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Abstract: The immune and endocrine dysfunctions of white adipose tissue are a hallmark of metabolic
disorders such as obesity and type 2 diabetes. In humans, white adipose tissue comprises distinct
depots broadly distributed under the skin (hypodermis) and as internal depots (visceral). Depot-
specific ASCs could account for visceral and subcutaneous adipose tissue properties, by regulating
adipogenesis and immunomodulation. More importantly, visceral and subcutaneous depots account
for distinct contributions to obesity and its metabolic comorbidities. Recently, distinct ASCs subpopu-
lations were also described in subcutaneous adipose tissue. Interestingly, the superficial layer closer
to the dermis shows hyperplastic and angiogenic capacities, whereas the deep layer is considered as
having inflammatory properties similar to visceral. The aim of this focus review is to bring the light of
recent discoveries into white adipose tissue heterogeneity together with the biology of distinct ASCs
subpopulations and to explore adipose tissue 3D models revealing their advantages, disadvantages,
and contributions to elucidate the role of ASCs in obesity development. Recent advances in adipose
tissue organoids opened an avenue of possibilities to recreate the main cellular and molecular events
of obesity leading to a deep understanding of this inflammatory disease besides contributing to drug
discovery. Furthermore, 3D organ-on-a-chip will add reproducibility to these adipose tissue models
contributing to their translation to the pharmaceutical industry.

Keywords: obesity; adipose tissue; adipose stem/stromal cells; 3D culture; spheroids; organoids

1. Introduction

The immune and endocrine dysfunctions of white adipose tissue are a hallmark of
metabolic disorders such as obesity and type 2 diabetes. These dysfunctions negatively im-
pact on insulin sensitivity, metabolism, and promote local and systemic inflammation [1–3].
In humans, white adipose tissue comprises distinct depots broadly distributed under the
skin (hypodermis) and as internal depots (visceral). The visceral depots are described as
having inflammatory properties and are associated with metabolic disorders. The hypo-
dermis or subcutaneous adipose tissue shows hyperplastic capacities besides being the
preferential depot for mesenchymal stem/stromal cells known as adipose tissue-derived
stem/stromal cells (ASCs). Depot-specific ASCs could account for visceral and subcuta-
neous adipose tissue properties by regulating adipogenesis and immunomodulation [4].

Subcutaneous adipose tissue can be divided into two main layers—superficial and
deep—delimited by a conjunctive fascia. Recently, distinct ASCs subpopulations were also
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described in subcutaneous adipose tissue. Interestingly, the superficial layer closer to the
dermis shows hyperplastic and angiogenic capacities, whereas the deep layer is considered
as having inflammatory properties similar to visceral. These ASCs subpopulations have
distinct contributions to subcutaneous adipose tissue physiology and may represent the
key to the recovery of ASC properties in an inflammatory scenario [5].

Currently, the inability of traditional monolayer culture and animal models to repro-
duce molecular and cellular events of human tissues and organs is a consensus in the
scientific literature. Three-dimensional cell culture models such as spheroids and organoids
are increasingly used as models more faithful to the human cell physiology, creating a need
for the development of functional adipose tissue 3D models [6].

The aim of this focus review is to bring the light of recent discoveries into white
adipose tissue heterogeneity together with the biology of distinct ASCs subpopulations
and to explore adipose tissue 3D models revealing their advantages, disadvantages, and
contributions to elucidate the role of ASCs in obesity development. We further provide
considerations on which methodological and technological advances may be necessary to
improve obese adipose tissue in vitro modeling. This review may guide further studies in
which both ASCs from subcutaneous and visceral depots and from ASCs subpopulations
of distinct layers of subcutaneous adipose tissue may unravel cellular and molecular
mechanisms as potential targets for the recovery of ASC and adipose tissue function in the
context of obesity.

2. White Adipose Tissue

Knowledge of white adipose tissue physiology and metabolic dysfunctions has ex-
panded significantly in recent decades. Once regarded as a simple inert energy storage
tissue, white adipose tissue is now recognized as a biologically dynamic organ. More
importantly, white adipose tissue has diffuse locations throughout the body as fat depots.
Different physiologies, cell compositions, and functions are characterized for visceral and
subcutaneous depots, and recently, for the different layers of the subcutaneous.

2.1. Subcutaneous and Visceral Depots and the Intrinsic Differences of Adipose Tissue-Derived
Stem/Stromal Cells

White adipose tissue (WAT) acts primarily as a regulatory center for the homeostasis
of the body’s energy metabolism. This is accomplished through the regulation of adipocyte
lipid storage or release in response to the body’s energy demands, regulation of blood
glucose levels due to the high insulin sensitivity of adipocytes [7], and through its secre-
tory function [7,8]. The array of adipose secretory products, called adipokines, mediates
inter-organ communication. This influences the metabolism and function of central and
peripheral organs, including the immune system function [8,9].

WAT is one of the body’s pathways that, through remodeling of adipose tissue, allows
adaptation to metabolic challenges posed by different external environmental changes,
including food deficit, energy excess, stress, infection, or cold [10]. Crosstalk between
different cell types composing the WAT stromal-vascular fraction (SVF) and adipocytes
orchestrates the mechanisms of WAT remodeling [11]. Physiological remodeling that occurs
during WAT expansion is characterized by angiogenesis, extracellular matrix remodeling,
minimal inflammation, and adipocyte hyperplasia, through the recruitment of adipocyte
precursors that provide capacity to store extra lipids during its adipogenic differentiation
into small adipocytes (i.e., adipogenesis). The ability of WAT depots to expand through
hyperplasia may be crucial for adequate lipid storage during WAT expansion and to
avoid harmful ectopic lipid deposition in non-adipose tissues [12]. However, the chronic
demand for excess energy storage that occurs during the development of obesity can trigger
mechanisms of an unhealthy—or pathologic—WAT remodeling during its expansion,
characterized by dysfunctional hypertrophic adipocytes, insufficient vascularization and
hypoxia, fibrosis [10,11], infiltration of immune cells, and pro-inflammatory responses that
contribute to tissue inflammation and subsequently insulin resistance [13–15].
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WAT depots with distinct expansion and remodeling patterns are widely distributed
in the human body, comprising mainly subcutaneous and visceral depots. They have
intrinsic biological differences [16] and differentially impact on obesity-induced metabolic
complications: in obesity, visceral adipose tissue (VAT) is more associated with the risk to
develop insulin resistance and type 2 diabetes than subcutaneous adipose tissue (SAT) [17].
These functional differences among WAT depots and their distinct contributions to obesity
and its metabolic comorbidities are being attributed not only to differences in their SVF
composition (i.e., frequency of mesenchymal stem cells, pre-adipocytes, endothelial pro-
genitor cells, mature endothelium, and immune cells subtypes), but also to the functional
diversity of adipocyte stem cells and progenitors cells that derive specialized adipocyte
subtypes [4,18–20] (Figure 1).
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Figure 1. Abdominal WAT depots, differences in the SVF content, and their ASC and adipocytes’
functional profile. Major abdominal WAT in humans comprises subcutaneous and visceral depots
(left image). VAT localizes around digestive organs. SAT has a superficial layer of small fat lobules
that dwells below the skin, and a deep layer formed by large fat lobules (right image). These layers
are separated by a conjunctive fascia (superficial fascia), from which emerges fibrous septae that
encompass the fat lobules of the superficial SAT (right image). The functional profiles of ASC and
in vitro-derived adipocytes are provided in blue boxes: ASCs from the superficial SAT are more
adipogenic, while those from deep SAT and VAT are more inflammatory. The adipocytes derived
from VAT and deep SAT have more lipolytic activity than those from the superficial SAT. The
orange box shows the differences in the SVF content already described for VAT versus SAT. The SVF
components vary according to the WAT depot: VAT has less preadipocytes and higher lymphatic-
derived endothelial cells than SAT. SAT: Subcutaneous adipose tissue; VAT: Visceral adipose tissue;
PAT: Preperitoneal adipose tissue; ASC: adipose-derived stromal/stem cells.

We have previously shown that the SVF of obese abdominal SAT in humans has
the highest content of preadipocytes compared to the VAT. More importantly, adipocyte
stem and progenitor cells’ in vitro counterparts, here referred to as the adipose-derived
stromal/stem cells (ASC), are depot-specific, with an inverse relationship between the
adipogenic and immunogenic status: ASC from VAT are more pro-inflammatory in terms
of cytokine secretion, with lower adipogenic potential [18]. We have previously sug-
gested that stem cells and progenitor cells can regulate WAT expansion and the chronic
inflammatory scenario of obesity in a WAT depot-dependent manner [4]. Indeed, prolifera-
tion of adipose precursors induced by a high-fat diet is regulated in a depot-dependent
manner in mice [21–23]. Moreover, a subpopulation of murine adipose perivascular pro-
genitor cells (platelet-derived growth factor receptor-beta positive, PDGFRβ+), termed
“fibro-inflammatory progenitors” (FIPs; LY6C+PDGFRβ+ cells), regulates visceral WAT
macrophage accumulation in mice fed a high-fat diet in a Toll-like receptor 4-dependent
manner resulting in WAT dysfunction [24]. PDGFRβ+ perivascular cells are precursors
of adipocytes in mice, both in inguinal and visceral WAT pads, with varying levels of the
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zinc finger protein 423 preadipocyte commitment factor (Zfp423) that distinguish subpopu-
lations of adipogenic from inflammatory cells [25]. These authors also described that the
frequency of adipogenic precursors and adipogenesis is depot-specific.

Recent efforts on single-cell level profiling of adipocyte progenitors and on clonal anal-
ysis of their in vitro counterparts (ASC) derived from different WAT depots of donors with
a variety of metabolic phenotypes have clarified the understanding of ASC heterogeneity,
their depot-dependent characteristics, and their contribution to the obesity scenario [20].
Vijay and coworkers [26] characterized different cell types that are WAT depot-specific or
correlate with metabolic status (with or without type 2 diabetes) using single-cell RNA
sequencing (scRNA-Seq) of WAT depots from obese donors. The authors identified pro-
genitor cells with expression signatures that were dependent on their respective WAT
depot. More importantly, a higher abundance of a subtype of preadipocytes was identified
in individuals with hyperglycemia levels compared to those with normal glycemia. In
addition, lymphatic-derived endothelial cells were more frequent in the VAT samples.

The intrinsic differences in ASC derived from VAT and SAT are also present in a
non-obese state and are retained during obesity. The immunogenic factor bone marrow
stromal cell antigen 2 (BST2) was identified as a marker of visceral ASC in a non-obese state
in humans. However, the difference in BST2 expression between subcutaneous and visceral
ASC is more pronounced in obesity and with insulin resistance. In addition, in vitro-
derived adipocytes from non-obese ASCs of VAT have lower gene expression of adipogenic
markers and higher gene expression of immunogenic markers than those derived from
SAT [27]. Raajendiran and collaborators [19] identified three adipocyte progenitor cell
subtypes with distinct molecular patterns, but with similar adipogenic capacity. The
characterization of the adipocyte progenitor cell subtypes was based on the expression of
CD34 among CD31−CD45−CD29+ SVF cells. Interestingly, adipocytes derived from each
progenitor subtype display distinct metabolic and endocrine phenotypes. Furthermore,
adipocyte progenitors were more frequent in gluteo-femoral SAT than in abdominal SAT
and VAT, and the frequency of adipocyte progenitor subtypes varies among donors with
type 2 diabetes. ASCs showing depot-specific genetic [28], adipogenic, immunogenic,
endocrine, and even extracellular vesicles [29] profiles are an interesting source of cells
to decipher the cellular and molecular mechanisms that govern WAT physiology and
dysfunction in a depot-specific manner.

The preferable expansion of gluteo-femoral SAT depots is typical of women and is
associated with a lower risk of cardiometabolic dysfunction. On the other hand, VAT depot
is expanded preferentially in men and is a predictor of cardiometabolic disease [30–33]. A
recent study supported these clinical findings showing a depot- and sex-dependent adipose
progenitor cell heterogeneity in mice [34]. We can speculate that ASCs derived from sex-
and depot-targeted human tissue samples with their specific molecular signatures may be
useful for evaluating and identifying the biological underpinnings of sex differences in WAT
expansion in obesity and their relationships to metabolic health in men and women [35].

Adipocyte stem and progenitor cell heterogeneity and depot-dependent characteristics
from adipose SVF have been widely explored at the single-cell level in murine-derived
samples [36]. However, the extent to which the tissue architecture and composition of
mouse adipose tissue resembles that of humans is still unknown and limits the translation
of obesity-related findings from murine to human. Vijay and coworkers [26] have recently
explored SVF heterogeneity in adipose samples derived from obese donors using single-cell
transcriptomics. In addition, ASCs’ depot-dependent profile has been described for human
WAT during the last decade [4,18,27]. Therefore, there is a need to specifically study human
adipose tissue-related physiology and diseases in experimental systems engineered with
human-derived cells with depot-specific profiles to mimic key morphofunctional properties.
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2.2. Subcutaneous Adipose Tissue Layers as Adipose Tissue-Derived Stem/Stromal
Cells Microenvironments

Human SAT is separated into two layers by a dense conjunctive tissue named fas-
cia [37]. The superficial layer is located close to the dermis, having well-defined and
compacted lobules, while the deep layer shows more loose and disorganized larger lob-
ules [38]. The superficial layer of SAT supports properties already described for the entire
tissue such as anti-inflammatory and regenerative, acting as a protective depot in metabolic
syndromes [39,40]. This layer contains a higher number of small adipocytes, as well as
larger lipid droplets compared with deep SAT, showing a high potential for adipogene-
sis [5,41–45] (Figure 1).

We recently analyzed superficial and deep layers in SAT non-obese samples. The SVF
of the superficial layer showed the highest percentage of preadipocytes and a predominant
presence of arterioles [5]. The adventitia layer of arterioles was previously described as
a preadipocyte niche in SAT [46]. Furthermore, ASCs derived from the superficial layer
have a significantly greater surface of lipidic droplets together with the highest number
of unilocular cells and up-regulation of CEBPα and FABP4 genes [5], supporting a high
adipogenic potential previously described for this layer.

On the other hand, the deep layer of SAT is correlated with high levels of inflamma-
tory cytokines and adipokines, besides its disproportionate expansion observed in obese
Caucasian males [47,48]. ASCs derived from the deep layer revealed the lowest levels
of adipogenic and secretory capacities [5]. Monzon and collaborators [49] compared the
lipolysis in adipocytes isolated from the deep and superficial layers and found an increase
in lipolysis in the deep layer.

2.3. The Stem/Progenitor Cells Derived from the Fascial System of Subcutaneous Adipose Tissue

SAT is inserted into the fascia to form a structural and functional continuity over the
body [50]. Each fascia system at distinct tissues and organs operates independently, but at
the same time is interdependent with the whole system [51].

Young rats have a primitive SAT, making them an ideal animal model for investigating
adipose tissue origin. In this context, Su and collaborators [52] described the generation
of adipocytes from the adventitia of blood vessels leading to the formation of primitive
adipocytes lobules in the fascia. Zhang and collaborators [6,53] demonstrated that the
superficial fascia of rats has a population of adipocyte progenitor cells capable of forming
adipose tissue organoids with functional unilocular adipocyte-like cells.

In human SAT, the conjunctive extensions derived from the fascia are more promi-
nent at the superficial layer, being named retinacula cutis [54]. The retinacula cutis of
the superficial layer showed double positive staining for CD34 and CD31, revealing the
presence of endothelial progenitor cells. Interestingly, Pref-1 staining was found exclusively
in retinacula cutis and in adventitia of blood vessels while it was absent in adipose tissue
itself [5]. Furthermore, ASCs derived from retinacula cutis showed the highest secretion
in vitro for vascular endothelial growth factor (VEGF) compared with ASCs from both su-
perficial and deep layers [5]. Recently, Ziegler and collaborators [55] showed an angiogenic
genetic profile in the human fascia matrix, supporting our results with ASCs derived from
retinacula cutis.

Interestingly, retinacula cutis revealed a continuity with the adventitia of blood vessels,
being the adventitia niche more frequent in the superficial layer of SAT [5]. A previous study
by our research group found that SAT samples from ex-obese subjects had a higher number
and size of blood vessels and revealed a preferential location of these blood vessels close to
the dermis [56]. These results were later associated with an increase in preadipocytes in
SVF of ex-obese SAT samples [57].

2.4. The Dermis Can Be Stratified According to Its Fibroblasts Subpopulations

The dermis is a connective tissue located between the epidermis and the hypodermis.
The dermis is composed of two different layers, a papillary dermis just below the dermo–
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epidermal junction and deeper at the reticular dermis. Fibroblasts are the most abundant
cells in the dermis; they secrete and remodel the extracellular matrix (ECM) which allows
the dermis to be a support tissue for the skin. There is an ECM signature of the different
fibroblasts subpopulation [58]. The papillary dermis presents an important cellular density
with more proliferative fibroblasts than the reticular dermis [59,60]. ECM of the papillary
dermis present collagen fibrils loosely organized, thin unstriated fibrillar material, and
proteoglycan aggregates [61]. The papillary fibroblast regulates hair growth and plays an
indispensable role in re-epithelialization during wound healing [62]. The papillary dermis
role is to interact physically and chemically through growth factors with the epidermis. The
reticular dermis is thicker and presents an ECM with aligned collagen fibrils and a dense
network of elastin [61]. Its role is to confer tensile strength to the dermis. The reticular
fibroblast initiates healing by matrix production [63].

In addition to their role in ECM regulation, fibroblasts also interact with other cell
types such as ASCs, located in SAT just beneath the reticular dermis. Haydont and collabo-
rators [64] recently described a high adipogenic potential for a subpopulation of fibroblasts
located at the dermo–hypodermal junction of the skin. The fascia has extensions originating
from the dermis passing through the superficial layer and becoming looser and scarcer until
reaching the deep SAT [54]. If dermo–hypodermal fibroblasts dwell at these extensions,
one hypothesis is that these cells can infiltrate the SAT, and due to their plasticity, these
fibroblasts can assume different behaviors according to the niche.

If fibroblasts can interact with ASCs modulating their behavior, ASCs can also do the
same with fibroblasts, as suggested by in vitro assays.

ASC’s conditioned culture medium increased proliferation of dermal fibroblasts [65,66].
This proliferative effect of ASC’s conditioned culture medium in fibroblasts can be de-
creased by TGF-beta1 [67]; however, it does not interfere with the secretion of ECM; more
specifically, the secretion of type I collagen and fibronectin are increased [65,67]. Interest-
ingly, ASC’s conditioned culture medium can decrease the secretion of metalloproteinase,
which can explain, in part, the increase of ECM secretion by fibroblasts [68]. Auxen-
fans et al. [69] also demonstrated that a 3D-reconstructed skin model co-cultured with
ASCs increased thickness of the dermis, specifically the papillary dermis. In direct jux-
tacrine co-culture and in indirect paracrine co-culture, ASCs improved collagen maturation
and metalloproteinase secretion compared to monoculture [70].

The beneficial effect of ASCs in dermis is even observed in altered conditions, such
as keloid scar, since TGF-beta1-induced myofibroblast differentiation and human dermal
fibroblasts’ function were inhibited by ASC’s conditioned culture medium [71]. In addition,
Borrelli et al. [72] identified a subpopulation of ASCs positive for CD74 with enhanced
antifibrotic effects. Dermal fibroblasts incubated with ASC’s conditioned culture medium
from CD74 positive cells produced less collagen under TGF-beta1 stimulus compared to
those incubated with ASC’s conditioned culture medium from CD74 negative cells. ASCs
positive for CD74 may attenuate production of pro-fibrotic ECM components by fibroblasts
and could promote improvement of detrimental histologic and biomechanical changes to
skin following skin radiation injury.

To conclude, the scientific literature supports the crosstalk between dermal fibroblasts
and ASCs that impact skin quality. Soluble factors secreted by ASCs seem to regulate
the skin microenvironment according to the needs. Surprisingly, a recent study showed
that diabetic microenvironment-preconditioned ASCs effectively strengthen the capacity
against inflammation and modulate the progress of long-term T2D complications [73].
In addition, patients receiving fat grafting in subcutaneous areas exposed to radiation
injury show improved cosmetic and functional skin outcomes, such as skin softness and
pliability increase, volume restoration, hair growth improvement in areas of alopecia,
and pain decrease [74]. It is suggested that endogenous stem and progenitor cells that
reside within the SVF of adipose tissue could drive regenerative mechanisms by which fat
grafting can slow or reverse skin radiation-induced fibrosis [75]. Indeed, fat grafts enriched
with human CD34+CD146+ adipose-derived stromal cells enhance fat graft retention
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and vascularization and promote recovery of soft tissue after radiotherapy in mice [76].
However, there is a lack of research studies focusing on the specific interaction of ASCs
with fibroblasts’ subpopulations, and more importantly, to what extent the ontogeny of
fibroblasts and ASCs is correlated, since dermal fibroblasts can infiltrate the SAT.

3. Adipose Tissue 3D Models

ASCs are capable of reproducing in vitro their corresponding adipose tissue origin.
However, 2D culture has severe limitations. Long-term cell culture is not possible using
monolayers, limiting cell differentiation and disease models. More importantly, the adipose
tissue microenvironment is complex showing cross-talk among adipocytes, pre-adipocytes,
ASCs, endothelial and immune cells. The first strategy for adipose tissue 3D models had
a focus on soft tissue reconstruction in the plastic surgery field. The understanding of
the adipose tissue as an endocrine organ and obesity as an inflammatory chronic disease
boosted these 3D models. Currently, the main concern is to recapitulate physiological func-
tions of adipose tissue and its alterations during obesity development with corresponding
exogenous stimulus and cellular components.

3.1. Adipose Tissue Engineering

In 1993, Langer and Vacanti [77] established the state of the art of tissue engineering
based on the use of scaffolds to develop biologic substitutes for tissues and organs. The
scaffold-based principle is to seed a cell suspension in a 3D polymeric scaffold to mimic the
microenvironment of native tissues. The pioneers’ studies in adipose tissue engineering
applied to soft tissue defects used similar strategies. In this sense, porous biodegradable
polymer foams [78], hydrogels as injectable materials [79], and silk fibroin 3D scaffolds
were explored [80]. Recent scaffold-based strategies are focused on the use of decellularized
adipose tissue [81,82] (Figure 2). Decellularized adipose tissue can support human ASC
viability [83–86], proliferation [83–85,87,88], and adipogenic differentiation [85,86,88–90]. In
addition, it enables host cell infiltration and neovascularization after implantation [84,90,91].
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Despite the success of the scaffold-based strategies for soft tissue reconstruction in ani-
mal models [81,92], this 3D culture approach does not favor cell–cell and cell–extracellular
matrix interactions, cell differentiation, and organogenesis events [93], hampering their use
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as complex 3D disease models. Spheroids and organoids emerged as suitable 3D models
for health and disease. In the absence of an adherent surface, stem and progenitor cells
maximize their cell–cell adhesion which in turns guides extracellular matrix synthesis and
cell differentiation, recreating complex 3D tissues and organs [94].

By definition, a spheroid is a spheroidal 3D structure constituted by mature, progenitor,
or stem cells and extracellular matrix molecules. On the other hand, organoids must be
formed from stem cells derived from healthy or pathological tissues, having at least one
physiological function corresponding to the desired organ and not necessarily showing a
spheroidal 3D structure (Table 1). However, most studies of adipogenic 3D models using
spheroids still rely on the 3T3-L1 cell lineage (mouse preadipocytes) [95–98]. In fact, few
articles explored the use of ASCs to form and maturate adipose tissue spheroids [99], and
studies with organoid models are still recent [6,100].

Table 1. Main aspects of spheroids and organoids.

Spheroids Organoids

Type of cells Mature, progenitor or stem cells Stem and progenitor cells

Self-assembly Yes In epithelial tissues is guided by the
presence of a hydrogel

Morphology Spheroidal Diverse

Extracellular matrix Strictly synthesized by cells May contain exogenous components

3D architecture Non-mimetic Mimetic

Physiological function Not necessarily Yes

Morphogenesis Only present when spheroid is derived
from progenitor or stem cells Present

3.2. Adipose Tissue In Vitro 3D Models for Obesity

Due to the chronic inflammatory scenario established during obesity, obese adipose
tissue in vitro 3D models intend to mimic this inflammatory microenvironment using dif-
ferent approaches. Turner and collaborators [101] showed that under TNF-alpha stimulus,
a proinflammatory molecule, 3T3-L1 spheroids increased their lipolysis function. After-
ward, the same research group showed adipogenic maturation of human ASCs and 3T3-L1
spheroids under dietary fatty acids [102].

Fatty acids can also act as a proinflammatory stimulus. Recently, Pieters and collabo-
rators (2022) treated human ASC embedded into hydrogel with fatty acids after adipogenic
differentiation. The resulting adipocytes showed obese characteristics such as hypertrophy,
increased lipolysis, and insulin resistance [103]. The phenomenon of lipolysis is commonly
described in fat depots with more inflammatory properties, such as VAT [104].

Insulin resistance can also be mimicked in 3D adipose tissue models. ASCs were
co-cultivated with HUVECs after adipocyte differentiation in a 3D silk scaffold. Only
co-culture ASCs differentiated into adipocytes showed a decrease in triglycerides content
which may suggest an increase in lipolysis [87]. This study revealed the importance of other
cell components of adipose tissue microenvironment in the 3D models, since an isolated
exogenous stimulus cannot replicate the complexity of cell–cell interaction.

Besides the relevance of endothelial cells, macrophage has a central role in the chronic
inflammatory scenario established in adipose tissue in obesity [13,14]. A recent proteomic
analysis revealed the up-regulation of proteins involved in carbohydrate metabolism and
mitochondrial fatty acid beta oxidation pathway only in 3D co-culture of 3T3-L1 and
macrophages [105]. Using a similar 3D co-culture model, Park and collaborators [106]
showed a functional metabolic similarity to adipose tissue in diabetic mice. Similar results
were found in a 3D co-culture model of 3T3-L1 and RAW264.7, a macrophage cell lineage,
embedded in alginate beads compared with only co-culture cells showing insulin resistance
markers [107]. Human ASCs or mouse 3T3-L1 and RAW264.7 were co-cultivated embedded
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in hydrogel as an anti-diabetic drug testing model. Human ASCs and mouse 3T3-L1
revealed different responses to the same group of drugs, highlighting the importance of
interspecies variability [108].

In the chronic inflammation scenario established in an obese adipose tissue, the
long-term presence of proinflammatory macrophages leads to an unsolved fibrosis microen-
vironment [109]. Rajangam and collaborators [110] established a 3D human ASCs spheroid
model to mimic adipose tissue fibrosis. ASCs suspension was seeded in cell culture plates
with immobilized FGF2 in well surfaces leading to an increase of TGF-beta1 secretion, a
profibrotic molecule, at 5 days of spheroid culture. The authors discussed the use of this
ASC spheroid model for testing antifibrotic therapies [110]; however, more importantly, this
study opens up the possibility to increase the complexity of already published 3D models
to mimic the chronic inflammation scenario of obesity.

3.3. Organoids as Recent Advances in Obese Models

Organoids have transformed the field of personalized medicine mainly due to their
potential for predicting cellular and molecular events involved in the development
of diseases [111,112].

The SVF fraction comprises a heterogeneous cell population, showing the main cel-
lular elements of SAT such as stem cells, endothelial and immune cells. In adipose tissue
engineering, the organoid concept emerged with the use of SVF to form 3D constructs
to recapitulate adipose tissue morphology and physiology, with a particular attention to
vascular structures and adipocyte-like cells showing unilocular lipid vacuoles [100,113]
(Figure 3A). In this sense, the pioneers’ study relied on magnetic levitation to assemble
individualized cells into organoids. Daquinag and collaborators [113] explored mouse
SVF capable of forming organoids showing vascular-like structures and a complex mi-
croenvironment composed of ASCs, endothelial cells, and leukocytes. In a subsequent
study, spheroids were formed from human SVF and then transferred to Matrigel droplets
maintained under adipogenic cocktail inductors [100].
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Figure 3. (A) SVF, a heterogeneous population of cells, can give rise to organoids when embedded
into Matrigel or assembled with magnetic beads, showing endothelial progenitor and leukocytes
cells besides ASC, preadipocytes, and adipocytes. (B) Adipose tissue organoids can give rise to an
obese model under obesogens stimulus such as lipid and/or pro-inflammatory cytokines altering the
functionality of organoids.

In both studies, an external support (magnetic beads and Matrigel) was needed to
maintain a 3D structure derived from SVF, distinct from ASC spheroids that secrete extracel-
lular matrix components capable of sustaining their spheroidal morphology. Furthermore,
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these studies only showed functional improvements related to adipogenesis and angiogen-
esis [100,113]. Daquinag and collaborators [113] showed the presence of leukocyte cells;
however, the presence of macrophages was not investigated. In a recent study, Ioannidou
and collaborators [114] cultivated human SVF embedded in hydrogel to form adipose tissue
organoids. The authors succeeded in mimicking in vitro weight gain by adding a natural
mix of lipids to the cell culture medium. This addition led to altered adipocyte function
attested by impaired lipolysis, insulin resistance, and an altered profile of synthetized
adipokines (Figure 3B).

Interestingly, rat adipocyte progenitors were capable of migrating out of superficial
fascia and generating adipose tissue organoids embedded in 3D hydrogel. These adipose
tissue organoids derived from superficial fascia showed the majority of unilocular cells
together with adipocyte functions involved with triglycerides metabolism and adipokine
secretion [6]. One important limitation of the study of Zhang and collaborators [6] is the
absence of endothelial cells due to the intrinsic nature of adipocyte progenitor cells. Further-
more, like the SVF organoids, the presence of a hydrogel was also required. Human adipose
tissue organoids can also be obtained from ASC spheroids. To achieve this, the presence of
stem cells and at least one physiological function must be attested [115,116]. In addition to
the presence of unilocular cells, adiponectin and upregulation of key adipogenesis genes,
clonogenic assays revealed the maintenance of ASCs inside spheroids [117].

Other studies using human ASC or SVF cells combined with human-derived hydrogels
showed potential as a 3D in vitro model of adipose tissue [88,118]. Decellularized human
adipose tissue-derived hydrogel supports the attachment, proliferation, and adipogenic
differentiation of human ASC [88]. In addition, ASC remodeled the microstructure of the
hydrogel, probably as a result of ASC attachment, migration, ECM production, and/or
proteolytic activity—with MMP-2 (matrix metalloproteinase-2) as a potential regulator [88].
Bender and colleagues [118] validated an in vitro fat construct that combined cryopreserved
human adipose tissue-derived SVF and a human blood-derived hydrogel (ObaGelTM).
SVF cells in this culture system self-assemble into spheroids within one week of culture.
Vascular-like structures are formed within these 3D constructs. Moreover, the hydrogel
supports higher adipogenic differentiation of human SVF cells than bidimensional cultures,
as well as higher glucose uptake, leptin secretion, and lipolytic activity [118]. These
studies pave the way to biomanufacture a 3D construct to better recapitulate the biology
of adipose tissue in an obesity context by combining decellularized adipose tissue and
adipose SVF cells sourced from multiple adipose depots and derived from individuals
with different body mass index and obesity degrees. Indeed, a recent study compared the
physicochemical characteristics of decellularized adipose tissue hydrogel derived from lean
and obese donors. Although hydrogels derived from both groups support ASC viability,
proliferation, and differentiation, they present differences in their physical microstructure
and proteomic profile. Importantly, decellularized adipose tissue hydrogels derived from
obese donors retain an inflammatory microenvironment that is inherent to obesity [86].

To conclude, human ASC organoids compared with SVF organoids show some advan-
tages including, but not restricted to: (1) ease of manipulation mainly due to the absence
of hydrogel; (2) possibility of cell expansion and creating biobanks as a previous step to
the organoids. However, one important disadvantage relies on the absence of endothelial
cells. In this sense, alternative induction protocols must be tested. More importantly,
mainly due to representing epigenetic alterations accumulated at stem and progenitor cells
during obesity development, it would be interesting to obtain ASC organoids derived from
obese donors. Obese organoids hold the potential of recapitulating the main cellular and
molecular alterations which occurred during obesity development.

4. Perspective

Adipose tissue obese organoids will represent a powerful tool to modeling obesity
besides testing potential drugs. However, besides their potential to revolutionize anti-obese
drug discovery, organoids face challenges in their limited scale of production, absence of
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automation, costs, and reproducibility (Garreta et al., 2021) [119]. In addition, organoids
are usually cultivated in a static environment, limiting their maturation capacity. Micro-
physiological systems based on microfluidics technology are known as organ-on-a-chip
and can emulate several physiological parameters of tissues and organs. The convergence
of organoid knowledge with advanced microphysiological systems [116] provides a more
realistic tissue and organ microenvironment due to automation and reproducibility of
an engineered system (Homan et al., 2019; Paek et al., 2019; Wang et al., 2020) [120–122].
Three-dimensional adipose tissue models started to be explored in microphysiological
systems based on microfluid (McCarthy et al., 2020; Pope et al., 2020; Rogal et al., 2022;
Compera et al., 2022) [123–126], and their integration with liver and pancreas will en-
able researchers to study obesity comorbidities such as nonalcoholic fatty liver disease
and diabetes.

5. Conclusions

The diversity of WAT is reflected in its population of ASCs according to the adipose
tissue physiology of each depot. Distinct layers of SAT reveal distinct ASC subpopula-
tions and a possible integration with different subpopulations of fibroblasts located at the
dermis, contributing together to skin and adipose tissue physiology. Recent advances in
adipose tissue organoids opened an avenue of possibilities to recreate the main cellular and
molecular events of obesity leading to a deep understanding of this inflammatory disease
besides contributing to drug discovery. Obese organoids models will be more reliable when
ASCs or SVF derived from obese donors are used, adding a personalized medicine context.
Furthermore, 3D organ-on-a-chip will add reproducibility to these adipose tissue models
contributing to their translation to the pharmaceutical industry.
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