ©,
Qianwei Liu, Yi Lu, Marta Nabais, Thibault Rolland, Julia Sidorenko,
Lachlan Strike ®, and Margie Wright

Abstract

Recent advances in technology have made possible to quantify fine-grained individual differences at many
levels, such as genetic, genomics, organ level, behavior, and clinical. The wealth of data becoming available
raises great promises for research on brain disorders as well as normal brain function, to name a few,
systematic and agnostic study of disease risk factors (e.g., genetic variants, brain regions), the use of natural
experiments (e.g., evaluate the effect of a genetic variant in a human population), and unveiling disease
mechanisms across several biological levels (e.g., genetics, cellular gene expression, organ structure and
function). However, this data revolution raises many challenges such as data sharing and management, the
need for novel analysis methods and software, storage, and computing.

Here, we sought to provide an overview of some of the main existing human datasets, all accessible to
researchers. Our list is far from being exhaustive, and our objective is to publicize data sharing initiatives and
help researchers find new data sources.

Key words Genetic, Methylation, Gene expression, Brain MRI, PET, EEG/MEG, Omics, Electronic
health records, Wearables

1 Aims

We sought to provide an overview and short description of some of
the main existing human datasets accessible to researchers. We hope
this chapter will help publicize them as well as encourage the
sharing of datasets for open science. As much as possible, we tried
to provide practical aspects, such as data type, file size, sample
demographics, study design, as well as links toward data use /trans-
fer agreements. We hope this can help researchers study larger and
more diverse data, in order to advance scientific discovery and
improve reproducibility.

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_24,
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This chapter does not aim to provide an exhaustive list of the
dataset and data types currently available. In addition, the inter-
ested readers may refer to the complementary chapters that focus
on data processing, feature extraction, and existing methods for
their analyses.

2

Introduction

The availability of data used in research is one of the cornerstones of
open science, which contributes to improving the quality, repro-
ducibility, and impact of the findings. In addition, data sharing
increases openness and transparent and collaborative scientific prac-
tices. The global push for open science is exemplified by the recent
publication of UNESCO guidelines [1], the engagement of many
research institutions, and the requirements of some scientific jour-
nals to make data available upon publication. Finally, the sharing
and re-use of data also maximizes the return on investment of the
agencies (e.g., states, charities, associations) that fund the data
collection.

In light of this, our chapter aims at providing a broad (albeit
partial) overview of some of the human datasets publicly available
to researchers. To assist researchers and data managers, we first
describe the different file formats and the size of the different data
types (see Table 1). As many of these data are high-dimensional, the
size of the data can cause storage and computational challenges,
which need to be anticipated before download and analysis. Of
note, some datasets cannot be downloaded or analyzed outside of
a dedicated system/server. This is the case of the UK Biobank
(UKB) exome and whole genome sequencing, whose sheer size
has led to the creation of a dedicated Research Analysis Platform,
accessible (at some cost) by UKB-approved researchers. In addi-
tion, the Swedish registry data is only accessible via national dedi-
cated servers due to the extreme sensitive nature of the data.

This chapter breaks down into sections that focus on each data
type, although the same dataset may be mentioned in several sec-
tions. Beyond a practical writing advantage (each author or group
of authors contributed a section), this also reflects the fact that most
datasets are organized around a central data type. For example, the
ADNI (Alzheimer’s disease Neuroimaging Initiative) focuses on
brain imaging and later included genotyping information. Another
example is the UKB, which released genotyping data of the 500 K
participants in 2017, is now collecting brain MRI (as well as cardiac
and abdominal MRI, whole-body DXA, and carotid ultrasound),
and has recently made available sequencing data. The different
sections also discuss and present the specific data sharing tools
and portals (e.g., LONI for brain imaging, GTEx for gene expres-
sion) or organization of the different fields (e.g., consortia in
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genetics). Every time, we have tried to include the largest dataset
(s) available, as well as the commonly used ones, although the
selection may be subjective and reflect the authors’ specific interests
(e.g., age or disease groups).

All datasets are listed in a single table (see Table 2), which
includes information about country of origin, design (e.g., cross-
sectional, longitudinal, clinical, or population sample), and age
range of the participants. Unless specified, the datasets presented
include male and female participants, although the proportion may
differ depending on the recruitment strategy and disease of interest.
In addition, the table lists (and details) the different data types that
have been collected on the participants. We have only focused on a
handful of data types: genetic data (including twin/family samples,
genotyping, and exome and whole genome sequencing), genomics
(methylation and gene expression), brain imaging (MRI and PET),
EEG/MEGQG, electronic health records (hospital data and national
registry), as well as wearable and sensor data. However, we have
included additional columns “Other omics” and “Specificities” that
list other types of data being collected, such as proteomics, meta-
bolomics, microRNA, single-cell sequencing, microbiome, and
non-brain imaging.

Our main table (see Table 2) also includes the URLs to the
dataset websites and data transfer/agreement. From our experi-
ence, data access can take between an hour and up to a few months.
The agreements almost always require a review of the project and to
acknowledge the data collection team and funding sources (e.g.,
under the form of a byline, a paragraph in the acknowledgment,
and more rarely co-authorships). Standard restrictions of use
include that the data cannot be redistributed and that the users
do not attempt to identify participants. Specific clauses are often
added depending on the nature of data and the specific laws and
regulations of the countries it originates from.

There is a growing scientific and ethical discussion about the
representativity of the datasets being used in research. Researchers
should be aware of the biases present in some datasets (e.g.,
“healthy bias” in the UKB [2]), which should be taken into account
in study design (e.g., analysis of diverse ancestry being collected in
genetics [3]), when reporting results [2, 4] and evaluating algo-
rithms [5, 6]. Overall, our (selected) list exemplifies the need for
datasets from under-represented countries or groups of individuals
(e.g., disease, age, ancestry, socioeconomic status) [7, 8 ]. Our main
table (see Table 2) will be accessible online, in a user-friendly,
searchable version. Finally, we will also make this table collaborative
(via GitHub https://github.com/baptisteCD/
MainExistingDatasets) in order to grow this resource beyond this
book chapter.


https://github.com/baptisteCD/MainExistingDatasets
https://github.com/baptisteCD/MainExistingDatasets
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We hope this overview could be useful to the readers wanting
to replicate findings, maximize sample size and statistical power,
develop and apply methods that utilize multi-level data, or even
select the most relevant dataset to tackle a research question. We
also hope this encourages the collection of new data shared with the
community while ensuring interoperability with the existing
datasets.

3 Neuroimaging

3.1 Magnetic
Resonance
Imaging (MRI)

Brain magnetic resonance images are 3D images that measure brain
structure (T1w, T2w, FLAIR, DWI, SWI) or function (fMRI). The
different MRI sequences (or modalities) can characterize different
aspects of the brain. For example, T1w and T2w offer the maximal
contrast between tissue types (white matter, gray matter, and cere-
brospinal fluid), which can yield structural/shape/volume mea-
surements. They can also be used in conjunction with an injection
of a contrast agent (e.g., gadolinium) for detecting and character-
izing various types of lesions. FLAIR is also useful for detecting a
wide range of lesions (e.g., multiple sclerosis, leukoaraiosis, etc.).
SWI focuses on the neurovascular system, while DWI allows mea-
suring the integrity of the white matter tracts. Functional MRI
measures BOLD (blood oxygen level dependent) signal, which is
thought to measure dynamic oxygen consumption in the different
brain regions. Of note, fMRI consists of a series of 3D images
acquired over time (typically 5-10 min).

Brain MRI is available as a series of DICOM files (brain slices,
traditional format of the MRI machines) or a single NIfTT (single
3D image) format (see Table 1). The two formats are roughly
equivalent, and most image processing pipelines allow both data
sources as input. MR images are composed of voxels (3D pixel),
and their size (e.g., 1 x 1 x 1 mm) corresponds to the image
resolution.

In practice, most MR images are archived and shared via
web-based applications and more rarely using specific software
(e.g., UKB). The two major web platforms are XNAT (eXtensible
Neuroimaging Archive Toolkit) [9], an open-source platform
developed by the Neuroinformatics Research Group of the
Washington University School of Medicine (Missouri, (1, 2)), and
IDA (Image and Data Archive) created by the Laboratory of Neu-
rolmaging of the University of South California (LONI, https: //
loni.usc.edu/). Of note, XNAT also allows to perform some image
processing [9].

The neuroimaging community has developed BIDS (Brain
Imaging Data Structure), a standard for MR image organization
to accommodate multimodal acquisitions and facilitate processing.
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In practice, few datasets come in BIDS format, and tools have been
developed to assist with download and conversion (e.g., https: //
clinica.run) [10].

We have listed a handful of datasets (see Table 1), which is far
from being exhaustive but aims at summarizing some of the largest
and/or most used samples. Our selection aims at presenting diverse
and complementary samples in terms of age range, populations,
and country of origin.

First, we have described three clinical elderly samples from the
USA and Australia, with a focus on Alzheimer’s disease and cogni-
tive disorders. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) was launched in 2004 and funded by a partnership
between private companies, foundations, the National Institute of
Health, and the National Institute for Aging. ADNI is a longitudi-
nal study, with data collected across 63 sites in the USA and
Canada. To date, four phases of the study have been funded,
which makes ADNI one of the largest clinical neuroimaging sam-
ples to study Alzheimer’s disease and cognitive impairment in
aging. ADNI collected a wide range of clinical, neuropsychological,
cognitive scales as well as biomarkers, in addition to multimodal
imaging and genotyping data [11]. Sites contribute data to the
LONI, which is automatically shared with approved researchers
without embargo. The breadth of data available and its accessibility
have made ADNI one of the most used neuroimaging samples, with
more than 1000 scientific articles published to date.

The Australian Imaging Biomarkers and Lifestyle Study of
Ageing (AIBL) started in 2006 and has since recruited about
1100 participants over 60 years of age, who have been followed
over several years (see Table 1) [12]. AIBL collected data across the
different Australian states and, similar to ADNI, consisted in an
in-depth assessment of individual cognition, clinical status, genet-
ics, genomics, as well as multimodal brain imaging [12]. In 2010,
AIBL partnered with ADNI to release the AIBL imaging subset and
selected clinical data via the LONI platform. Having the same MRI
protocols and similar fields collected, AIBL represents a great addi-
tion to the ADNI study, by boosting statistical power or allowing
for replication. The full clinical information as well as genetics,
genomics, and wearable data (actigraphy watches) are not available
via the LONI and require a direct application to the Common-
wealth Scientific and Industrial Research Organisation (CSIRO)
(see Table 1).

The Open Access Series of Imaging Studies v3 (OASIS3) is
another longitudinal sample comprising almost 1100 adult partici-
pants (see Table 1) [13]. Its main focus is around aging and neuro-
logical disorders, and the application /approval process is extremely
fast (typically a couple of days). OASIS3 is hosted on XNAT and is
the third dataset to be made available by the Washington University
in Saint Louis (WUSTL) Knight Alzheimer’s Disease Research
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Center (ADRC), although the three datasets are not independent
and cannot be analyzed together. Contrary to ADNI and AIBL,
OASIS3 is a retrospective study that aggregates several research
studies conducted by the WUSTL over the past 30 years. As a
result, the data collected may vary from one individual to the
next, with a variable time window between visits. In that sense,
OASIS3 resembles data from clinical practice, with individual spe-
cific care/assessment pathways.

The UK Biobank (UKB) imaging study [ 14 ] is the largest brain
imaging study to date, with around 50,000 individuals already
imaged (target of 100,000). The imaging wave complements the
wealth of data already collected in the previous waves (see Table 1;
see also Subheading 5 for a description of the full dataset). Consid-
ering the sheer size of the data, the biobank shares raw and pro-
cessed images as well as structured data (measurements of regions
of interest) [15]. Data is accessible upon request by all bona fide
researchers, with certified profiles. Data access requires payment of
a fee, which only aims to cover the biobank functioning costs. The
UKB has developed proprietary tools for a secure download and
data management (https://biobank.ndph.ox.ac.uk/showcase/
download.cgi).

The Adolescent Brain Cognitive Development (ABCD) is an
ongoing longitudinal study of younger individuals, recruited aged
9-10 years and who will be followed over a decade [16, 17]. The
ABCD focuses on cognition, behavior, and physical and mental
health (e.g., substance use, autism, ADHD) of adolescents. It
includes self- and parental rating of the adolescents as well as a
description of the familial environment [17]. ABCD data is hosted
on the NIMH data archive and requires obtaining and maintaining
an NDA Data Use Certification, which requires action from a
signing official (SO) from the researcher institution, as defined in
the NIH eRA Commons (https://era.nih.gov/files/eRA-Com
mons-Roles-10-2019.pdf).

The Enhancing Neurolmaging Genetics through Meta-
Analysis (ENIGMA) disease working groups have stemmed from
the ENIGMA genetics project (see Subheading 5.3) to perform
worldwide neuroimaging studies for a wide range of disorders (e.g.,
major depressive disorder [18], attention-deficit hyperactivity dis-
order [19], autism [20], post-traumatic stress disorder [21],
obsessive—compulsive disorder [22], substance dependence [23],
schizophrenia [24], bipolar disorder [25]) as well as traits of inter-
est (e.g., sex, healthy variation [26]); see [27] for a review. Each
working group may conduct simultaneously several research pro-
jects, proposed and led by its members. Each site of the working
group choses the project(s) they contribute to and performs the
analyses. Of note, most ENIGMA working groups still rely on a
meta-analytic framework, even if recent projects (e.g., machine
learning) now require sharing data onto a central server. Interested
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3.2 Positron
Emission Tomography
(PET-MRI)

researchers can contribute new data and propose analyses or new
image processing pipelines to the different working groups. The
ENIGMA samples typically comprise thousands of participants
(controls and /or cases; see Table 1), and data are inherently hetero-
geneous, each site having specific recruitment and protocols.

Other neuroimaging MRI datasets have focused on twins and
siblings (see Subheading 5.1) and include the Queensland Twin
Imaging (QTIM) study, the Queensland Twin Adolescent Brain
Project, the Vietnam Era Twin Study of Aging (VETSA) [28], and
the Human Connectome Project (HCP) [29] (see Subheading 5.1).
In addition, there are many more datasets available on neurological
disorders, which may be explored via XNAT, LONI, or the Demen-
tias Platform UK (DPUK), to name a few, PPMI (Parkinson’
Progression Markers Initiative) [30], MEMENTO (deterMinants
and Evolution of AlzheiMer’s disEase aNd relaTed disOrder) [31],
EPAD (European Prevention of Alzheimer’s Dementia) [32], and
ABIDE (Autism Brain Imaging Data Exchange) [33, 34].

Positron emission tomography (PET) images are 3D images that
highlight the concentration of a radioactive tracer administered to
the patient. Here, we will focus on brain PET images, although
other parts of the body may also be imaged. The different tracers
allow to measure several aspects of brain metabolism (e.g., glucose)
or spatial distribution of a molecule of interest (e.g., amyloid).

PET relies on the nuclear properties of radioactive materials
that are injected in the patient intravenously. When the radioactive
isotope disintegrates, it emits a photon that will be detected by the
scanner. This signal is used to find the position of the emitted
positrons which allow us to reconstruct the concentration map of
the molecule we are tracing [35].

As for MRI, PET images are available as a series of DICOM files
or a single NIfTT format. They are composed of voxels (3D pixel),
and their size (e.g., 1 x 1 x 1 mm) corresponds to the image
resolution. A BIDS extension has also been developed for positron
emission tomography, in order to standardize data organization for
research purposes.

PET is considered invasive due to the injection of the tracer,
which results in very small risk of potential tissue damage. Overall,
the quantity of radioactive isotope remains small enough to make it
safe for most people, but this limits its widespread acquisition in
research, especially on healthy subjects or in children. Moreover,
PET requires to have a high-cost cyclotron to produce the radio-
tracers nearby because the half-life of the radioisotopes is typically
short (between a few minutes to few hours).

Several tracers are used for brain PET imaging, one of the most
common ones being the '®F-fluorodeoxyglucose (**E-FDG).
'E_FDG concentrates in areas that consume a lot of glucose and
will thus highlight brain metabolism. In practice, **F-FDG PET
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images are often used to study neurodegenerative disease by reveal-
ing hypometabolism that characterizes some dementia
[36, 37]. Other diseases such as epilepsy and multiple sclerosis
can be studied through this modality, but since it is not part of
clinical routine, data are rare, and we are not aware of publicly
available datasets.

In whole-body PET scans, **F-FDG is used to detect tumors,
which consumes a lot of glucose. However, the brain consumes a
lot of glucose as part of its normal functioning, and brain tumors
are not noticeable using this tracer. Instead, clinicians would use
" C-choline that will also accumulate in the tumor area but is not
specifically used by the brain otherwise. In addition to glycemic
radiotracers, oxygen-15 is also used to measure blood flow in the
brain, which is thought to be correlated with brain activity. In
practice, this tracer is less used than "*F-FDG because of its very
short half-life. Other tracers are used to show the spatial concentra-
tion of specific biomarkers: for instance, '*F-florbetapir (AV45),
'8E_flutemetamol (Flute), Pittsburgh compound B (PiB), and
'8E_florbetaben (FBB) are amyloid tracers used to highlight
B-amyloid aggregation in the brain, which is a maker of Alzheimer’s
disease. Finally, ''C-5-hydroxytryptamine (5-HT) neurotransmit-
ter is used to expose the serotonergic transmitter system.

We have made a non-exhaustive list of publicly available data-
sets containing PET scans with different tracers. Most datasets
focused on neurodegenerative disorders and also collected brain
MRI (see previous section). The Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) is one of the largest datasets with PET images
for Alzheimer’s disease [11]. ADNI used F-FDG-PET as well as
PET amyloid tracers: FBB, AV45, and PiB. The Australian Imaging
Biomarkers and Lifestyle Study of Ageing (AIBL) only collected
amyloid tracers of PET images: PiB, AV45, and Flute [12]. The
Open Access Series of Imaging Studies v3 (OASIS3) includes PET
imaging from three different tracers, PIB, AV45, and
BEEDG [13].

In addition to those neurodegenerative datasets, PET is avail-
able in the Lundbeck Foundation Centre for Integrated Molecular
Brain Imaging (CIMBI) database and biobank established in 2008
in Copenhagen, Denmark [38]. CIMBI shares structural MRI,
PET, genetic, biochemical, and clinical data from 2000 persons
(around 1600 healthy subjects and almost 400 patients with various
pathologies). Tracer used for PET is the *'C-5-HT which is rele-
vant to study the serotonergic transmitter system. Applications to
access the data can be made on their website by completing a form
(see Table 2).

The ChiNese brain PET Template (CNPET) dataset has been
developed by the Medical Imaging Research Group (https://
biomedimg-dlut-edu.cn/), from Dalian University of Technology
(China) [39]. The database contains 116 records of **F-FDG-PET
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from healthy patients, which has been used to make a Chinese
population-specific statistical parametric mapping (SPM, i.e., aver-
age template used for PET processing). The data used to build the
PET brain template have been released and are available on Neuro-
Imaging Tools and Resources Collaboratory (NITRC, https://
www.nitrc.org/) platform.

4 EEG/MEG

Electroencephalography (EEG) measures the electrical activity of
the brain [40—42]. Signals are captured through sensors distributed
over the scalp (noninvasive) or by directly placing the electrodes on
the brain surface, a procedure that requires a surgical intervention
[43]. This technique is characterized by its high temporal resolu-
tion, enabling the study of dynamic processes such as cognition or
the diagnosis of conditions such as epilepsy. Yet, EEG signals are
nonstationary and have a non-linear nature, which makes it difficult
to get useful information directly in the time domain. Nonetheless,
specific patterns can be extracted using advanced signal processing
techniques.

Another technique that captures brain activity is magnetoen-
cephalography (MEG). This technology maps the magnetic fields
induced above the scalp surface. Similar to EEG, MEG provides
high time resolution, but it is preferentially sensitive to tangential
fields from superficial sources [44, 45 ]. This could be considered as
an advantage, since magnetic fields are less sensitive to tissue con-
ductivities, facilitating source localization. However, MEG instru-
mentation is more expensive and not portable [46, 47].

During signal recording, undesirable potential coming from
sources other than the brain may alter the quality of the signals.
These artifacts should be detected and removed in order to improve
pattern recognition. Multiple methods could be applied depending
on the artifact to be eliminated: re-referencing with common aver-
age reference (CAR), ICA decomposition to remove other physio-
logical sources as eye movements or cardiac components, notch
filter to get rid of power line noise, and pass-band filtering to keep
the physiological rhythms of interest, among others [48-
51]. Other spatial filters such as common spatial pattern (CSP)
for channel selection or filter bank CSP (FBCSP) for band elimina-
tion are largely used in motor decoding [52, 53].

Other signal processing tools allow the user to extract features
describing relevant information contained in the signals. Subse-
quently, those patterns may be used as input for a classification
pipeline. The target features vary according to the condition
under study. Generally, the domain of clinical diagnostics focuses
either on event-related potentials (ERP) or on spectral content of
the signal [54, 55]. The first refers to voltage fluctuations associated
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with specific sensory stimuli (e.g., P300 wave) or task, like motor
preparation and execution, covert mental states, or other cognitive
processes. The amplitude, latency, and spatial location of the result-
ing waveform activity reveal the underlying mental state [56]. On
the other side, spectral analysis refers to the computation of the
energy distribution of the signals in the frequency domain. Most
spectral estimates are based on Fourier transform; this is the case of
non-parametric methods, such as Welch periodogram estimation,
which based their computation on data windowing [57].

Another approach is to study the interactions across sources
(inferring connection between two electrodes by means of tempo-
ral dependency between the registered signals), which is known as
functional connectivity. Multiple connectivity estimators have been
developed to quantify this interaction [58]. Through these func-
tional interactions, complex network analysis can also be implemen-
ted, where sensors are modeled as nodes and connectivity
interactions as links [59-61].

EEG and MEG are essential to evaluate several types of brain
disorders. One of the most documented is epilepsy, based on
seizure detection and prediction [62—64]. Other neurological con-
ditions can be characterized like Alzheimer’s disease, associated
with changes in signal synchrony [65, 66]. Furthermore, motor
task decoding in brain—computer interfaces (BCI) offers a
promising tool in rehabilitation [67]. This type of data, from
healthy to clinical cases, can be found on multiple open-access
repositories, such as Zenodo (https://zenodo.org) or PhysioNet
((1)), as well as via collaborative projects such as the BNCI Horizon
2020 (http: //bnci-horizon-2020.eu ), which gathers a collection of
BCI datasets (see Table 2). These repositories are also valuable in
that they contribute to establishing harmonization procedures in
processing and recording. All dataset-collected informed consent
and data were anonymized to protect the participants’ privacy.
Moreover, regulations may vary from one country to another,
which require, for example, studies to be approved by ethics com-
mittees. Additionally, licensing (that define copyrights of the data-
set) must be considered depending on the intended use of the
open-access datasets.

Data come in different formats according to the acquisition
system or the preprocessing software. The most common formats
for EEG are .edf, .gdf] .ceg, .csv, or .mat files. For MEG, it is very
often .fit and .bin (see Table 1). The different formats can create
challenges when working with multiple datasets. Luckily, some
tools have been developed to handle this problem, for example,
FieldTrip [68] or Brainstorm [69] implemented in MATLAB, or
the Python modules mne [70] and moabb [71]. Of note, these
tools also contain sets of algorithms and utility functions for analysis
and visualization.
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5 Genetics

5.1 Twin Samples

Twins provide a powerful method to estimate the importance of
genetic and environmental influences on variation in complex traits.
Monozygotic (MZ, aka identical) twins develop from a single
zygote and are (nearly) genetically identical. In contrast, dizygotic
(DZ, aka fraternal) twins develop from two zygotes and are, on
average, no more genetically related than non-twin siblings. In the
classical twin design, the degree of similarity between MZ and DZ
twin pairs on a measured trait reveals the importance of genetic or
environmental influences on variation in the trait. Twin studies
often collect several different data types, including brain MRI
scans, assessments of cognition and behavior, self-reported mea-
sures of mental health and wellbeing, as well as biological samples
(e.g., saliva, blood, hair, urine). Datasets derived from twin studies
are text-based and include phenotypic data and background vari-
ables (e.g., individual and family IDs, sex, zygosity, age). Notably,
the correlated nature of twin data (i.e., the non-independence of
participants) should be considered during analysis as it may violate
statistical test assumptions [72, 73].

Raw data is typically stored locally by the data owner, with
de-identified data available upon request. In larger studies, data is
stored and distributed through online repositories. Recently, the
sharing of publicly available de-identified data with accompanying
publications has become commonplace.

Several extensive twin studies combine imaging, behavioral, or
biological data (see Table 2). These studies cover the whole life span
(STR) as well as specific age periods, for example, children /adoles-
cents (QTAB), young (QTIM, HCP-YA), middle-aged (VETSA),
or older (OATS) adults.

The Swedish Twin Registry (STR) was established in the late
1950s with the primary aim to explore the effect of environmental
factors (e.g., smoking and alcohol) on disorders [74]. Data were
first collected through questionnaires and interviews with the twins
and their parents. Later, the STR incorporated data from biobanks,
clinical blood chemistry assessments, genotyping, health checkups,
and linkages to various Swedish national population and health
registers [74]. The STR is now one of the largest twin registers in
the world [75] with information on more than 87,000 twin pairs
(https: //ki.se /en /research /the-swedish-twin-registry). It has
been used extensively for the research of health and illness, includ-
ing various neurological disorders, including dementia [76], Par-
kinson’s disease [77], and motor neuron disease [78].

The Queensland Twin Adolescent Brain (QTAB, 2015—pres-
ent) was enabled through funding from the Australian National
Health and Medical Research Council (NHMRC). It focuses on
the period of late childhood /early adolescence, with brain imaging,
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cognition, mental health, and social behavior data collected over
two waves (age 9-14 years at baseline, N = 427). A primary
objective is to chart brain changes and the emergence of depressive
symptoms throughout adolescence. Biological samples (blood,
saliva), sleep (self-report), and motor activity measures (see
Section 8) were also collected. Data is available from the project
owners upon request.

The Queensland Twin IMaging (QTIM, 2007-2012) study,
funded through the National Institutes of Health (NIH) and
NHMRC, was a collaborative project between researchers from
QIMR Berghofer Medical Research Institute, the University of
Queensland, and the University of Southern California, Los
Angeles. Brain imaging was collected in a large genetically informa-
tive population sample of young adults (18-30 years, N > 1200)
for whom a range of behavioral traits, including cognitive function,
were already characterized (as a component of the Brisbane Ado-
lescent Twin Study, QIMR Berghofer Medical Research Institute
[79]). Notably, the dataset includes a test-retest neuroimaging
subsample (# = 75) to estimate measurement reliability. Data is
available from the project owners upon request.

The Human Connectome Project Young Adult (HCP-YA,
2010-2015) study, funded by the NIH, is based at Washington
University, University of Minnesota, and Oxford University. Inves-
tigators spent 2 years developing state-of-the-art imaging methods
[29] before collecting high-quality neuroimaging, behavioral, and
genotype data in ~1200 healthy young adult twins and non-twin
siblings (22-35 years). HCP-YA data has been used widely in twin-
based analyses, examining genetic influences on network connec-
tivity [80], white matter integrity [81], and cortical surface area/
thickness [82]. Open-access HCP-YA data is available from the
Connectome  Coordination  Facility following registration
(https: //db.humanconnectome.org), with additional data use
terms applicable for restricted data (e.g., family structure, age by
year, handedness).

The Vietnam Era Twin Study of Aging (VETSA, 2003—pres-
ent), funded by the NIH, started as a study of cognitive and brain
aging but has since pivoted to the early identification of risk factors
for mild cognitive impairment and Alzheimer’s disease [28]. In
addition to neuroimaging and cognitive data, the VETSA study
includes health, psychosocial, and neuroendocrine data collected
across three waves (baseline mean age 56 years, follow-up waves
every 5-6 years) [83]. VETSA data is available following registra-
tion (https://medschool.ucsd.edu/som/psychiatry/research/
VETSA /Researchers/Pages/default.aspx).

The Older Australian Twins Study (OATS, 2007—-present)
[84], funded by the NHMRC and Australian Research Council, is
a longitudinal study of genetic and environmental contributions to
brain aging and dementia. The project includes neuroimaging and
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5.2 Molecular
Genetics

5.2.1

The UK Biobank

cognitive data collected across four waves (baseline mean age
71 years, follow-up waves every 2 years). OATS was expanded in
wave 2 to include positron emission tomography (PET) scans to
investigate the deposition of amyloid plaques in the brain. Data is
available from the project owners upon request.

There is a wealth of twin studies worldwide in addition to those
mentioned here (see [85] for an overview). Foremost is the Nether-
lands Twin Registry [86], a substantial data resource with dedicated
projects investigating neuropsychological, biomarker, and behav-
ioral traits. In addition, several extensive family/pedigree imaging
studies exist, including the Genetics of Brain Structure and Func-
tion study [87] and the Diabetes Heart Study-Mind Cohort
[88]. Further, the previously mentioned ABCD study [89] includes
embedded twin subsamples.

Twin datasets have been used to estimate the heritability (the
proportion of observed variance in a phenotype attributed to
genetic variance) of phenotypes derived through machine learning,
such as brain aging [90-92] and brain network connectivity
[93]. Further, machine learning models have been trained to dis-
criminate between MZ and DZ twins based on dynamic functional
connectivity [94] and psychological measures [95]. In addition,
machine learning has been used to predict co-twin pairs based on
functional connectivity data [96].

The UK Biobank (UKB) is one of the largest population-based
cohorts, comprising nearly half a million adult participants (aged
over 40 years at the time of recruitment), recruited across over
20 assessment centers in the UK. The UKB resource is accessible
to the research community through application (https://www.
ukbiobank.ac.uk /enable-your-research /apply-for-access) and, as
of'the end 0f 2021, counted more than 28,000 registered approved
researchers worldwide. In 2021, UKB launched a cloud-based
Research Analysis Platform (RAP), which provides computational
tools for data visualization and analysis, thereby aiming to democ-
ratize access for researchers lacking such infrastructure. The asso-
ciated fees for using the UKB resource include the yearly tier-based
access fees, depending on the type of data accessed, as well as the
cost of running the analyses and storing the generated data, while
the storage of the UKB dataset itself is provided free of charge.
Certain emerging datasets (e.g., whole exome and genome
sequences) will be only available for analysis through the platform,
both due the enormous size and tighter regulation around those
datasets. Upon publication, researchers are required to return their
results, including the methodology and any essential derived data
fields, back to the UKB, which are subsequently incorporated into
the resource in order to promote reproducible research.
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The cohort is deeply phenotyped with thousands of traits
measured across multiple assessments. The initial assessment visit
took place from 2006 to 2010, where ~502,000 participants con-
sented to participate (each keeping the right to withdraw their
consent and be removed from the study at any time), completed
the interview, filled questionnaires, underwent multiple measure-
ments, and donated blood urine and saliva samples (see https://
biobank.ndph.ox.ac.uk/showcase /ukb/docs /Reception.pdf).
The first repeat assessment was conducted in 2012-2013 and
included approximately 120,000 participants. Next, the partici-
pants were invited to attend the imaging visits: the initial (2014+)
and the first repeat imaging visit (2019+). So far, 50,000 initial
imaging visits have been conducted, with a target to image 100,000
participants (10,000 repeat). The imaging data includes brain
[14, 97], heart [98], and abdominal MRI scans [99], with both
bulk images and image-derived measures available for analysis, as
well as retinal OCT images, whole body MRI, and carotid ultra-
sound [ 100]. Finally, follow-up information from the linked health
and medical records is regularly collected and updated in the
resource, including data for COVID-19 research. The showcase
of the available anonymous summary information is available at
https: //biobank.ndph.ox.ac.uk /showcase /.

The interim release of the genotyping data comprised
~150,000 samples and was released in 2015, followed by the full
release of 488,000 genotypes in the middle of 2017. The available
genotype data included variant calls from UK BiLEVE and UK
Biobank Axiom arrays (autosomes, sex chromosomes, and mito-
chondrial DNA) as well as phased haplotype values and imputation
to a combined panel of Haplotype Reference Consortium (HRC)
and the merged UKIO0K and 1000 Genomes phase 3 reference
panels [101], also known as v2 release. Subsequently, the v2 impu-
tation was replaced by imputation to HRC and UK10K haplotype
resource only (v3), after a problem was discovered for the set
imputed to UKIOK + 1000 Genomes panel (https://biobank.
ndph.ox.ac.uk/showcase /label.cgi?id=100319). The genotypes of
approximately 3% of the participants remained not assayed due to
DNA processing issues. To note, ~50,000 individuals included in
the interim genotype release were involved in the UK Biobank
Lung Exome Variant Evaluation (UK BiLEVE) project, and their
genotypes were assayed on a different but very closely related array
than the rest of the participants (https://biobank.ctsu.ox.ac.uk/
crystal /ukb /docs/genotyping_qc.pdf). The UK BiLEVE focused
on genetics of respiratory health, and the participants were selected
based on lung function and smoking behavior [102].

Whole exome sequencing (WES) and whole genome sequenc-
ing (WGS) have been funded through the collaboration between
the UK Biobank and biotechnology companies Regeneron and
GlaxoSmithKline (GSK). The first UKB release of WES data
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5.3 Genetic
Consortia

53.1 ENIGMA
Consortium

included 50,000 participants, prioritized based on the availability of
MRI data, baseline measurements, and linked hospital and primary
care records and enriched in patients diagnosed with asthma
[103]. Recently (November 2021), the new data release included
N = 200,000 WGS and N = 450,000 WES [104]. WGS for the
remaining participants is currently underway. For all the past and
future timelines, see https://biobank.ctsu.ox.ac.uk/showcase/
exinfo.cgi?src=timelines_all.

Most of the UKB participants reported their ethnic back-
ground as White British/Irish or any other white background
(~94%), which was coherent with the observed genetic ancestries
[101]. For example, the ancestries identified from genetic markers
showed a predominant European ancestry (N ~ 464,000), followed
by South Asian (~12,000), African (~9000), and East Asian ances-
try (~2500) [105]. As a population-based cohort, the UKB mostly
comprises unrelated participants. While the pedigree information
was not collected as a part of assessment, the genetic analysis has
identified approximately 100,000 pairs of close relatives (third
degree or closer, including 22,000 sibling pairs and 6000 parent—
offspring pairs) [101]. This amount of relatedness is, however,
larger than expected for a random sample from a population and
reflects a participation bias toward the relatives of the participants.
Moreover, the UKB sample is, on average, healthier, more
educated, and less deprived than the general UK population [2].

The Enhancing Neurolmaging Genetics through Meta-Analysis
(ENIGMA) consortium was formed in 2009 with the goal of
conducting large-scale neuroimaging genetic studies of human
brain structure, function, and disease [27]. Currently, more than
2000 scientists from 400 institutions around the world with neu-
roimaging (including structural and functional MRI) and electro-
encephalography (EEG) data have joined the consortium and
formed 50 working groups that focus on different psychiatric and
neurological disorders as well as healthy variation, method devel-
opment, and genomics [27].

To date, the ENIGMA Genetics Working Group (for an over-
view, see [106]) have conducted genome-wide association meta-
analyses for hippocampal and intracranial volume [107-109], sub-
cortical volume [110, 111], and cortical surface area and thickness
[112]. The ENIGMA Genetics Working Group provides research-
ers imaging and genetic protocols to enable each group to conduct
their own association analyses before contributing summary statis-
tics to the meta-analysis. While these genome-wide association
studies have focused on structural phenotypes and the analysis of
common single nucleotide polymorphisms (SNPs), the ENIGMA
EEG Working Group have recently conducted a genome-wide
association meta-analysis for oscillatory brain activity [113], and
the ENIGMA Copy Number Variant (CNV) Working Group,
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which formed in 2015, is currently investigating the impact of rare
CNVs beyond the 22ql1.2 locus on cognitive, neurodevelopmen-
tal, and neuropsychiatric traits [114].

The sample sizes of the ENIGMA Genetics and CNV Working
Groups continuously increase as new cohorts with MRI and genetic
data join the consortium. As of 2020, the CNV Working Group
sample comprises of 38 ENIGMA cohorts [114], while the latest
Genetics Working Group genome-wide association meta-analysis
[112] consisted of a discovery sample of 49 ENIGMA cohorts and
the UK Biobank (N = 33,992 individuals of European ancestry), a
replication sample of 2 European ancestry cohorts (N = 14,729
participants), and 8 ENIGMA cohorts of non-European ancestry
(N = 2994 participants). This meta-analysis identified
199 genome-wide significant variants that were associated with
either the surface area or thickness of the whole human cortex
and 34 cortical regions with known functional specializations.
They also found evidence that the genetic variants that influence
brain structure also influence brain function, such as general cogni-
tive function, Parkinson’s disease, depression, neuroticism,
ADHD, and insomnia [112].

Importantly, all imaging, EEG, and genetic (imputation and
association analysis) protocols are freely available from the
ENIGMA website (http://enigma.ini.usc.edu/). However, to
access the summary statistics for each published genome-wide asso-
ciation meta-analysis, researchers need to complete an online Data
Access Request Form (http://enigma.ini.usc.edu/research/down
load-enigma-gwas-results /). If a researcher wants to propose new
genetic analyses that cannot be conducted with these publicly
available summary statistics, they need to become a member of
ENIGMA. Researchers can join the consortium by
(a) contributing a cohort with MRI and genetic data,
(b) collaborating with another research group that does have
MRI and genetic data, or (¢) contributing their expertise in geno-
mic or methodological areas that are inadequately addressed by
other consortium members. Of note, since storage of the MRI
and genetic data is not centralized, each ENIGMA cohort can
choose to contribute or not to new proposed analyses.

The Psychiatric Genomics Consortium (PGC) began in 2007. The
central idea of the PGC is to use a global cooperative network to
advance genetic discovery in psychiatric disorders in order to iden-
tify biologically, clinically, and therapeutically meaningful insights.
To date, the PGC is one of the largest, most innovative, and
productive consortia in the history of psychiatry. The Consortium
now consists of workgroups on 11 major psychiatric disorders, a
Cross-Disorder Workgroup, and a Copy-Number Variant Work-
group. In addition, the PGC provides centralized support to the
PGC researchers with a Statistical Analysis Group, Data Access
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Fig. 1 PGC discoveries over time

Committee, and Dissemination and Outreach Committee. To
increase ancestral diversity, the Consortium established the Cross-
Population Workgroup in 2017 for outreach and developing/
deploying trans-ancestry analysis methods [115]. The Consortium
outreach expands ancestry diversity by adding non-European cases
and controls. The PGC continues to unify the field and attract
outstanding scientists to its central mission (800+ investigators
from 150+ institutions in 40+ countries). PGC work has led to
320 papers, many in high-profile journals ( Nature 3, Cell 5, Science
2, Nat Genmet 27, Nat Newrosci 9, Mol Psych 37, Biol Psych
25, JAMA Psych 12). The tull results from all PGC papers are freely
available, and the findings have fueled analyses by non-PGC inves-
tigators (sample sizes and findings for eight major psychiatric dis-
orders are summarized in Fig. 1)

Computation and data warchousing for the PGC are
non-trivial. The PGC uses the Netherlands “LISA” computing
cluster. LISA compute cluster in Amsterdam which is used for
most analyses (occasional analyses are done on other clusters, but
90% of PGC computation is done on LISA). The core software is
the RICOPILI data analytic pipeline [116]. This pipeline has
explicit written protocols for uploading data to the cluster in the
Netherlands that one uses for quality control, imputation, analysis,
meta-analysis, and bioinformatics. The actual mega-analyses are
conducted by PGC analysts under the direction of a senior statisti-
cal geneticist, geneticist, or highly experienced analyst.



5.4 Exome and
Whole Genome
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Omics for Precision
Medicine (TOPMed)
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The PGC has a proven commitment to open-source, rapid
progress science. All PGC results are made freely available as soon
as a primary paper is accepted (GWAS summary statistics available at
https: //www.med.unc.edu/pgc/download-results /). The research-
ers can obtain access to the individual-level data either through
controlled-access repositories (e.g., the Database of Genotypes and
Phenotypes, dbGaP, or the European Genome-phenome Archive)
or via the PGC streamlined process for secondary data analyses
(https: //www.med.unc.edu/pgc/shared-methods/data-access-por
tal/) [117].

PGC analyses have always been characterized by exceptional
rigor and transparency. PGC analysts will enhance this by publish-
ing markdown notebooks for all papers on the PGC GitHub site
(https: //github.com/psychiatric-genomics-consortium) to enable
precise reproduction of all analyses (containing code, documenta-
tion of QC decisions, analyses, etc.).

The Trans-Omics for Precision Medicine (TOPMed) program,
sponsored by the National Institutes of Health (NIH) National
Heart, Lung, and Blood Institute (https://topmed.nhlbi.nih.
gov), is part of a broader Precision Medicine Initiative, which
aims to provide disease treatments tailored to an individual’s
unique genes and environment. TOPMed contributes to this Ini-
tiative through the integration of whole genome sequencing
(WGS) and other omics data. The initial phases of the program
focused on whole genome sequencing of individuals with rich
phenotypic data and diverse backgrounds. The WGS of the
TOPMed samples was performed over multiple studies, years, and
sequencing centers [118, 119]. Available data are processed peri-
odically to produce genotype data “freezes.” Individual-level data is
accessible to researchers with an approved dbGaP data access
request (https://topmed.nhlbi.nih.gov/data-sets), via Google
and Amazon cloud services. More information about data availabil-
ity and how to access it can be found on the dataset page (https://
topmed.nhlbi.nih.gov/data-sets).

As of September 2021, TOPMed consists of ~180 K partici-
pants from >85 different studies with varying designs. Prospective
cohorts provide large numbers of disease risk factors, subclinical
disease measures, and incident disease cases; case-control studies
provide improved power to detect rare variant effects. Most of the
TOPMed studies focus on HLBS (heart, lung, blood, and sleep)
phenotypes, which leads to 62 K (~35%) participants with heart
phenotype, 50 K (~28%) with lung data, 19 K (~11%) with blood,
4 K (~2%) with sleep, and 43 K (~24%) tor multi-phenotype cohort
studies. TOPMed participants’ diversity is assessed using a combi-
nation of self-identified or ascriptive race/ethnicity categories and
observed genetics. Currently, 60% of the 180 K sequenced


https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/shared-methods/data-access-portal/
https://www.med.unc.edu/pgc/shared-methods/data-access-portal/
https://github.com/psychiatric-genomics-consortium
https://topmed.nhlbi.nih.gov
https://topmed.nhlbi.nih.gov
https://topmed.nhlbi.nih.gov/data-sets
https://topmed.nhlbi.nih.gov/data-sets
https://topmed.nhlbi.nih.gov/data-sets

784

Baptiste Couvy-Duchesne et al.

participants are of non-European ancestry (i.e., 29% African ances-
try, 19% Hispanic/Latino, 8% Asian ancestry, 4% other/multiple /
unknown).

Whole genome sequencing is performed by several sequencing
centers to a median depth of 30% using DNA from blood, PCR-free
library construction, and Illumina HiSeq X technology (https://
topmed.nhlbi.nih.gov/group /sequencing-centers). Randomly
selected samples from freeze 8 were used for whole exome
sequence using Illumina v4 HiSeq 2500 at an average 36.4x
depth. A trained machine learning algorithm with known variants
and Mendelian inconsistent variants is applied by the Informatics
Research Centre for joint genotype calling across all samples to
produce genotype data “freezes” (https: //topmed.nhlbi.nih.gov/
group/irc). In TOPMed data freeze 8 (N ~ 180 K) (https://
topmed.nhlbi.nih.gov/data-sets), variant discovery identified
811 million single nucleotide variants and 66 million short inser-
tion/deletion variants. In the latest data freeze 9 (https: //topmed.
nhlbi.nih.gov/data-sets), variant discovery was initially made on
~206 K samples including data from Centers for Common Disease
Genomics (CCDG). This data was re-subset to ~158,470
TOPMed samples plus 2504 from 1000 Genomes samples were
used for variant re-discovery. Then, a total of 781 million single
nucleotide variants and 62 million short insertion /deletion variants
were identified and passed variant quality controls. These variant
counts in freeze 9 are slightly smaller than that of freeze 8 due to
monomorphic sites in TOPMed samples. A series of data freezes is
being made available to the scientific community as genotypes and
phenotypes via dbGaP (https://www.ncbi.nlm.nih.gov/gap/);
read alignments are available via the Sequence Read Archive
(SRA) and variant summary information via the Bravo variant
server (https: //bravo.sph.umich.edu/freeze8 /hg38 /) and
dbSNP (https: //www.ncbi.nlm.nih.gov/snp/).

TOPMed studies provide unique opportunities for exploring
the contributions of rare and noncoding sequence variants to phe-
notypic variation. For instance, [119] used 53,831 samples from
freeze 5 (https://topmed.nhlbi.nih.gov/data-sets) to investigate
the role of rare variants into mutational processes and recent
human evolutionary history. The recent TOPMed freeze 8 were
used (together with WGS from the UK Biobank) to assess effect
size of casual variants for gene expression using 72 K African
American and ~298 K European American [120]. Similarly, a
large set of multi-ethnic samples from freeze 5, 8, and 9 were
used to develop comprehensive tools such as the STAAR and
SCANG pipelines, which are used to identify noncoding rare var-
iants [121] and to build predictive models for protein abundances
[122] and discovery of causal genetic variants for different pheno-
types [123, 124]. Overall, the Trans-Omics for Precision Medicine
(TOPMed) program has the potential to help in improving
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diagnosis, treatment, and prevention of major diseases by adding
WGS and other “omics” data to existing studies with deep

phenotyping.

6 Genomics

6.1 Methylation

DNA methylation (DNAm) is a covalent molecular modification by
which methyl groups (CHjz) are added to the DNA. In
vertebrates—and eukaryotes in general—the most common meth-
ylation modification occurs at the fifth carbon of the pyrimidine
ring (5mC) at cytosine—guanine dinucleotides (CpG). Most bulk
genomic methylation patterns are stable across cell types and
throughout life, changing only in localized contexts, for example,
due to disease-associated processes.

There are numerous ways of measuring DNAm at a genome-
wide level, with bisulfite conversion-based methods being the most
popular in the field of epidemiological epigenetics. These methods
consist of bisulfite-induced modifications of genomic DNA, which
results in unmodified cytosine nucleotides being converted to
uracil, while 5mC remain unaffected. Of all these bisulfite
conversion-based  technologies—including  sequencing-based
methods—hybridization arrays are the most widely used, primarily
due to their low cost and high-throughput nature.

The current Illumina Infinium® HumanMethylation450
(or 450 K) and Illumina Infinium® HumanMethylation850 (or E-
PIC) arrays assess around 450,000 and 850,000 methylation sites
across the genome, respectively, covering 96% of the CpG islands
(i.e., genomic regions with high CpG frequency), 92% of the CpG
islands’ shores [125, 126] (<2 kb flanking CpG Islands), and 86%
of the CpG islands’ shelves (<2 kb flanking outward from a CpG
shore), which have been shown to be more dynamic than CpG
islands [127]. Although most current studies have used the 450 K
array [128], the EPIC array covers >90% of the 450 K sites plus
additional CpG sites in the enhancer regions identified by the
ENCODE and FANTOMS projects [129].

After probe hybridization and extension steps, the array is
scanned, and the intensities of the unmethylated and methylated
bead types are measured. DNAm values are then represented by the
ratio of the intensity of the methylated bead type to the combined
locus intensity. These are known as beta () values and are continu-
ous variables between 0 and 1 (Equation 1), although a value of 1 is
impossible to achieve in practice, due to the addition of a stabilizing
a offset (to handle low-intensity signals):
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Equation 1 DNA methylation p values as measured by the
Illumina Infinium® methylation arrays M = methylated inten-
sity, U = unmethylated intensity, @ = arbitrary offset to handle
signals with low readings (usually 100)

M
P=u+U+a )

These raw intensities are then stored in binary IDAT files (one
for each of the red and green channels). The bulk of each file
consists of four fields: the ID of each bead type on the array, the
mean and standard deviation of their intensities, and the number of
beads of each type, generated per sample. This raw data format
allows for flexible use, including differing preprocessing strategies
[130]. However, these files are usually not readily available in public
repositories (e.g., Gene Expression Omnibus [131] or GEO), due
to their large size. For example, a compressed .tar file of IDATSs for a
sample size of around 700 individuals, measured with EPIC arrays,
is about 10 Gb. Instead, researchers usually upload the processed
DNAm p values (following normalization) as compressed .txt or .
csv files with columns representing samples and rows the measured
Joci. This can be a problem for reproducibility, as different research
groups tend to prefer their own preprocessing or normalization
methods—and there are many [ 132]! On this note, there has been a
recent push in the field, for standardization of DNAm array pre-
processing  pipelines, including the user-friendly  Meffil
pipeline [133].

Reproducibility and interpretation of DNAm studies are sub-
ject to additional factors outside of data processing methods. For
comparison, genetic data is (mostly) germline determined and can
be assumed to be randomly assigned with respect to characteristics
of individuals. Thus, a case-control (or cross-sectional) design has
an inference of association through causality and can convey infor-
mation of liability to disease. This contrasts with DNAm data which
is a reversible process influenced by a large range of biological,
technical, and environmental factors (e.g., medication and compli-
cations of the disease itself) and is thus more susceptible to spurious
cryptic association or reverse causation [ 134, 135]. DNAm studies
will therefore benefit from longitudinal designs, both for biomarker
discovery and mechanistic insights [134, 136].

Reed et al. [137] provide one good example of this. Briefly, the
authors generated a DNAm score for body mass index (BMI)
within the ARIES subsample of the Avon Longitudinal Study of
Parents and Children birth cohort (ALSPAC), using effect sizes of
135 CpQG sites from a published meta-analysis of DNAm and BMI
[138]. Using multiple time points for matched mothers and chil-
dren using linear and cross-lagged models to explore the causal
relationship between phenotypic BMI and the DNAm scores, they
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found a strong linear association within time points [137]. How-
ever, when testing for temporal associations, DNAm scores at
earlier time points showed no association with future BMI, indicat-
ing that a DNAm score generated from a reference cross-sectional
study performs better as a biomarker of extant BMI, but poorly as a
predictor for future BMI.

In Table 2, we have compiled a list of the largest and /or most
used DNAm array datasets—including the Genetics of DNA Meth-
ylation Consortium (goDMC), an international collaboration of
human epidemiological studies that comprises >30,000 study par-
ticipants with genetic and DNAm array data [139]. These samples
are usually integrated in larger genetic/epidemiological studies,
except for perhaps the NIH Roadmap Epigenomics Mapping Con-
sortium [140], which was launched with the goal of producing a
public resource of human epigenomic data to catalyze basic biology
and disease-oriented research, and the BLUEPRINT project
[141, 142], which aims to generate at least 100 reference epigen-
omes of distinct types of hematopoietic cells from healthy indivi-
duals and of their malignant leukemic counterparts. Lastly, in
contrast to genetic data, the de-identified DNAm data—either
raw or preprocessed—is typically open access in public repositories
such as GEO [131], or dbGAP [143], or the web portals provided
by the respective projects. However, access to accompanying phe-
notypic data may require additional approval by the managing
committees of each individual project.

Launched in 2010, the Genotype-Tissue Expression (GTEx) proj-
ect is an ongoing effort that aims to characterize the genetic deter-
minants of tissue-specific gene expression [144]. It is a resource
database available to the scientific community, which is comprised
of multi-tissue RNA sequencing (RNA-seq: gene expression) and
whole genome sequence (WGS) data collected in 17,382 samples
across 54 tissue types from 948 postmortem donors (version
8 release). Sample size per tissue ranges from z» = 4 in kidney
(medulla) to #» = 803 in skeletal muscle. The majority of donors
are of European ancestry (84.6%) and male (67.1%) with ages
ranging from 20-70 years old. The primary cause of death for
donors 20-39 years old was traumatic injury (46.4%) and heart
disease for donors 60-70 years (40.9%).

Data is constantly being added to the database using sample
data from the GTEx Biobank. For example, recent efforts have
focused on gene expression profiling at the single-cell level to
achieve a higher resolution understanding of tissue-specific gene
expression and within tissue heterogeneity. As a result, single-cell
RNA-seq (scRNA-seq) data was generated in 8 tissues from
25 archived, frozen tissue samples collected on 16 donors. Further,
the Developmental Genotype-Tissue Expression (dGTEx) project
(https://dgtex.org/) is a relatively new extension of GTEx that was
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launched in 2021 that aims to understand the role of gene expres-
sion at four developmental time points: postnatal (0-2 years of
age), ecarly childhood (2-8 vyears of age), pre-pubertal
(8-12.5 years of age), and post-pubertal (12.5-18 years of age).
It is expected that molecular profiling (including WGS, bulk
RNA-seq, and, for a subset of samples, scRNA-seq) will be per-
formed on 120 relatively healthy donors (approximately 30 donors
per age group) in 30 tissues. Data from this study would provide,
for example, a baseline for gene expression patterns in normal
development for comparison against individuals with disease.

GTEx provides extensive documentation on sample collection,
laboratory protocols, quality control and standardization, and ana-
lytical methods on their website (https: //gtexportal.org/home/).
This allows for replication of their protocols and procedures in
other cohorts to aid in study design and for researchers to further
interrogate the GTEx data to answer more specific scientific ques-
tions. Processed individual-level gene expression data is made freely
available on the GTEx website for download, while controlled
access to individual-level raw genotype and RNA sequencing data
are available on the AnVIL repository following approval via the
National Center for Biotechnology Information’s database of Gen-
otypes and Phenotypes (dbGAP, dbGaP accession phs000424), a
data archive website that stores and distributes data and results
investigating the relationship between genotype and phenotype
(https: //www.ncbi.nlm.nih.gov/gap /). Clinical data collected for
each donor is categorized into donor-level (demographics, media-
tion use, medical history, laboratory test results, death circum-
stances, etc.) and sample-level (tissue type, ischemic time, batch
1D, etc.) data and is also available through dbGAP.

Over the many years, data from the GTEx project has provided
unprecedented insight into the role genetic variation plays in reg-
ulating gene expression and its contribution to complex trait and
disease variation in the population. The latest version 8 release from
GTEx comes with a comprehensive catalogue of variants associated
with gene expression, or eQTLs (expression quantitative trait loci),
across 49 tissues or cell lines (derived from 15,201 samples and
838 donors) (GTEx Consortium, 2020). This analysis has demon-
strated that gene expression is a highly heritable trait, with millions
of genetic variants affecting the expression of thousands of genes
across the genome. These pairwise gene variant associations can be
classified as either cis- or trans-eQTLs, which describes proximal
(i.e., within a predefined window of the target gene) or distal (i.e.,
beyond the predefined window or on a different chromosome from
the target gene) genetic control, respectively. Indeed, it has been
shown that 94.7% of all protein-coding genes have at least one cis-
eQTL. In addition, 43% of genetic variants (minor allele fre-
quency > 1%) have been found to affect gene expression in at
least one tissue, and the majority of cis-eQTLs appear to be shared
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across the sexes and ancestries (GTEx Consortium, 2020). Rela-
tively few trans-eQTLs have been identified due to limitations in
sample sizes; however, these typically affect gene expression in one
or very few tissues, with about a third of zrans-eQTLs mediated by
ci5-eQTLs [144]. Importantly, GTEx provides full eQTL summary
statistics for download and an interactive portal (https://
gtexportal.org/home/) for quick searches. As most trait-associated
loci identified in genome-wide association studies (GWAS) are in
noncoding regions of the genome, the eQTL data generated by
GTEx has been leveraged to provide insight into the genetic and
molecular mechanisms that underlie complex traits and diseases.
Indeed, GWAS trait-associated variants are enriched for czs-eQTLs,
and genetic variants that affect multiple genes in multiple tissues are
found to also affect many complex traits (GTEx Consortium,
2020). This indicates that cis-eQTLs have a high degree of pleiot-
ropy and exert their effect on complex traits and diseases by reg-
ulating proximal gene expression.

In addition to the comprehensive catalogue of multi-tissue
e¢QTLs to understand gene regulation, additional flagship GTEx
studies include understanding sex-biased gene expression across
tissues [145], functional rare genetic variation [146], cell type-
specific gene regulation [147], and predictors of telomere length
across tissues [ 148].

The extensive publicly available data generated by the GTEx
project is a valuable resource to the scientific community and will
allow for further data interrogation for many years to come.

7 Electronic Health Records

7.1 Clinical Data
Warehouse: Example
from the Parisian
Hospitals (APHP)

Clinical data warchouses (CDW) gather electronic health records
(EHR), which can gather demographic data, results from biological
tests, prescribed medications, and images acquired in clinical rou-
tine, sometimes for millions of patients from multiple sites. CDW
can allow for large-scale epidemiological studies, but they may also
be used to train and /or validate machine learning (ML) and deep
learning (DL) algorithms in a clinical context. For example, several
computer-aided diagnosis tools have been developed for the classi-
fication of neurodegenerative diseases. One of their main limita-
tions is that they are typically trained and validated using research
data or on a limited number of clinical images [ 149-154]. It is still
unclear how these algorithms would perform on large clinical
dataset, which would include participants with multiple diagnoses
and more generally heterogeneous data (e.g., multiple scanners,
hospitals, populations).

One of the first CDW in France was launched in 2017 by the
AP-HP (Assistance Publique — Hopitaux de Paris), which gathers
most of the Parisian hospitals [155]. They obtained the
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7.2 Swedish National
Registries

authorization of the CNIL (Commission Nationale de 'informa-
tique et des Libertés, the French regulatory body for data collection
and management) to share data for research purposes. The aim is to
develop decision support algorithms, to support clinical trials, and
to promote multicenter studies. The AP-HP CDW keeps patients
updated about the different research projects through a portal
(as authorized by CNIL), but, according to French regulation,
active consent was not required as these data were acquired as
part of the routine clinical care of the patients.

Accessing the data is possible with the following procedure. A
detailed project must be submitted to the Scientific and Ethics
Board of the AP-HP. If the project holders are external to the
AP-HP, they have to sign a contract with the Clinical Research
and Innovation Board (Direction de la Recherche Clinique et de
I’Innovation). Once the project is approved, data are extracted and
pseudo-anonymized by the research team of the AP-HP. Data are
then made available in a specific workstation via the Big Data
Platform, which is internal to the AP-HP. The Big Data Platform
supports several research environments (e.g., JupyterLab
Environment, R, MATLAB) and provides computational power
(CPUs and GPUs) to analyze the data.

An example of the research possible using such CDW is the
APPRIMAGE project, led by the ARAMIS team at the Paris Brain
Institute. The project was approved by the Scientific and Ethics
Board of the AP-HP in 2018. It aims to develop or validate algo-
rithms that predict neurodegenerative diseases from structural
brain MRI, using a very large-scale clinical dataset. The dataset
provided by the AP-HP gathers all Tlw brain MRI of patients
aged more than 18 years old, collected since 1980. It therefore
consists of around 130,000 patients and 200,000 MRI which were
made available via the Big Data Platform of the AP-HP. Of note,
clinical data was available for only 30% of the imaged participants
(>30,000 patients) as it relies on the ORBIS Clinical Information
System (Agfa HealthCare), installed more recently in the hospitals.
The sheer size of the data poses obvious computational challenges,
but other difficulties include harmonizing clinical reports collected
in the different hospitals or handling the general heterogeneity of
the data (e.g., hospitals, acquisition software, populations). To
tackle this issue, we have developed a pipeline for the quality
control of the MR images [156].

In Sweden, a unique 10-digit personal identification number has
been assigned to each individual at birth or migration since 1947,
which allows linkages across different Swedish population and
health registers with almost 100% coverage [157]. The Swedish
Total Population Register (TPR) was established in 1968 and is
maintained by Statistics Sweden to obtain data on major life events,
such as birth, vital status, migration, and civil status [ 158]. TPRis a
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key source to provide basic information in medical and social
research in Sweden. The Swedish Population and Housing Cen-
suses (1960-1990) and the Swedish Longitudinal Integrated Data-
base for Health Insurance and Labour Market Studies (Swedish
acronym LISA) (since 1990) provide information on demographic
and socioeconomic status for the Swedish population, including
the highest attained educational level and household income
[159]. The Swedish Multi-Generation Register (MGR) provides
information on familial links for individuals born since 1932
onward in Sweden [ 160 ], which makes it possible to perform family
studies to investigate familial risk of different health outcomes and
control for familial confounding when needed.

The Swedish National Patient Register (NPR) is a valuable
source for medical research, which has since 1964 collected data
on inpatient care (nationwide coverage since 1987) and outpatient
care (more than 85% of the entire country since 2001) [161]. Diag-
noses are according to the Swedish revisions of the International
Classification of Disease codes (ICD codes). The positive predictive
value of the diagnoses is high, ranging from 85% to 95%, in NPR
[161]. NPR has been used in studies of different diseases including
many neurological disorders such as Alzheimer’s disease [162],
Parkinson’s disease [163], and amyotrophic lateral sclerosis
[164]. The Swedish Cancer Register (SCR) has been used exten-
sively in Swedish cancer research, especially cancer epidemiology.
SCR was established in 1958 and includes data on all newly diag-
nosed malignant and benign tumors, including different kinds of
brain tumors [165, 166]. The Swedish Medical Birth Register
(MBR) was established in 1973 and contains information on almost
all deliveries (from prenatal to postnatal) in Sweden [167]. MBR
has contributed mainly to the reproductive epidemiologic research
in Sweden and has also been used in epidemiological studies of
diseases later in life including different neurological disorders
[168,169]. The Swedish Causes of Death Register (CDR) includes
information on virtually all deaths in Sweden since 1952 [170] and
has been used to identify various causes of death in medical
research, including deaths due to neurological disorders
[171]. The Swedish Prescribed Drug Register (PDR) was founded
in July 2005 and provides information on all prescription drugs
dispensed from pharmacies in Sweden [172, 173]. PDR has been
used to study patterns of use as well as consequences of medication
use, including memantine [174] and dopaminergic anti-Parkinson
drug [175].

In addition to these general health registers, there are also
hundreds of disease quality registers that are used for patient care
and research in Sweden. For instance, the Swedish Dementia Reg-
istry (SDR) was established in 2007 to achieve high quality of
diagnostics and care for patients with dementia [176]. The Swedish
Neuro-Register (SNR) was founded in 2001 (web-based since
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2004, originally named as the Swedish Multiple Sclerosis Quality
Registry) with the primary aim to improve care of patients with
different neurological disorders including multiple sclerosis, Par-
kinson’s disease, severe neurovascular headache, myasthenia gravis,
narcolepsy, epilepsy, inflammatory polyneuropathy, as well as amyo-
trophic lateral sclerosis in Sweden [177, 178]. The Swedish Stroke
Register is one of the world’s largest stroke registers, which was
established in 1994 and has included data from almost all hospitals
that admit acute stroke patients in Sweden [179].

In Sweden, individual-level data in public registers are strictly
protected by several laws, including the Ethics Review Act, the
General Data Protection Regulation (GDPR), and the Public
Access to Information and Secrecy Act (OSL). The Swedish Ethical
Review Authority (Etikprovningsmyndigheten in Swedish) assesses
projects according to the Ethics Review Act and requires a Swedish
responsible person (Forskningshuvudman in Swedish) for the
research. In addition to ethical approval, the Statistics Sweden
(SCB) and the National Board of Health and Welfare (Socialstyr-
elsen in Swedish) also need to make an assessment according to
GDPR and OSL, to determine whether individual-level data can be
made available for potential research purposes. It generally takes
around 1-6 months from contact person assignment to delivery of
microdata in the SCB (www.scb.se/en/services/ordering-data-
and-statistics /ordering-microdata/) and around 3-6 months to
process applications for individual-level data in the Socialstyrelsen
(www.socialstyrelsen.se /en /statistics-and-data /statistics /).
According to standard legal provisions and procedures, the SCB
and Socialstyrelsen only provide data to researchers working in
Sweden, and researchers in other countries need to cooperate
with Swedish colleagues to apply for the data.

According to the General Data Protection Regulation
(GDPR), online access (e.g., through virtual machines) or transfer
of individual-level data is allowed in countries of the European
Union (EU) or European Economic Area (EEA), after proper
legal agreements. Online access or transfer of individual-level data
to an external partner in a third country outside EU/EEA is also
permitted, if the third country has been approved by the European
Commission and the external partner signs and complies with legal
agreements that include requirements for how data must be pro-
tected, including Data Transfer Agreement (DTA), Data Proces-
sing Agreement (DPA), Material Transfer Agreement (MTA), as
well as Research Collaboration Agreements.
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8 Smartphone and Sensors

Smartphones and sensors allow for the unobtrusive collection of
behavioral and physiological data. For instance, smartphones are
commonly used in ecological momentary assessment (EMA) stud-
ies [180], resulting in continuous, real-time assessment of partici-
pant behavior, symptoms, and experiences. In addition, the built-in
microphone and touchscreen of smartphones/tablets can record
speech and motor movement. Recent advances in smartwatch tech-
nology has enabled many commercial devices (e.g., Fitbit, Garmin,
Apple) to track physiological metrics (e.g., heart rate variability,
pulse oximetry, temperature) in addition to traditional physical
activity data (e.g., step count, Global Positioning System, exercise
tracking). Sensors are also commonly used to collect data without
requiring participant interaction. Wearable sensor devices (e.g.,
wrist-worn accelerometers) can collect data on sleep, activity, and
physiology without burdening participants or influencing their
behavior. Datasets derived from smartphone and sensor studies
are typically text-based, though raw data may be proprietary. The
analysis of smartphone and sensor data typically requires complex
algorithms/machine learning approaches due to the complexity of
data collected (in the frequency of hundreds of observations per
second, from many different sensors collecting data simulta-
neously). Raw data is typically stored locally by the data owner,
with de-identified data available upon request. In more extensive
studies, data is stored and distributed through online repositories.

Several studies have collected real-world behavioral and physi-
ological data using smartphone and sensor devices (se¢ Table 2),
including community twin studies (BATS, QTAB), large-scale bio-
medical databases (UK Biobank), and studies focusing on specific
disorders (mPower).

The Brisbane Adolescent Twin Study (BATS) and the Queens-
land Twin Adolescent Brain (QTAB) projects are twin studies
sourced from the Queensland Twin Registry (QTwin). The BATS
project, enabled through funding from the NHMRC, was a longi-
tudinal study of adolescent twins, which collected accelerometry
data over three waves between 2014 and 2018 (ages 12, 14, and
16 years). The Queensland Twin Adolescent Brain study (QTAB,
2015—present), previously discussed in Subheading 5.1, collected
accelerometry data over two waves (age 9-14 years at baseline). In
both studies, participants wore a wrist-mounted accelerometry
recording device for 2 weeks (day and night, removed only for
bathing) and completed a daily sleep diary. Raw accelerometry
data were processed and consolidated with sleep diary data to
produce sleep onset, wake, and sleep duration estimates. The
BATS and QTAB datasets include behavioral and psychological
measures (e.g., assessments of cognition and behavior, self-
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reported mental health and well-being) for further investigation of
accelerometry measures. BATS and QTAB data is available from the
project owners upon request.

The UK Biobank, previously discussed in Subheading 5.2,
collected accelerometry data in 100,000 participants between
2013 and 2016. Participants wore a wrist-mounted activity moni-
tor to capture physical activity and sleep patterns for 7 days. Since
2018, repeat measures have been collected for a subset of partici-
pants every quarter to examine seasonal influences on measure-
ments. Data is available in raw (measured every 5 s) and average
(by day and hour) acceleration formats. The deep phenotyping of
the UK Biobank has allowed for accelerometry-based measures to
be examined alongside several other measures, including brain
structure [181], mood disorders [182], and Alzheimer’s disease
[183]. UK Biobank data is available online following registration
(https: //bbams.ndph.ox.ac.uk /ams/).

The mPower study (2015—present), sponsored by Sage Bionet-
works with funding from the Robert Wood Johnson Foundation,
aims to establish the baseline variability of real-world activity mea-
surements of individuals with Parkinson’s disease. Data is collected
through an iPhone application, with minimal interruption to the
daily life of participants. The initial data release (collected over
6 months) included health survey and sensor-based activity (e.g.,
gait and balance) data for ~8000 participants (with ~1000 self-
identified as having a professional diagnosis of Parkinson’s disease).
In addition, approximately 900 participants contributed at least five
separate days’ worth of data. mPower data is accessible through the
data sharing service Synapse (https://www.synapse.org,/mpower).

A recent review [184] provides an overview of studies using
smartphones to monitor symptoms of Parkinson’s disease and
in-depth descriptions of the methodology involved in these types
of studies. Additionally, studies have used smartphone-based EMA
to detect or treat mood disorders (see [ 185] for a review). Further,
the Mobile Motor Activity Research Consortium for Health
(MMARCH; http://mmarch.org/) is a collaborative international
network working to standardize the analysis of actigraphy data in
studies investigating motor activity, mood, and related disorders.

Machine learning approaches have been widely applied to data
collected from smartphone and sensor devices, most notably in
studies of Parkinson’s disease. For example [186], used machine
learning classifiers applied to accelerometry data from the UK
Biobank to classify individuals with Parkinson’s disease with an
area under the curve of 0.85 (based on gait and low movement
data). Another study [187] used data from the mPower study to
detect dopaminergic medication response by applying machine
learning techniques to the tapping task performance (measured
via the mPower smartphone application) of Parkinson’s disease
patients before and after medication. Further, classifiers have been
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used to detect states of deep brain stimulation (i.e., distinguishing
between “On” and “Oft” settings) in Parkinson’s disease patients
using accelerometer and gyroscope signals from smartphones
[188]. Machine learning approaches have also shown promise for
other disorders. For instance, machine learning algorithms within a
smartphone application have helped identify individuals with
obstructive sleep apnea, using actigraphy, body position assess-
ment, and audio recordings [189]. Lastly, some developed a pipe-
line for personalized modeling of depressed mood (based on EMA)
and smartwatch-derived sleep and physical activity measures [190].
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