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Introduction

The stability of dynamical systems can be studied with several methods. Classical methods consist in analytic calculations which may require a lot of time to be manually solved and may be specific to some problems. Thus, some numerical methods have been developed to automatically solve some stability problems, such as the Routh-Hurwitz criterion [START_REF] John | A treatise on the stability of a given state of motion, particularly steady motion[END_REF] or the Linear Matrix Inequalities (LMI) [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. However, the class of problems currently solved by numerical methods is limited. There is therefore interest in developing new tools to automatize classical methods.

Lyapunov stability can be used to study the stability of nonlinear systems around an equilibrium point. The Lyapunov stability method consists in choosing a candidate Lyapunov function and then verifying if this candidate is positive-definite and decreases in time. This method involves manual calculation which becomes more challenging as the systems become more complex, see [START_REF] Zhou | Event-Triggered Control for Nonlinear Uncertain Second-Order Multi-Agent Formation With Collision Avoidance[END_REF][START_REF] Dianwei Qian | Robust formation maneuvers through sliding mode for multiagent systems with uncertainties[END_REF]. In these papers, the method is used several times with different Lyapunov functions. If the system is modified, a new Lyapunov function must be found and verified. Moreover, Lyapunov functions are more complex on a high-dimensional system with perturbations such as in [START_REF] Liu | Adaptive controlbased Barrier Lyapunov Functions for a class of stochastic nonlinear systems with full state constraints[END_REF]. Some other works use positive invariant sets to discuss stability such as [START_REF] Valmorbida | Region of attraction estimation using invariant sets and rational Lyapunov functions[END_REF][START_REF] Blanchini | Set-Theoretic Methods in Control[END_REF][START_REF] Esterhuizen | On maximal robust positively invariant sets in constrained nonlinear systems[END_REF][START_REF] Le Mezo | An Interval Approach to Compute Invariant Sets[END_REF]. These approaches are based on the links between the Lyapunov theory and the positive invariance concept since the sublevels sets of a Lyapunov functions are positive invariant. However, there exist invariant sets that are not related to any Lyapunov function. Ellipsoids are the most commonly exploited sets as candidate invariant regions because they can always be associated with a quadratic Lyapunov function.

Positive invariance of sets like ellipsoids can be verified under some criterion. For linear systems, they can be presented as LMI which can be numerically solved, see [START_REF] Polyak | Rejection of Bounded Disturbances via Invariant Ellipsoids Technique[END_REF][START_REF] Lian | Stabilization of Switched Linear Systems Subject to Actuator Saturation via Invariant Semiellipsoids[END_REF][START_REF] Weiss | Safe Positively Invariant Sets for Spacecraft Obstacle Avoidance[END_REF]. For nonlinear systems, they can be presented as inclusion problems as in [START_REF] Valmorbida | Region of attraction estimation using invariant sets and rational Lyapunov functions[END_REF] or as nonlinear inequality problems as in [START_REF] Romig | Using Interval Analysis to Compute the Invariant Set of a Nonlinear Closed-Loop Control System[END_REF].

Interval analysis has been shown to provide efficient numerical approaches for solving various tasks in control theory, see [START_REF] Jaulin | Applied Interval Analysis[END_REF][START_REF] Rauh | Interval methods and contractor-based branch-and-bound procedures for verified parameter identification of quasi-linear cooperative system models[END_REF][START_REF] Yu | A new LQG optimal control strategy applied on a hybrid wind turbine/solid oxide fuel cell/ in the presence of the interval uncertainties[END_REF]. Some interval analysis methods can be used to verify the positive invariance criterion for nonlinear systems in the presence of uncertainty. While the result of numerical methods is often non-guaranteed, numerical methods based on Interval calculation guarantee the verification of the criterion. The paper [START_REF] Romig | Using Interval Analysis to Compute the Invariant Set of a Nonlinear Closed-Loop Control System[END_REF] approximates positive invariant sets using the Set Inversion Via Interval Analysis (SIVIA) presented in [START_REF] Jaulin | Applied Interval Analysis[END_REF]. However, this method has exponential computational complexity, making it efficient for 2-dimensional problems but not suited for n-dimensional problems.

This paper proposes a new method to verify the robust positive invariance (RPI) of an ellipsoid for ndimensional time-independent nonlinear continuous systems using interval analysis. To our knowledge, it is the first time that n-dimensional stability is studied with interval methods. The main idea of the method is to verify if the border of an ellipsoid, after one step of the Euler scheme, is still contained in the same ellipsoid to verify RPI via Nagumo's theorem. The result of the Euler scheme is outer approximated by another ellipsoid using Interval analysis. This method can be implemented to automatically verify the system's stability, so manual calculations can be avoided in the case of high dimensional problems. This numerical but guaranteed method has computational tractability, contrary to common numerical approaches like SIVIA [START_REF] Romig | Using Interval Analysis to Compute the Invariant Set of a Nonlinear Closed-Loop Control System[END_REF] with exponential computational complexity.

The paper is structured in the following way. The key concept of ellipsoids, RPI, and interval analysis are presented in Section 2. Section 3 presents the positive invariance criterion which needs to be verified. The developed method is discussed in Sections 4. Section 5 discusses the method with two case applications on 2-dimensional and n-dimensional nonlinear systems.

Notations and hypotheses

The theory of the numerical method presented in this paper relies on ellipsoids presented in Section 2.1, and on Interval analysis presented in Section 2.2. These mathematical tools will be used to prove the RPI presented in Section 2.3.

Ellipsoids

For a matrix Q ∈ R n×n , Q ≻ 0 means Q is positive definite matrix, and Q ⪰ 0 means Q is positive semi- definite. Let S +
n be the set of the real symmetric positive definite matrices.

Let us define the norm

∥x∥ Q = x T Qx, (1) 
with Q ∈ S + n . This norm can be associated with the scalar product ⟨x, y⟩ Q = x T Qy.

(

Let us define the ellipsoid

E (Q) = x ∈ R n | ∥x∥ 2 Q ≤ 1 (3) 
centred at the origin and described with Q ∈ S + n .

For each

Q 1 ∈ S + n and Q 2 ∈ S + n , one has E (Q 1 ) ⊆ E (Q 2 ) if and only if Q 1 -Q 2 ⪰ 0.
The border of an ellipsoid E (Q) is written ∂E (Q). For each matrix Q ∈ S + n , there exists a unique matrix

Γ Q ∈ S + n such that Q = Γ -1 Q • Γ -1 Q , (4) 
with

Γ Q = √ Q -1 .
The numerical operations on the ellipsoid's matrix are guaranteed by interval analysis.

Interval analyses

Interval analysis is relevant to solve nonlinear inequalities in a guaranteed way. With basic mathematical tools, algorithms can be developed to test the conditions without further theory. This section presents interval analysis tools developed in [START_REF] Jaulin | Applied Interval Analysis[END_REF].

An interval [x] is defined as a connected subset of R.

The set of intervals is written IR. A box [x] is defined as a subset of R n and Cartesian product of intervals such that

[x] = [x 1 ] × [x 2 ] × • • • × [x n ] . (5) 
The set of boxes of R n is written IR n .

Definition 1 Let f be a function from R n to R m . An inclusion function for f is defined as an interval function

[f ] from IR n to IR m such that ∀ [x] ∈ IR n , f ([x]) ⊂ [f ] ([x]) , (6) 
see Figure 1.

Some inclusion functions give better approximation of f ([x]

). In this paper, the centred inclusion functions are the most suitable because ellipsoids are centred around the origin.

Definition 2 Let f be a D 1 function from R n to R. The centred inclusion function for f is an inclusion function defined as

[f c ] :IR n → IR n [x] → f (x m ) + ∂f ∂x ([x]) ([x] -x m ) (7)
with the middle point of [x] written x m . 

Robust positive invariance

Consider the nonlinear systems

ẋ (t) = f (x (t) , w (t)) , (8) 
with the state x (t) ∈ R n and the bounded perturbation

w (t) ∈ [w] ⊂ R m . Assume f is D 1
, and for each initial condition x (0) and piece-wise continuous function w (t) the system has a unique and globally defined solution.

Definition 3 [1, Definition 4.3] The set S ⊆ R n is said to be robust positive invariant (RPI) with respect to [START_REF] Lian | Stabilization of Switched Linear Systems Subject to Actuator Saturation via Invariant Semiellipsoids[END_REF] if, for all x (0) ∈ S and any w (t) ∈ [w], the solution x (t) of system ( 8) is in S for all t ≥ 0. Figure 2 presents an example of a RPI ellipsoid E (Q) on R 2 . Section 3 presents a specific condition for RPI for Ellipsoids.

Problem formulation

This paper aims to discuss the stability of n-dimensional nonlinear system (8) around the origin. This stability is studied using RPI ellipsoids. The first step is to find an ellipsoid candidate for the system. Then the RPI of the ellipsoid is shown using a condition defined in this section. This condition will be tested by algorithmic approaches in the following sections.

Consider the nonlinear system described by ( 8) and the centred ellipsoid E (Q) with Q ∈ S + n . A condition to verify the RPI of E (Q) is given using Nagumo's theorem. This condition is presented in Theorem 4. 

∀ {x, w} ∈ ∂E (Q) × [w] , ⟨x, f (x, w)⟩ Q ≤ 0. ( 9 
)
A numerical method to solve the stability problem is proposed in the following Section 4.

Enclosing method

We propose a new numerical method, called the enclosing method to verify the RPI, with operations on matrices of intervals. The method has computational tractability with a computational complexity between O n 2 and O n 3 , as it will be illustrated in Figure 6 in Section 5.2.2.

Let us define the function

h δ : R n+m → R n {x, w} → x + δf (x, w) , (10) 
with an arbitrary small parameter δ > 0. At a time t > 0, h δ (x(t), w(t)) approximates the future state x (t + δ), by the Euler method. Consider the set Y Q δ defined by

Y Q δ = {y ∈ R n |∃(x, w) ∈ ∂E (Q) × [w], y = h δ (x, y)} . ( 11 
)
As shown in the following Theorem 5, if for all state x (t) on the border ∂E (Q) of an ellipsoid E (Q), the approximation of the future state x (t + δ) is inside E (Q), then the state x (t) will stay inside E (Q), as illustrated by Figure 2.

Theorem 5 If there exists a δ > 0 so that Y Q δ ⊆ E (Q), then E (Q) is RPI w.r.t. (8). Proof. Assume Y Q δ ⊆ E (Q). Let x ∈ ∂E (Q) and w ∈ [w]. Since h δ (x, w) ∈ Y Q δ , one has h δ (x, w) ∈ E (Q) and thus h δ (x, w) T Qh δ (x, w) ≤ 1 (10) ⇔ (x + δf (x, w)) T Q (x + δf (x, w)) ≤ 1 (1), (8) 
⇔ ∥x∥

2 Q + 2δx T Qf (x, w) + δ 2 ∥ ẋ∥ 2 Q ≤ 1 ⇔ ∥x∥ 2 Q + 2δ ⟨x, f (x, w)⟩ Q + δ 2 ∥ ẋ∥ 2 Q ≤ 1 ⇔ ⟨x, f (x, w)⟩ Q ≤ 1 2δ 1 -∥x∥ 2 Q -δ 2 ∥ ẋ∥ 2 Q . (12) Moreover, since x ∈ ∂E (Q), one has ∥x∥ 2 Q = 1. Thus ⟨x, f (x, w)⟩ Q ≤ 0. Therefore, by Theorem 4, E (Q) is RPI.
In practice, the inclusion in Theorem 5 is hard to verify with a numerical method. Therefore, we propose to use instead an outer ellipsoidal approximation of Y Q δ to verify RPI as described in the Corollary 6 of Theorem 5. 

, i.e. Y Q δ ⊆ E Q . If E Q ⊆ E (Q) then E (Q) is RPI. Note that E Q ⊆ E (Q) is equivalent to Q -Q ⪰ 0
which can be numerically verified with a Cholesky decomposition applied on interval matrix. The algorithm of this decomposition consists in using the interval counterpart of the operations in the classical Cholesky decomposition algorithm.

A method to find an outer ellipsoidal approximation E Q is proposed in the next Section 4.1.

Outer ellipsoidal approximation

Inspired from [12, Theorem 3], the outer ellipsoidal approximation E Q can be calculated using the Theorem 7.

Theorem 7 An outer ellipsoidal approximation of

Y Q δ is E Q with Q = 1 (1 + ρ) 2 A -T x QA -1 x ( 13 
)
where

A x = ∂h δ ∂x (0, w m ) ( 14 
)
with w m as the middle of the box [w], and

ρ = sup {∥[b] ([x] , [w])∥} ( 15 
)
with the tightest axis-aligned box [x] containing E (Q) and with the vector 16), one has

b (x, w) = Γ -1 Q • A -1 x • h δ (x, w) -Γ -1 Q • x (16) Proof. Let x ∈ ∂E (Q) and w ∈ [w]. Let us write a 1 = Γ -1 Q • A -1 x • h δ (x, w). From (
a 1 = Γ -1 Q • x + b (x, w) (17) 
Moreover, according to (3), ( 4), ( 15) and the triangular identity, one deduces

∥a 1 ∥ ≤ Γ -1 Q • x + ∥b (x, w)∥ ≤ 1 + ρ. ( 18 
)
From ( 1), one has

∥h δ (x, w)∥ 2 Q = h δ (x, w) T Qh δ (x, w) . ( 13 
) = h δ (x, w) T 1 (1+ρ) 2 A -T x QA -1 x h δ (x, w) (4),( 17 
) = 1 (1 + ρ) 2 a T 1 a 1 = 1 (1 + ρ) 2 ∥a 1 ∥ 2 . ( 19 
)
Therefore, with [START_REF] Yu | A new LQG optimal control strategy applied on a hybrid wind turbine/solid oxide fuel cell/ in the presence of the interval uncertainties[END_REF], one deduces that ∥h δ (x, w)∥ Q ≤ 1. As a result, h δ (x, w) ∈ E Q which verifies the theorem.

The parameter ρ can be calculated using the centred inclusion function for b given by Theorem 8

Theorem 8 The centred inclusion function for b with the middle point (x, w) = (0, 0) is equal to

[b] ([x] , [w]) =b (0, w m ) + Γ -1 Q • A -1 x I n + δ • ∂f ∂x ([x] , [w]) -Γ -1 Q • [x] + Γ -1 Q • A -1 x • δ • ∂f ∂w ([x] , [w]) • ([w] -w m ) . (20) 
Proof. From (7) the centred inclusion function for b with the middle point (0, 0) is

[b] ([x] , [w]) =b (0, w m ) + ∂b ∂x ([x] , [w]) • ([x] -0) + ∂b ∂w ([x] , [w]) • ([w] -w m ) = ∂b ∂x ([x] , [w]) • [x] + ∂b ∂w ([x] , [w]) • ([w] -w m ) , (21) 
with the tightest axis-aligned box [x] containing E (Q).

The involved Jacobians are expressed as

∂b ∂x (x, w) = Γ -1 Q • A -1 x ∂h δ ∂x (x, w) -Γ -1 Q (10) = Γ -1 Q • A -1 x I n + δ • ∂f ∂x (x, w) -Γ -1 Q (22) ∂b ∂w (x, w) = Γ -1 Q • A -1 x • ∂h δ ∂w (x, w) (10) = Γ -1 Q • A -1 x • δ • ∂f ∂w (x, w) . (23) 
Moreover, the matrices A x and Γ Q do not depend on x and w, therefore the inclusion function of ( 22) and ( 23) can be deduced from the inclusion function of ∂f ∂x and ∂f ∂w such that

∂b ∂x ([x] , [w]) = Γ -1 Q • A -1 x (I n +δ • ∂f ∂x ([x] , [w]) -Γ -1 Q , (24) ∂b ∂w ([x] , [w]) = Γ -1 Q • A -1 x • δ • ∂f ∂w ([x] , [w]) . (25) 
From ( 21), ( 24) and( 25), one deduces (20).

The algorithmic application of Corollary 6 and Theorem 7 and 8 is presented in the following Section 4.2.

Algorithm of the enclosing method

The algorithm of the enclosing method is presented in Algorithm The two most complex operations in this algorithm are the matrix inversion and the Cholesky decomposition. Depending on their algorithm, these operations have a computational complexity between O n 2 and O n 3 . Therefore the computational complexity of Algorithm 1 is expected to have a similar scale. This algorithm will be applied to several examples in the following Section 5.

Algorithm 1 Algorithm of the enclosing method

Input Q, f ,[w],δ Output res

1: Γ Q = √ Q -1
2: [x] = enclose ellipse by box (Q)

3: A x = I n + δ • ∂f ∂x (0, w m ) 4: [b] = b (0, w m ) + Γ -1 Q A -1 x I n + δ • ∂f ∂x ([x] , [w]) -Γ -1 Q • [x] +Γ -1 Q • A -1 x • δ • ∂f ∂w ([x] , [w]) • ([w] -w m ) 5: [∥b∥] = norm2 ([b]) 6: ρ = upper bound ([∥b∥]) 7: Q = 1 (1+ρ) 2 A -T x QA -1 x 8: res = is definite positive(Q -Q) 5 Application
In this section, the RPI is tested with the enclosing method exposed in Section 4 on two example systems.

The first example is a simple damping pendulum to illustrate the approaches with 2-dimensional ellipsoids. The second example is a n-dimensional nonlinear system, deduced from a platooning problem. Results are discussed in Section 5.3.

To find a good candidate for E (Q), one may linearize the system at the equilibrium, then find a quadratic Lyapunov function with the Lyapunov equation [1, Section 4.4.1]. Then, one may interpret this function as the norm (1), thus defining the matrix Q. In this case, E (Q) is RPI w.r.t. the linearized system.

Note that RPI can also be verified by conventional procedures such as in [START_REF] Hassan | Nonlinear Systems[END_REF]Chapter 9] with Lyapunov function, or such as in [START_REF] Romig | Using Interval Analysis to Compute the Invariant Set of a Nonlinear Closed-Loop Control System[END_REF] with interval analysis. While there is plenty of result for the pendulum example such as in [START_REF] Hassan | Nonlinear Systems[END_REF] and [START_REF] Hirsch | Differential Equations, Dynamical Systems, and an Introduction to Chaos[END_REF], Lyapunov functions are more difficult to find for the 2nd example. Conventional interval analysis methods with bisection are relevant for the pendulum. But they are irrelevant to high dimensional problems because of the exponential computational time, as it will be shown in Figure 6.

These tests are implemented in Python language with the libraries Codac for interval analysis, Scipy for symbolic expressions, Numpy for matrix operations, and Mathplotlib for figure drawing. The code and further documentation is available at https://morganlouedec.fr/index.php/ellirpi/ State trajectories illustrated by Figures 3, 4a and 4b are simulated for 10 s with the Euler method with a time period d t = 0.1 s.

Pendulum

Consider a simple pendulum described by the state equa-

tions ẋ1 = x 2 ẋ2 = -sin (x 1 ) -2 • x 2 + w (26)
where x 1 is the position of the pendulum, x 2 its rotational speed and w is a speed perturbation. Consider [w] = [-0.1; 0.1].

Testing a positive invariant ellipsoid

The ellipsoid E (Q 1 ) is tested with

Q 1 = 6 2 2 2
and the parameters δ = 0.1. The Algorithm 1 verifies that E (Q 1 ) is RPI. Figure 3 illustrates the results.

One observes that the ellipsoid

E Q 1 (in green) is inside the ellipsoid E (Q 1 ) (in red). The matrix Q 1 -Q 1 has a Cholesky decomposition. Therefore Q 1 -Q 1 is positive definite.
Thus, one can use the Theorem 6 to show that E (Q 1 ) is RPI. Indeed, one can observe that the four state trajectories starting on the ellipse ∂E (Q 1 ) stay in the ellipsoid E (Q 1 ) at any time and converge to a smaller set around origin.

Testing a non positive invariant ellipsoid

The ellipsoid

E (Q 2 ) is tested with Q 2 = 6 -2 -2 2
and the parameters δ = 0.1. The Algorithm 1 is not able to conclude. Figure 4a illustrates the results.

One observes that E Q 2 is not inside E (Q 2 ). Indeed, the Cholesky decomposition algorithm of Q 2 -Q 2 failed. Thus, the enclosing method cannot conclude on the robust positive invariance of E (Q 2 ). One can also observe that some state trajectories starting on ∂E (Q 2 ) exit E (Q 2 ). Q 2 is not RPI.

Testing a small positive invariant ellipsoid

The ellipsoid E (Q 3 ) is tested with Q 3 = 10Q 1 and the parameters δ = 0.1. Note that

E (Q 3 ) = 1 √ 10 E (Q 1
) can be verified RPI with SIVIA methods. The Algorithm 1 is not able to conclude. Figure 4b illustrates the results.

As in Section 5.1.2, the Cholesky decomposition of Q 3 - 4b. Therefore, the enclosing method cannot verify the positive invariance. Different values of δ were tested to find a better enclosing ellipsoid Q 3 . Even with a very small value of δ, such as δ = 10 -10 , Q 3 -Q 3 is not verified positive definite. where a i is the position of the robot, v i its speed, u i its control signal and w i a small dynamical perturbation. Each robot R i is equipped with a radar that returns the distance d i to the next robot R i+1 and its derivative ḋi as illustrated by Figure 5. The controller of R i is defined 

Q 3 failed. E Q 3 is not inside E (Q 3 ) in the Figure
u i = arctan (d i -d d ) + ḋi + (v d -v i ) ( 28 
)
where d d = L m is the desired value for d i and where v d is the desired value for v i . The arctan (.) function illustrates a control saturation and makes the system non linear. Consider the state vector

x = d 1 -d d , d 2 -d d , • • • , d m-1 -d d , v 1 -v d , v 2 -v d , • • • , v m -v d T . ( 29 
)
of dimension n = 2m -1. This state is solution to the system ẋi =

                         x m+i -x m+i-1 for i < m arctan (x i-m+1 + x i+1 -2x i ) + w i-m+1 for m ≤ i < n arctan (x m -2x n - m-1 k=1
x k + w m for i = n (30)

Example with 5 robots

Consider [w i ] = -10 -4 ; 10 4 , m = 5 and n = 2m -1 = 9. The 9-dimensional candidate ellipsoid E (Q n ) is tested with the parameter δ = 0.01, and Q n as the solution to the Lyapunov equation

A T Q n + Q n A = -10 j I n A = ∂f ∂x (0, 0) (31) 
with j = 4. The Algorithm 1 verifies that E (Q n ) is RPI.

Computational time with m robots

Different values of m are tested with [w i ] = -10 -k ; 10 k , the perturbation amplitude k > 0, and Q n as the solu-tion to (31). The parameters j , k and δ are adjusted to have E (Q n ) verified RPI. In comparison, a SIVIA is also tested to solve [START_REF] Liu | Adaptive controlbased Barrier Lyapunov Functions for a class of stochastic nonlinear systems with full state constraints[END_REF]. The computational time is measured and illustrated in Figure 6. One can observe that the complexity of the enclosing algorithm is polynomial. In comparison, the computational time of the SIVIA method skyrockets. The SIVIA method is also limited by the random-access memory capacity which made it inoperative with m > 3 in the test. 

Result and discussion

In the examples of the previous section, the enclosing methods verified the robust positive invariance of some candidates for the example systems.

Section 5.1.3 shows that the enclosing method has some pessimism and cannot always verify the RPI. It is only problematic with ellipsoids which are barely RPI. The method works better on systems whose linearization at the equilibrium is asymptotically stable. It is often the case for controlled systems.

Section 5.2 shows that the enclosing method is effective on high-dimensional systems. It is a big advantage compared to exponential solving methods such as the SIVIA method in [START_REF] Romig | Using Interval Analysis to Compute the Invariant Set of a Nonlinear Closed-Loop Control System[END_REF] which are inoperative on high dimensional problems.

The parameters δ can influence the chance of a conclusion. Thus, several attempts with different parameter values may be necessary.

Other ellipsoids verifying RPI can exist. Among them, the smallest RPI ellipsoid can approximate the zone where the state does not converge anymore. This smallest ellipsoid will be the subject of a future study. The methods could be generalized to time-dependent systems and time-dependent RPI ellipsoids. It will also be the subject of future study.

Conclusion

In this paper, a computational tractable method is presented to test the robust positive invariance of ellipsoids with respect to n-dimensional nonlinear systems with bounded perturbations. To our knowledge, it is the first time that n-dimensional stability is studied with interval methods. Ellipsoids allow for analysing the systems' stability around their equilibrium point. The developed method finds the image of the ellipsoid by a one-step Euler prediction, encapsulates this image with another ellipsoid, and uses it to verify the invariance criterion. This numerical method cannot always conclude on the positive invariance, but the invariance is guaranteed when a conclusion is found.

Future work will study the RPI of time-dependent ellipsoids. These ellipsoids will be used to solve problems with time-dependent systems or to find ellipsoidal state tubes. Moreover, the encompassing algorithm will be applied in the stability analysis of practical high-dimensional systems such as robot fleets. The calculation of the smallest RPI ellipsoid will also be investigated.
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