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ABSTRACT 77 

Compared to other animal movements, prospecting by adult individuals for a future breeding 78 

site is commonly overlooked. Prospecting influences the decision of where to breed and has 79 

consequences on fitness and lifetime reproductive success. By analysing movements of 31 80 

satellite- and GPS-tracked gull and tern populations belonging to 14 species in Europe and 81 

North America, we examined the occurrence and factors explaining prospecting by actively 82 

breeding birds. Prospecting in active breeders occurred in 85.7% of studied species, across 83 

61.3% of sampled populations. Prospecting was more common in populations with frequent 84 

inter-annual changes of breeding sites and among females. These results contradict theoretical 85 

models which predict that prospecting is expected to evolve in relatively predictable and stable 86 

environments. More long-term tracking studies are needed to identify factors affecting patterns 87 

of prospecting in different environments and understand the consequences of prospecting on 88 

fitness at the individual and population level. 89 

 90 

KEYWORDS: tracking devices, dispersal, movements, behavioural ecology, gulls, terns 91 

 92 

 93 

INTRODUCTION 94 

 95 

Prospecting behaviour is present in migratory and non-migratory, solitary and colonial species 96 

and is defined as visits of individuals to potential alternative patches where they might breed 97 

in the future (Reed et al. 1999). During this process, individuals gather social and 98 

environmental information to assess the quality of potential breeding patches (Danchin et al. 99 

2004; Dall et al 2005). Prospectors have mainly been identified in non-breeding subadults or 100 

adults, which are supposed to search for a new breeding patch (Reed et al. 1999). Several 101 
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empirical studies showed that prospecting occurs in many taxa such as mammals (Selonen and 102 

Hanski 2010; Mares et al. 2014; Mayer et al. 2017), birds (Reed et al. 1999; Doligez et al. 2004; 103 

Parejo et al. 2007, Calabuig et al. 2010; Ponchon et al. 2017b), reptiles (Cote and Clobert 2007), 104 

amphibians (Pizzatto et al. 2016), and insects (Seeley and Buhrman 2001). During prospecting, 105 

individuals familiarize themselves with breeding patch size, local intraspecific competition, 106 

offspring quality and breeding success of conspecific or heterospecific individuals 107 

(Mönkkönen et al. 1999; Cayuela et al. 2018). Individuals can use that information to make 108 

what are called ‘informed dispersal’ decisions about where they will breed in future years 109 

(Clobert et al. 2009). Prospecting is especially important for immatures, as they do not have 110 

previous experience with any breeding patch apart from their natal site (Reed et al. 1999). 111 

Prospecting before recruitment may affect age at first reproduction, and increase individual 112 

fitness and lifetime reproductive success (Schorring et al. 1999; Frederiksen and Bregnballe 113 

2001; Genovart et al. 2020a).  114 

Prospecting is a crucial component of informed dispersal and enables individuals to compare 115 

their current breeding patch with the neighbouring ones and make a decision on whether to stay 116 

or disperse (Boulinier and Danchin 1997; Reed et al. 1999). In general, philopatry has several 117 

advantages over dispersal, including the knowledge of the location of surrounding foraging 118 

grounds and social cohesion. The preference to breed in a familiar neighbourhood can enhance 119 

site fidelity. When emigration from a site is based on information use, dispersal is largely 120 

related to individual breeding success with failed breeders being more likely to disperse than 121 

successful breeders, especially in an unsuccessful breeding patch (Boulinier et al. 2008). To 122 

decide about a future breeding patch, failed breeders prospect neighbouring patches (Fijn et al. 123 

2014; Ponchon et al. 2017b). The degree of philopatry thus tends to be higher in stable and 124 

successful breeding patches (Palestis 2014). Should at some point dispersal occur, many 125 

individuals can leave their current breeding patch at once, which can result in significant 126 



6 
 

population size fluctuations and even collapses (Palestis 2014; Ponchon et al. 2015b; Genovart 127 

et al. 2020b). In birds, adult prospecting is mainly documented in later stages of the breeding 128 

cycle, during chick-rearing, when breeding success is easy to assess and when failed breeders 129 

have spare time before moulting or migration (Boulinier and Lemel 1996; Doligez et al. 2004; 130 

Ward 2005). Prospecting may also occur before the breeding season, despite time constraints 131 

associated with seasonal nesting (Farrell et al. 2012; Spendelow and Eichenwald 2018). 132 

Until recently, prospecting was mainly studied from marked individuals (e.g. Ward 2005; 133 

Dugger et al. 2010; Mares et al. 2014). Recent increases in the use of animal tracking 134 

technologies have begun to show how widespread prospecting behaviours can be in free-living 135 

populations. However, compared to the analysis of foraging habitat selection, breeding habitat 136 

selection is still understudied and the occurrence of prospecting in various species, including 137 

seabirds, is still not well understood (Grémillet and Boulinier 2009; Ponchon et al. 2013). 138 

Based on the collected evidence so far, prospecting in adults is commonly attributed to failed 139 

breeders (Fijn et al. 2014; Ponchon et al. 2015a; Ponchon et al. 2017b). Prospecting is energy-140 

demanding, and birds occupied with reproductive duties are not expected to spend time visiting 141 

conspecific colonies (Reed et al. 1999). Yet, recently, a few tracking studies have revealed that 142 

some adults who are still actively breeding (i.e. successful in their current breeding attempt) 143 

may visit conspecific breeding patches (Martinović et al. 2019; Oro et al. 2021). Such 144 

prospecting during active breeding is largely understudied, despite its potential broad 145 

occurrence. The fact that active breeders are devoting time and energy to prospect while also 146 

meeting the energy requirements of incubating and rearing young suggests that prospecting is 147 

an important component of habitat selection. 148 

In this study, we collected satellite- and GPS-tracking data of 31 populations of 14 colonial 149 

gull and tern species during the breeding season to explore the occurrence of prospecting in 150 

active breeders (PAB) and assess the factors affecting that behaviour. We further analysed a 151 
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subset of prospecting trips to identify their temporal and spatial patterns. Based on the 152 

numerous theoretical works which stressed that prospecting is expected to evolve especially in 153 

temporally predictable environments (Boulinier and Danchin 1997; Doligez et al. 2004; Bocedi 154 

et al. 2012; Ponchon et al. 2021), we hypothesized that PAB was more likely to occur in 155 

populations that bred in relatively stable environments. Based on the optimal timing 156 

hypothesis, according to which prospecting occurrence is the greatest during chick-rearing, 157 

when the best quality information about conspecific reproductive success can be achieved 158 

(Boulinier et al. 1996), prospecting was expected to be more frequent during chick-rearing 159 

period.  160 

 161 

MATERIAL AND METHODS 162 

Data collection 163 

We collated data from studies based on satellite- and GPS-tracking of adult breeding seabirds 164 

collected through different projects that mostly aimed to study foraging movements (Table 1). 165 

We restricted our study to gulls and terns from Europe and North America as the species of 166 

these families are known to vary in philopatry and life-history traits, and extensive tracking 167 

data during the breeding season is available (Schreiber & Burger 2002, Brooke 2018). We 168 

selected studies in areas where the position of conspecific breeding patches where known based 169 

on field research or surveying or monitoring programs. Colonies can be defined as aggregates 170 

of only-breeding territories (Danchin et al. 1998). Colony determination is often subjective and 171 

differs for each species (Jovani et al. 2008). In this paper, we define a “breeding patch” as a 172 

formation of clustered nests spatially separated by topographic features (single cliffs, islands, 173 

roofs, etc.).  174 

We defined PAB (prospecting in active breeders) as the visit to other conspecific breeding 175 

patches by a breeding individual during the incubation or chick-rearing stage. Due to the 176 
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different temporal resolutions of GPS/satellite positions (between 5 and 30 minutes) in the 177 

different studies, prospecting was confirmed if two successive locations (with a null speed 178 

when available) were recorded at the visited patch, indicating at least a short resting period. In 179 

populations with frequent perturbations, where breeding patches might be abandoned for 180 

several years and then recolonised, visits to all known breeding patches were categorised as 181 

prospecting, even if the patch was not confirmed to be active in the respective year (Oro et al. 182 

2021). 183 

We collected data from 1196 adult individuals belonging to 14 species. In general, birds were 184 

captured towards the end of the incubation stage to reduce the likeliness of clutch abandonment 185 

and maximize the capturability. The majority (90.8%) of birds were tracked during a single 186 

breeding season (from a few days to a few weeks), while 9.2% of birds were tracked during 2 187 

or more (maximum 5) successive breeding seasons, resulting in a total sample of 1392 188 

birds/seasons. The sex of birds was known in 1170 cases, with 587 females and 583 males. 189 

Gulls and terns have semi-precocial chicks that leave the nest within 2-4 days (terns) or up to 190 

8 days (gulls) after hatching. The ledge-nesting kittiwakes are the exception with chicks staying 191 

in the nest for around 30 days (Lance and Roby 1998; Coulson 2011). We used monitored or 192 

presumed nest fate to assess whether tagged birds were actively breeding. Nest fate covered 193 

the period of incubation and early chick-rearing and was monitored using cameras or through 194 

visual monitoring of nests. Alternatively, it was presumed from the movements of tracked 195 

birds, where regular visits to their breeding patch (based on GPS positions) during the 196 

incubation and early chick-rearing period were considered as indication of active breeding (e.g. 197 

Ponchon et al. 2017a; Picardi et al. 2020). Incubating birds or birds with young chicks were 198 

considered to be active breeders, no matter the final fate of their offspring. Movements after 199 

presumed breeding failure were not analysed. Tracked birds that failed early during tracking 200 

were not included in the analysis.  201 
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Selection of variables 202 

We tested how intrinsic and environmental factors affected the occurrence of PAB. We 203 

recorded variables related to the birds and variables describing their breeding patch. For each 204 

bird, its identification number, species, sex, species-specific duration of incubation and chick-205 

rearing, and relative tracking duration for each breeding season were recorded. The categorical 206 

variables related to the breeding patch included in our model were patch identification number, 207 

occurrence of large breeding failure, frequent changes of breeding locations (CBL), habitat 208 

type and patch stability, whereas the continuous variables were distance to the closest 209 

conspecific breeding patch (DCC) and latitude. Additionally, for prospecting individuals, 210 

distances to the prospected patches were recorded. 211 

Duration of incubation and chick-rearing stage until fledging is given as an average time in 212 

days, extracted from BWPi (2006) and Billerman et al. (2020) for European and North 213 

American species respectively. The relative tracking duration was provided in four categories, 214 

representing < 25%, 25-50%, 51-75% and > 75% of the breeding season duration (egg-laying 215 

to fledging). We assessed whether regular breeding failure (as the result of predation, adverse 216 

weather, flooding, or food shortage) occurred at the studied patches. Information whether 217 

groups of birds frequently changed their breeding locations was often based on long-term 218 

monitoring or data obtained by colour-ringing. The type of habitat where species evolved 219 

distinguished ephemeral habitats (such as dynamic marshes, saltpans and dunes) and stable 220 

habitats (rocky cliffs, rocky islands). For defining breeding patch stability, codes were used as 221 

follows: 1 - (one of) the biggest colonies in the study area; 2 - stable but smaller breeding patch, 222 

frequently used; 3 - new or infrequently used breeding patch (Supplementary Material Table 223 

1).  224 

Statistical analyses 225 
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We built generalized linear mixed-effects models (GLMM) to assess the factors affecting the 226 

occurrence of PAB for each tracked individual as a binomial response variable, using 227 

categorical and continuous predictors with logit link. Relative tracking duration and breeding 228 

patch ID were included as random variables. We checked variables for collinearity and 229 

excluded the variable “species” from the models. Interactions among variables (CBL, DCC, 230 

stability, sex) were tested, but did not significantly influence the models. Model fit accounting 231 

for model complexity was evaluated using the Akaike information criterion corrected for small 232 

sample sizes (AICc, Burnham and Anderson 2002). Since the top three models (lowest AICc) 233 

had ΔAICc less than two, these models were conditionally averaged using the model.avg 234 

function (Bartón 2020). Statistical analyses were conducted in R version 4.1.1 (R Core Team 235 

2021) using the lme4 (Bates et al. 2015) and MuMIn (Bartón 2020) packages.  236 

We further aimed at identifying temporal and spatial patterns of PAB based on 322 prospecting 237 

tracks from 113 individuals from 11 species. We used Yates corrected Chi-square test to 238 

analyse the difference in the occurrence of prospecting trips between sexes, breeding stages 239 

(incubation or chick-rearing) and time of the day (day vs. night). The correlation between the 240 

distance to the closest breeding patch and prospected patches were analysed by Pearson 241 

correlation. 242 

 243 

RESULTS 244 

Factors affecting the occurrence of PAB 245 

From 31 populations of 14 gull and tern species analysed, prospecting in active breeders (PAB) 246 

was recorded in 19 populations of 12 species (Table 1): 2 out of 5 tern populations and 17 out 247 

of 27 gull populations. The percentage of prospecting individuals among all breeders ranged 248 

from 0.6 to 70%. Higher percentages (>25% prospecting individuals in studies with a minimum 249 

of 10 tagged birds) were recorded among five species: Mediterranean gull, Larus 250 
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melanocephalus, Audouin’s gull Larus audouinii, yellow-legged gull Larus michahellis, 251 

sandwich tern Thalasseus sandvicensis and common tern Sterna hirundo. 252 

The inter-annual change of breeding location and sex were shown to be the most important 253 

variables affecting the occurrence of PAB (Table 2). Conditionally averaged best three models 254 

(Figure 1) showed that probability for PAB was higher in populations showing frequent inter-255 

annual change of breeding location (GLMM z value =3.819, p < 0.001) and among females 256 

(GLMM z value = 2.201, p < 0.01).  257 

Analysis of prospecting trips 258 

From prospecting trips of birds with known sex (N = 185), 61.6% were undertaken by females 259 

(Figure 2). Females had higher median prospecting distances in six species and higher 260 

maximum distances to prospected colonies in six species, but due to the small sample size, the 261 

difference was significant only for one population of Audouin’s gulls (Supplementary Material 262 

Table 2). From all prospecting trips with a known stage of the breeding cycle (N= 243), 63% 263 

were undertaken during the chick-rearing stage, with similar values (53.3–60.8%) obtained for 264 

individuals with longer relative tracking durations (>50% of the breeding season). Also, 40.8% 265 

of prospecting trips with a reported time of day (N=277) included nocturnal visits in prospected 266 

colonies. Nocturnal trips were more common during the incubation stage (51.1% of trips during 267 

that stage) than during the chick-rearing (29.4% of trips) (Yates corrected χ2= 4.46, p < 0.05). 268 

The majority of visited patches were < 100 km from the breeding patch (Figure 3, Figure 4) 269 

and distances to prospected patches (range 0.8-345 km) were highly correlated to the distances 270 

to the closest breeding patch (range 0.8-385 km) (Pearson correlation = 0.368, p<0.01).  271 

The greatest number of prospecting tracks were collected for the sandwich tern from the 272 

Netherlands (41 individuals with a total of 133 prospecting trips). For that species, the median 273 

number of prospecting trips per bird was 2 (range 1-8), while the median distance was 8 km 274 

(range: 5-202). Most prospecting trips of the sandwich tern were undertaken only during the 275 
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daytime, but 39.1% of them also included nocturnal visits in prospected colonies. Also, 42.1% 276 

of trips were undertaken during the incubation stage. The percentage of trips that included 277 

nocturnal visits at the prospected colony was higher during the incubation stage (60.7%) than 278 

during chick-rearing (23.4%), the difference being significant (Yates corrected χ2= 7.20, p < 279 

0.01). More nocturnal visits during the incubation stage were also found in common tern (5 280 

during incubation versus 1 during the chick-rearing stage), but the total number of trips was 281 

low (N =12). A substantial percentage of nocturnal visits were undertaken by Audouin’s and 282 

yellow-legged gulls (47.6% and 46.2% respectively), whereas Mediterranean gulls prospected 283 

only during daytime.  284 

 285 

DISCUSSION 286 

 287 

Contrary to our predictions, prospecting in active breeders (PAB), a behaviour largely 288 

unnoticed in the scientific literature, was recorded in 85.7% of studied gull and tern species 289 

and 61.3% of sampled populations. During the breeding period, central place foragers like 290 

seabirds are constrained in time and energy, as they must divide their time between foraging 291 

for themselves and investing in reproduction (Orians and Pearson 1979). The fact that 292 

prospecting frequently occurs during incubation and chick-rearing stresses its importance in 293 

the breeding habitat selection process and might be much more widespread than currently 294 

acknowledged.  295 

Drivers of prospecting: breeding patch, sex and distance 296 

The relation between prospecting and inter-annual change of breeding locations is consistent 297 

with the well-supported hypothesis that prospecting helps individuals select their future 298 

breeding site (Reed et al. 1999). Changing a breeding location might be preceded by sabbatical 299 

year(s), during which individuals prospect potential breeding sites (Munilla et al. 2016; Oro et 300 
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al. 2021); however, our results show that currently breeding birds also engage in PAB. 301 

Prospecting during different stages of the breeding cycle also allows breeding individuals to 302 

compare the quality of their current breeding patch to other localities over a wider area, 303 

informing the decision of whether to disperse or not. This information could be used for the 304 

current or future breeding seasons. As <10% of individual birds in our study were tracked over 305 

multiple consecutive breeding seasons, we could not examine whether prospecting birds 306 

actually used gathered information to disperse to a prospected patch the following season. 307 

However, Oro et al. (2021) found no prospecting in successfully breeding Audouin’s gulls that 308 

were philopatric in the following year, and intensive prospecting in both successful and 309 

unsuccessful breeders that dispersed in the following year, highlighting the crucial role of 310 

prospecting in dispersal decision. Prospecting patterns might thus potentially reflect 311 

individuals’ intentions to disperse. However, this tight link between prospecting and 312 

subsequent dispersal is still challenging to record in the field, as individuals must be tracked 313 

over long periods and large spatial scales. 314 

We considered relative breeding patch size and frequency of its use as a proxy for the stability 315 

of the patch but also as an indicator of environmental quality. However, patch stability in our 316 

study did not have a significant effect on PAB. This contradicts previous theoretical models 317 

that showed that prospecting may only evolve in a relatively predictable and stable environment 318 

(Boulinier and Danchin 1997; Doligez et al. 2003; Bocedi et al. 2012). Nevertheless, those 319 

models mostly addressed prospecting where dispersal occurred the following year, not during 320 

the same breeding season. The difference in timing of information use might be crucial in an 321 

unstable environment, since in this case, information gathered during prospecting might be 322 

used immediately, such as for renesting purposes. As replacement clutches are more likely to 323 

be laid after failure in earlier stages of the breeding season (Pakanen et al. 2014), prospecting 324 

during the incubation suggests that PAB may also be used to identify suitable patches for 325 
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renesting elsewhere within the same season (Ward 2005; Martinović et al. 2019). At the same 326 

time, PAB was more common during the early chick-rearing stage than during incubation, 327 

which is consistent with the “optimal-timing hypothesis” (Boulinier et al. 1996). 328 

Prospecting was more common in breeding females than in males, as already observed in adult 329 

breeding yellow-headed blackbirds Xanthocephalus xanthocephalus (Ward 2005). In general, 330 

females have higher dispersal probabilities in most bird species (Greenwood 1980), which may 331 

explain higher prospecting rates. Similarly, in six species females travelled greater maximum 332 

distances to prospected colonies than males. It has been shown that in several seabird species, 333 

the smaller sex undertakes longer foraging trips during the breeding season (Phillips et al. 334 

2017). In the current study, females were the smaller and lighter sex in all seabirds examined. 335 

Therefore, they may use less energy for flying, which might be the underlying reason for their 336 

longer prospecting flights (Wearmouth and Sims 2008). In general, parental care in studied 337 

gulls and terns is shared between sexes (Leclaire et al 2010; Kavelaars et al 2021) with some 338 

differences among species. For example, females often perform more incubation and chick-339 

rearing, whereas males perform most territory attendance in gulls and more provisioning in 340 

terns and some gulls (Pierotti, 1981; Fasola and Saino 1995). 341 

Distances to the prospected colonies were highly correlated with distances to the closest 342 

breeding patch. In our study, birds usually visited patches close to their current breeding patch, 343 

but on five occasions, visits to the nearest breeding patch (ranging 10-24 km) were not 344 

recorded. Whether active breeders visit all available patches or only some of them might 345 

depend on the number and distances to potential breeding patches, but also on the previous 346 

experience of individuals. As breeding seabirds must return frequently to their breeding patch 347 

to undertake reproductive duties, maximal prospecting distances of active breeders were 348 

expected to be lower than in failed breeders. This was confirmed in Audouin’s gulls where the 349 

maximum distance to prospected patches was 164 km in active and 360 km in failed breeders 350 
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(Oro et al. 2021), and in sandwich terns, where maximal distances in active breeders (202 km) 351 

were lower than in failed breeders from the same colonies (850 km; Fijn et al. 2014).  352 

Nocturnal visits were recorded in 40.8% of prospecting trips and were more frequent during 353 

incubation. Frequent prospecting or longer visits to prospected colonies decrease nest 354 

attendance, creating a trade-off between nest attendance and prospecting. Peak numbers of 355 

Audouin’s gulls prospecting at night were also reported by Oro et al. (2021). Nocturnal visits 356 

might decrease negative interactions with conspecifics and predators while enabling the 357 

assessment of population density and breeding success. 358 

Intra- and inter-specific differences in PAB 359 

Kittiwakes were the exception among studied seabirds, as almost no PAB was recorded. 360 

Previous tracking studies on breeding black-legged kittiwakes showed that prospecting only 361 

occurred in failed breeders (Ponchon et al. 2015b; Ponchon et al. 2017b). In our study, only 362 

one bird from 324 black-legged kittiwakes and two from 94 red-legged kittiwakes Rissa 363 

brevirostris prospected while actively breeding. Furthermore, the occurrence of PAB differed 364 

between populations of the same species: PAB occurred in Oregon, but was not observed in 365 

Californian populations of the western gull Larus occidentalis, whereas in yellow-legged gull, 366 

PAB was common in the Balearic population, but not in the Atlantic one (Delgado et al. 2021, 367 

Table 1). Overall, inter- and intra- species variability calls for more detailed studies of PAB in 368 

different populations of the same species but also in species with different life-history 369 

strategies. Possible factors that could affect prospecting are differences in physical 370 

environments (e.g. populations at the core/edge of species range, number of conspecific 371 

colonies), density-dependence at both inter- and intra-specific level, a regime of perturbation, 372 

age-distribution, laying synchrony and habitat suitability (including foraging opportunities and 373 

predator density; Oro et al. 1996; Tavecchia et al. 2008; Sanz-Aguilar et al. 2009). 374 
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Other factors that might influence prospecting are animal personality shown to affect dispersal 375 

(Cote et al. 2010; Schuett et al. 2012) and individual experience or age (Oro et al. 1999; Payo-376 

Payo et al. 2017). Older immatures individuals generally prospect less, with increased fidelity 377 

to a selected site before attempting breeding for the first time (Cadiou et al. 1994, Dittmann et 378 

al. 2005; Campioni et al. 2017). In contrast, older adults may be more likely to prospect, such 379 

as in meerkats Suricata suricatta (Mares et al. 2014). Knowing the age of tracked individuals 380 

may provide greater clarity on whether individuals of different age and experience display 381 

different prospecting patterns. 382 

The effect of data quality 383 

In the present study, we assumed that any visit to a conspecific colony was for prospecting. 384 

Even if we cannot rule out the possibility that some individuals visited breeding patches for 385 

other purposes than prospecting for a future breeding site (see Ponchon et al 2015a), being 386 

present in another breeding patch with other conspecifics may still provide information that 387 

could be used for dispersal and settlement decisions. Accordingly, we believe our assumption 388 

did not significantly affect our results. On the contrary, PAB evidence might still be 389 

underestimated, especially in studies involving a small number of tracked individuals or short 390 

tracking periods, or if not all conspecific breeding patches were identified and visits to these 391 

sites were not recorded as prospecting. Moreover, in our study, adults were mostly tracked 392 

from the mid-incubation stage onwards, so visits to other colonies at the beginning of the 393 

incubation stage were not recorded. Similarly, visits towards the end of the rearing stage were 394 

not included, as it was not possible to identify if breeding was over for individuals (by fledging 395 

or chick loss).  396 

A few studies showed long-distance movements and prospecting in birds (Boulinier et al. 2016; 397 

Cooper and Marra 2020), highlighting the underestimation of the frequency and spatial scale 398 

at which animals move outside of their territories. Understanding the purpose and scale of 399 
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prospecting movements and being able to relate them to actual dispersal would have important 400 

implications for the ecology, evolution, and conservation of species, especially in the current 401 

context of environmental change (Dugger et al. 2010; Ponchon et al. 2015b). The number of 402 

tracking studies is increasing, especially in the marine environment. Although many of them 403 

aimed to identify foraging behaviour or migration routes, they might also be a source of other 404 

information (Hays et al. 2016). Regardless of the goal of tracking studies, more attention should 405 

be given to the movements of individuals that differ from usual foraging patterns. In species 406 

that often disperse, tracking prospecting in breeding adults as well as tracking their visits to 407 

potential, but empty patches might provide insights into their intentions in terms of current and 408 

future breeding habitat selection and colonisation of new breeding patches (Oro 2020; Oro et 409 

al. 2021). It would also help to identify already existing breeding patches and be an important 410 

tool for planning the monitoring of breeding populations, assessing population borders and 411 

designing conservation measures.  412 

CONCLUSION 413 

By reviewing the occurrence of PAB among different gull and tern species, we highlighted the 414 

importance of prospecting in adult breeding seabirds. We showed that PAB is more common 415 

in populations with frequent breeding dispersal and among females. Informed dispersal may 416 

help populations to recover faster in response to environmental change by tracking better 417 

environmental conditions, notably through extinction-recolonization dynamics (Ponchon et al. 418 

2015b). Still, little is known about the drivers that influence prospecting and subsequent 419 

settlement in a new breeding patch, including the effect of various environmental factors (Payo-420 

Payo et al. 2017; Oro et al. 2021). Our results call for more long-term tracking studies 421 

simultaneously monitoring the breeding success not only of individuals but also of whole 422 

breeding patches to identify factors affecting spatial and temporal patterns of prospecting in 423 
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different stages of populations and different environments This would ultimately allow us to 424 

better predict species response to environmental change. 425 
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Table 1. Tracking studies of seabird movements included in the analysis of prospecting in active 497 

breeders. The number of prospecting individuals refers to birds prospecting during the active breeding. 498 

References based on tracking data included in this study are provided. References related to study of 499 

prospecting movements are given in bold.  500 

 501 

Species Country Year No. of 

tracked 

individuals 

No. of 

prospecting 

individuals 

Percentage of 

prospecting 

individuals 

Data owners 

Rissa tridactyla France 2014 36 0 0 Ponchon, A., Grémillet, D  

Rissa tridactyla Norway 2010-

2015 

136 0 0 Ponchon, A., Boulinier, T.  

Rissa tridactyla USA 2008-

2010 

152 1 0.7 Paredes, R., Harding, A., 

Orben, R.,  

Rissa 

brevirostris 

USA 2010 23 0 0 Paredes, R., Irons, D., 

Roby, D. 

Rissa 

brevirostris 

USA 2015-

2017 

71 2 2.8 Orben, R., Fleishman, A., 

Kitaysky, A. Shaffer, S., 

Paredes, R.  

Larus 

melanocephalus 

Italy 2016 10 7 70 Serra, L., Pirrello, S., 

Cecere, J.G. 

Larus audouinii Croatia 2017-

2021 

28 12 42.9 Jurinović, L. 

Larus audouinii France 2014-

2016 

8 0 0 Recorbet, B.  

Larus audouinii Italy 2013-

2020 

30 3 10 Baccetti, N., Zenatello, 

M., Amadesi, B.  
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Larus audouinii Spain 2006-

2011 

38 16 42.1 Oro, D.  

Larus canus Germany 2018-

2020 

19 0 0 Garthe, S., Kubetzki U. 

Larus canus Germany 2019-

2020 

11 2 18.2 Garthe, S. 

Larus 

occidentalis 

USA 2013-

2020 

177 0 0 Shaffer, S., Young, H., 

Warzybok, P., Jahncke, J.,  

Larus 

occidentalis 

USA 2013-

2020 

51 0 0 Young, H., Shaffer, S.,  

Larus 

occidentalis 

USA 2013-

2020 

39 4 10.3 Orben, R. 

Larus fuscus Germany 2009-

2012, 

2017-

2020 

30 2 6.7 Garthe, S., Corman A-M. 

Larus fuscus Germany 2013-

2014 

25 1 4 Garthe, S., Corman A-M. 

Larus fuscus United 

Kingdom 

2016-

2020 

12 1 8.3 Spelt, A., Williamson, C., 

Windsor, S. 

Larus 

argentatus 

Germany 2017-

2020 

17 1 5.9 Garthe, S. 

Larus 

argentatus 

Germany 2019-

2020 

7 0 0 Garthe, S. 
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Larus 

argentatus 

Germany 2016-

2020 

30 2 6.7 Garthe, S., Schwemmer, 

P. 

Larus 

argentatus 

Germany 2012-

2015 

15 2 13.3 Garthe, S., Enners, L. 

Larus 

michahellis 

Croatia 2019-

2021 

10 1 10 Jurinović, L. 

Larus 

michahellis 

Spain 2018-

2019 

30 0 0 Arizaga, J. 

Larus 

michahellis 

Spain 2016-

2021 

20 7 35 Tavecchia, G., Igual, J.M. 

Larus marinus Germany 2016-

2020 

22 2 9.1 Garthe, S., Schwemmer, 

P. 

Onychoprion 

aleuticus 

USA 2019 10 0 0 Tengeres, J., Corcoran, R., 

Lyons, D. 

Gelochelidon 

nilotica 

Italy 2019-

2020 

15 0 0 Serra, L., Pirrello, S., 

Cecere, J.G. 

Sterna hirundo Croatia 2018 16 6 37.5 Kralj, J.  

Sterna hirundo Slovenia 2018-

2019 

7 0 0 Tome, D.  

Thalasseus 

sandvicensis 

Netherlands 2012-

2020 

101 41 40.6 Fijn, R.  

 502 

 503 

 504 

 505 
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Table 2. Generalized linear mixed-effects models testing factors affecting the occurrence of prospecting 506 

in active breeding gulls and terns with relative tracking duration and breeding patch ID as random 507 

variables. The bottom model is the full model. The first three models were conditionally averaged.   508 

Variables in the model np Dev AICc ΔAICc Wi 

CBL + sex  5 407.6 417.68 0 0.443 

CBL + sex + stability 7 404.7 418.78 1.10 0.256 

CBL + sex + DCC 6 407.2 419.31 1.63 0.197 

habitat + sex 5 411.2 421.23 3.55 0.075 

CBL + sex + stability + DCC + RBF 

+ lattitude + habitat + IF  

12 398.9 423.14 5.46 0.029 

Variables: CBL – frequent change of breeding location, stability - breeding patch stability, DCC – 509 

distance to the closest colony, habitat – habitat where species evolved, RBF – regular breeding failure, 510 

IF – duration of incubation and fledging (for details, see Material and Methods); np - number of 511 

estimable parameters, Dev - relative deviance, AICc - Akaike’s information criterion corrected for 512 

small sample sizes, ΔAICc - difference between the current model and the model with the lowest 513 

AICc, Wi – Akaike model weight. 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 
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Figure captions:  522 

Figure 1. Marginal effects of model variables on the occurrence of prospecting in actively 523 

breeding seabirds. CBL - frequent change of breeding location, DCC - distance to the closest 524 

colony, “Small stable patches” refers to category 2 of the variable “stability” and “Unstable 525 

patches” to category 3 of the variable “stability” (for details, see Material and Methods). Error 526 

bars show 95% confidence interval. Significance: filled triangle < 0.01, filled circle < 0.05, 527 

open circle - non significant.  528 

 529 

Figure 2. Number of prospecting trips (all studied species pooled) per sex and breeding stage. 530 

 531 

Figure 3. Distances to the prospected breeding patches by actively breeding birds. Data present 532 

results from Audouin’s gull Larus audouinii in Spain (ES) and Croatia (HR), yellow-legged 533 

gull Larus michahellis on the Balearic Islands, common tern Sterna hirundo in Croatia and 534 

sandwich tern Thalasseus sandvicensis in The Netherlands. Boxplots show the median, and the 535 

upper (Q3) and lower (Q1) quartiles, whiskers extending up to 1.5 times the interquartile range 536 

from the median, empty dots are outliers. Points represent individual prospecting trips. Black 537 

diamonds indicate the distance to the closest breeding patch that was not visited during 538 

tracking.  539 

 540 

Figure 4. Examples of prospecting trips of four individuals: a) western gull Larus 541 

occidentalis ID 117639606, b) sandwich tern Thalasseus sandvicensis ID B-H65, c) herring 542 

gull Larus argentatus ID N105787 and d) Audouin’s gull Larus audouinii ID CROG01. 543 

Symbol used: red square - breeding colony, yellow dots - prospected conspecific breeding 544 

patches, grey dots - non-prospected conspecific breeding patches, red lines - prospecting 545 



26 
 

trips, orange line - foraging trips during 10 days (5 days before and 5 days after prospecting 546 

trips).  547 
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Figure 1 548 

 549 
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Figure 2   551 
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