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ABSTRACT

This work concerns the numerical modeling of geometric nonlin-
ear vibrations of slender structures in rotation using an original
reduced order model based on the use of dual modes along with
the implicit condensation method. This approach is an improve-
ment of the classical ICE method in the sense that the membrane
stretching effect is taken into account in the dynamic resolution.
The dynamics equations are firstly presented and the construction
of the reduced order model (ROM) is then proposed. The second
part of the paper deals with numerical applications using the
finite element method, first for a 3D cantilever beam, then for an
Ultra High Bypass Ratio (UHBR) fan blade. In the applications
considered, the proposed method predicts more accurately the
geometrically nonlinear behavior than the ICE method.

Keywords: Structural dynamics, vibration, geometric non-
linearity, nonlinear model order reduction, fluid-structure in-
teraction, aeroelasticity

NOMENCLATURE

Acronyms

CFD Computational Fluid Dynamics

CSM Computational Structural Dynamics

FE Finite Elements

FOM Full Order model

IC Implicit Condensation

ICE Implicit Condensation and Expansion

ICDual  Implicit Condensation with a reduction basis
containing linear normal modes and dual modes

ROM Reduced Order Model

SVD Singular Value Decomposition

UHBR  Ultra High Bypass Ratio
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Symbols
d;
D
i

HHT

i mode resulting from the SVD

Basis of the dual modes

Linearized strain energy contribution of the SVD
mode i

Internal geometrical nonlinear forces

External forces applied to the structure

External static forces applied to the structure for the
construction of the ICE and ICDual models
Internal geometrical nonlinear forces of the
centrifugally prestressed structure

Projection of gy on the k™ linear mode

Elastic stiffness, mass and viscous damping matrices
Centrifugal softening stiffness matrix

Tangent stiffness matrix at the prestressed position
Total stiffness of the structure

Reduced stiffness, mass and damping matrices
Generalized coordinates

Residual of the k™" static solution

Displacements, velocity, acceleration

Rebuilt displacement obtained with the ICE method
Prestressed displacement of the structure under
centrifugal forces

Total displacement u + ug

Reduction basis

Coeflicient of the HHT-o method

Rotation speed around the fixed axis

Matrix of the linear normal modes of the
centrifugally prestressed structure

i linear normal modes in the basis @

Pulsation of the i linear normal mode
Reconstruction modes for the Expansion step of the
ICE method

Generalized coordinates associated to ¥

Damping coefficient: C = 2éwoM



1. INTRODUCTION

Performance optimization for the next generation of aircraft en-
gines leads to propellers and blades of large dimensions. Such
structures are more flexible and may be subjected to large am-
plitudes of vibrations, hence triggering geometric nonlinearities
that alter the levels of vibration and have an impact on aeroelastic
phenomena such as flutter or forced response. To characterize the
aeroelastic phenomena, a usual method is to use a partitioned pro-
cedure involving a dedicated CFD solver for the fluid and a CSM
solver for the structure. However, such a coupling has two major
limitations. First, the resulting computational time is prohibitive
for industrial applications, and second, the coupling between the
two solvers is tedious in terms of transfer of information. To
overcome these limitations, an efficient method is to perform the
partitioned coupling between a CFD solver to keep the high fi-
delity for the fluid, and a reduced-order model (ROM) for the
structure. The latter is built in a way to be independent of a CSM
solver, giving the possibility to change the fluid solver with an-
other. In the literature, several methods are available for building
reduced-order models taking into account structural geometric
nonlinearities. An approach is the projection on a reduction ba-
sis containing both the first linear normal modes of the structure
and additional modes aimed at capturing the nonlinearity, such as
modal derivatives [1, 2] or dual modes [3—5]. This method is non-
intrusive and flexible but the difficulty relies on the determination
of the additional modes. Another approach is the use of invariant
manifolds [6, 7] adapted to periodic vibrations in the vicinity of
linear normal modes. Nevertheless, this method is intrusive when
high precision is desired, meaning that it is necessary to have ac-
cess to specific information inside a FE solver, which is not the
case for industrial CSM solvers. The same intrusive limitation
is encountered for hyper-reduction methods such as the Discrete
Empirical Interpolation Method (DEIM) [8] for which the non-
linearity is computed only at a few degrees of freedom. Other
methods are based on the results of previous high-fidelity com-
putations such as the Proper Orthogonal Decomposition (POD)
method [9-11]. However, the preliminary computations required
to determine the projection basis are computationally expensive
and are case-dependent for the given set of parameters.

In this paper, the ROM is built by projection on a reduction
basis including linear normal modes and additional dual modes.
The internal geometric nonlinear forces are approximated as a
third-order polynomial of the generalized coordinates with coef-
ficients identified using the Implicit Condensation (IC) method
[12]. In the literature, the IC method involves only the bending
modes, and an Expansion step (ICE) [13] is commonly introduced
to post-process the in-plane dynamics. This post-processing step
may be viewed as a static compensation. The limitation is that the
in-plane dynamics is only rebuilt and not taken into account in
the resolution of the reduced equation of the dynamics. The liter-
ature suggests an inertial compensation [14] to take into account
the in-plane dynamics into the equations relative to the bending
modes. This modification changes the nature of the equation that
becomes less convenient to integrate. Such a method was re-
cently enhanced by a Force Compensation [15] in order to tackle
following forces. In the present paper we choose to add dual
modes to the reduction basis in order to compute the in-plane

dynamics directly in the reduced equations of the motion. The
Expansion step of the ICE method is therefore no longer needed
and the nature of the reduced equation of the dynamics remains
unchanged. This method has already been applied by the authors
on a 2D case in the frame of a fluid-structure interaction between
the vortex shedding in the wake of a fixed cylinder and a von
Karman beam [16]. In this paper the method is used for 3D finite
element structures subjected to rotation around a fixed axis.

The first part of this paper deals with the structural dynamics
modeling and the construction of the nonlinear reduced-order
model (ROM). Then the interest of such a ROM is shown on 3D
structures in rotation with the example of a cantilever beam-like
3D test case and a fan blade. The selection of the dual modes is
detailed along with the determination of the nonlinear coefficients
of the internal forces. The precision of the ROM is checked and
its robustness discussed. Finally, preliminary applications to a
fan blade are described.

2. STRUCTURAL DYNAMICS EQUATIONS

The finite element discretization of the structure is considered
as the reference full-order model (FOM). The vibration of the
structure verifies the following matrix equation:

Mii + Cu + Ku + fi (0) = foxe (1), (1

with u the displacement degrees of freedom vector, M the mass
matrix, C the damping matrix and K the stiffness matrix. The
damping model is the widely used Rayleigh viscous damping:
C = aM + BK. Moreover, fy) is the vector of the internal geomet-
rical nonlinear forces and fey¢ () is the external force applied to
the structure, which may depend on the position and the velocity
of the structure, like aerodynamic forces for instance.

When turbomachines or propellers are considered, the struc-
ture is in rotation around a fixed axis and centrifugal effects
contribute to the dynamics. The rotation speed around its axis is
considered constant and the total displacement degrees of free-
dom of the structure, defined as u in Eq.(1), are now written ug.
The total displacement is the sum of a static nonlinear displace-
ment ug due to the centrifugal external force, and of vibrations
u around this prestressed position: u¢ = ug + u. The prestressed
position ug is solution of:

(K - Ke)ug + fr (ug) = 2. 2)

Centrifugal effects are included in the softening matrix K. and
the constant centrifugal load f*. The geometric nonlinearities fy
are expanded around the prestressed solution ug:

fnl(us + ll) = fnl(us) + Knl(us)u + gnl(u), 3

where Ky (ug) is the tangent stiffness matrix, i.e. the Jacobian of
o1 (uy) evaluated at the prestressed position ug, and gy (u) is the
vector of the nonlinear forces with respect to the prestressed posi-
tion. In the rotating frame, the equation governing the vibrations
of the structure around the centrifugally prestressed position is:

Mii + Cu + [K — K¢ + Kni(ug) | u + gui(u) = fexe (1),  (4)

K(Q)



in which the gyroscopic effect was neglected. Due to the centrifu-
gal and geometrical nonlinear effects, a hardening or softening
behavior can be observed depending on the speed of rotation and
the considered mode [17].

External forces imposed to the structure in the test cases
considered in this paper are independent from the position. Future
work will involve external forces corresponding to aerodynamic
loads depending on the position and velocity of the structure
fext (us +u, 0).

3. REDUCED-ORDER MODELS BY PROJECTION

Equation (4) involves a large number of degrees of freedom when
industrial models are considered. Projection-based reduced order
models rely on the assumption that the degrees of freedom u can
be approximated by a limited combination of vectors (later called
modes). These vectors form a basis of reduced dimension V
such that u = Vq. The linear normal modes of the structure are
usually considered for this reduction basis; they are solutions to
the following eigenvalue problem:

K(Q)¢7 = w; (QMg}. (5)

Such modes are computed around the prestressed position and
thus depend on the rotation speed. Only the first linear normal
modes are kept in the reduction basis. For linear problems, this
method is very efficient. However, the geometric nonlinearity
leads to a coupling between the modes. Thus, a reduction basis
containing only the first linear normal modes is not rich enough
to capture the nonlinear displacements, unless a large number of
modes, almost all, are used. Therefore other "modes" have to be
added to the reduction basis in order to capture the nonlinearity.
This topic is addressed in section 3.1.

Once the reduction basis is built, the reduced equation of
the dynamics is obtained by projecting Eq.(4) on the basis of
reduced dimension V, leading to a system with only few degrees
of freedom called the generalized coordinates q:

Mg + Cq + Kq+ VT gn(Vq) = Ve (1), (6)

with M = VMV, C = VI'CV and K = VIK(Q)V respectively
the reduced mass, damping and stiffness matrices. However,
when dealing with the internal nonlinear forces V' gy (Vq), the
physical displacement field u ~ Vq should be recovered in or-
der to evaluate the forces in the physical space of all degrees of
freedom with a FE solver. This solution is intrusive and com-
putationally expensive. Therefore an explicit formulation of the
nonlinear forces depending only on the generalized coordinates
should be preferred, which is the topic of section 3.2.

3.1 Enriching the Linear Basis with Dual Modes

When structures are undergoing large displacements and are sub-
jected to geometric nonlinearities, it is necessary to include in the
reduction basis modes that contain information on the nonlinear
coupling between the modes of the structure such as POD modes,
modal derivatives or dual modes. In this paper we focus on the
dual mode approach to enrich the projection basis. The determi-
nation of the dual modes was proposed in [3-5]. The dual modes

are deduced from static nonlinear computations with external
loads resulting from linear combinations of modes shapes:

fi = K(Q)(+afg] £a5gT -+ aydy), (7)

with the weighting coefficients af and the number of modes n
in the reduction basis. Relevant modes are then selected from a
Singular Value Decomposition (SVD) and a strain energy criteria.
The definition of the forces £}, is based on the linear normal modes
to span a large variety of loadings. The linear combination of
linear normal modes is multiplied by the stiffness matrix K(€2) for
homogeneity reasons, but also to control the range of the resulting
displacements. Indeed, the latter should be large enough to be in
the nonlinear range but not too large to remain realistic regarding
the yield stress of the material. If geometric nonlinearities were
neglected, the linear displacement obtained with such loads would
be the linear combination of modes itself.

The process to determine the dual modes consists first in
computing the nonlinear static solutions uy resulting from the pre-
viously introduced load cases of Eq.(7): K(Q)uy + gni(ug) = fx.
Then, the residual with respect to the initial reduction basis of
the first linear normal modes is identified for each solution. This
residual ry = uy — (1)qu is defined as the difference between
the nonlinear solution u; corresponding to the prescribed load-
ing f; and its approximation on the linear normal mode basis
®“q. The generalized coordinates q, are obtained with a least
squares approximation using the pseudo-inverse of the basis ®%:
qy = ((I)QT(I)Q)‘l(I)QTuk. The residuals represent the nonlinear
information that is missing in the linear basis. All the residual
vectors ry are gathered in a matrix, from which a SVD is per-
formed. The main singular vectors associated with the largest
singular values are extracted, as well as those satisfying the high-
est linearized strain energy 6; defined by:

NL dTrk 2

_ ' T

€ = kz; (le_d) d; K(Q)d;, ®)
= i

with Np the number of load cases defined in Eq.(7) and d; the
modes obtained by SVD.

The new reduction basis is therefore the concatenation of the
first linear normal modes and the dual modes determined with
the previous method: V = [®@%, D] with ®¢ = (¢?)i€[1,n] and
D = (d;);e[1,m] such that each d; is one of the selected singular
vector. Therefore, the reduction basis contains only the first n
linear normal modes plus possibly the m dual modes. For the
sake of simplicity, n will denote in the following the length of the
reduction basis, whether it contains the dual modes or not. The
last step to build the ROM is to determine the projected nonlinear
forces as an explicit expression of the generalized coordinates.

3.2 Determination of the Nonlinear Coefficients

The projection of the geometrical nonlinear forces in Eq.(4)
VTg.(Vq) does not provide a direct dependency on the gen-
eralized coordinates. Instead, the physical displacements u ~ Vq
should be first rebuilt in the physical space of all the degrees of
freedom to evaluate the nonlinear forces with the FE solver, which
are finally projected again in the reduced space. This induces a



back-and-forth process between the reduced and the full-order
model that is not efficient since many calls to the external full-
order FE solver are required. The frame of the study is finite
deformations (small strain, large displacements, large rotations)
and Saint Venant-Kirchhoff constitutive model. In this case, the
nonlinear internal forces are cubic with respect to the degrees of
freedom. Consequently, it is assumed that the projected nonlinear
forces could be approximated by a third-order polynomial of the
generalized coordinates q, such that its k™ component writes:

n

gn(@) ~ Z zn:ﬂfj%qj + Zn: Zn: Zn: Yim4idiqm> ()
j=i

i=1 j=i i=1 j=i m=j
with ﬁl].‘j and yfj ., the polynomial coefficients that should be iden-
tified. For that purpose, two non-intrusive methods relying on
nonlinear static computations are recurrent in the literature. On
one side the STEP (STiffness Evaluation Procedure) [ 18] relies on
a set of computations performed with prescribed displacements,
defined as well-chosen linear combinations of the eigenmodes.
Nonlinear internal forces are extracted from these computations
and used to evaluate the nonlinear coefficients of the polynomial.
Although this method is efficient for 2D structures, specific cor-
rections are needed for 3D structures [19, 20] since perturbations
are introduced by possible conflicts between the natural volumet-
ric dilatation/compression of the structure and the one imposed
by the prescribed displacement. The second method, which is
not sensitive to these artifacts, is the Implicit Condensation (IC)
[12] and its Expansion (ICE) [13]. In this method, nonlinear
static computations are performed with prescribed loads, whose
distributions are related to the linear normal modes shapes. The
nonlinear static solutions as well as the nonlinear internal forces
are computed. The generalized coordinates associated with the
static solutions are extracted with a pseudo-inverse from the equa-
tion u ~ Vq and the nonlinear internal forces are projected on the
reduction basis and identified with the expression Eq.(9) using
a least-squares approximation. In the literature, the IC deter-
mination of nonlinear coefficients is used with reduction bases
containing only the first linear normal modes. When dual modes
are added to the structure, the STEP method is usually preferred
to determine the coefficients for simplicity. However, for the rea-
sons detailed previously, the STEP method for 3D cases is not
adapted. The originality in this paper is to apply the IC method
with a reduction basis containing both linear normal modes and
dual modes. In this case, the dual modes are not used in the com-
binations in Eq.(7) for the construction of the imposed loads, but
they have a contribution in the resulting nonlinear static solutions.
Thus, both their associated generalized coordinates and those as-
sociated to the linear normal modes are extracted by least-squares
approximation in the equation u = Vq. Then the entire reduction
basis containing the linear normal modes and the dual modes is
used for the determination of the polynomial coefficients of the
nonlinear internal forces. Nevertheless, the condition number of
the system to solve is high since both quadratic and cubic mono-
mials of the generalized coordinates are involved. Besides, many
of these nonlinear coefficients (unknowns) are null for some cases
(due to symmetry reasons). Considering the previous remarks,
the Lasso regression [21] is particularly adapted and could be

preferred to the usual least-squares approximation.

Originally reserved to linear normal modes, the IC method
is used in this paper for a reduction basis containing both linear
normal modes and dual modes. Furthermore, the classical ICE
method is considered to compare both approaches. The next
section provides more details on the ICE method.

3.3 Implicit Condensation and Expansion for Linear Normal
Modes Bases

The ICE method is an extension of the Implicit Condensation:
the reduced dynamics of the structure is computed for the first
linear normal modes only and the total displacement is expanded
in post-processing to include in-plane (membrane) effects. The
expansion step is based on a static reconstruction using additional
modes ¥ and generalized coordinates 7. The displacement is
finally defined with the ICE method as:

u, = ®%q+ ¥y, (10)

The generalized coordinates q are computed as the solution of the
reduced equation of the dynamics Eq.(6) with V = @ including
only the first linear modes. On the contrary, the generalized
coordinates 7 associated to the modes ¥ are explicitly defined as
quadratic combinations of the generalized coordinates q:

=1 a9 aq. - @ G (11)

The reconstruction modes ¥ are identified from Eq.(10) using
the set of precomputed nonlinear static solutions ug. Originally
the ICE method was used for von Karman beams and plates for
which the modes ¥ correspond to the membrane displacements.

The previous section presented theoretical aspects of the dy-
namics of the structure and the construction of the reduced-order
model. The next two sections are dedicated to numerical applica-
tions with 3D finite element models. Two different applications
are presented in this paper: the first one analyses a cantilever
beam-like structure in order to present and validate the proposed
method. Then, the second one presents a preliminary study of an
industrial application of a UHBR new generation turbofan blade.

4. APPLICATION TO 3D CANTILEVER BEAM-LIKE
STRUCTURES
The first application is a beam-like structure discretized with 3D
HEX20 finite elements (360 elements, 2181 nodes). The length
of the beam is equal to 4 m, its thickness 7.1072 m and its
width 21.1072 m. The Young’s modulus is equal to 100 GPa,
the density 4400 kg.m~> and the Poisson’s ratio is equal to 0.3.
Reference full-order computations are performed using the FE
solver Code_Aster.

4.1 Vibrations of the Beam Without Rotation
We first investigate the case of a cantilever beam without rotation.
The 3 first linear normal modes of the structure are shown in
Fig.1. Their frequencies are respectively 3.38 Hz, 10.11 Hz and
21.17 Hz.

The linear normal modes basis is enriched with dual modes
according to the process presented in section 3.1. A set of loads
are applied to the beam; the residuals of the nonlinear static



FIGURE 1: VISUALIZATION OF THE FIRST 3 LINEAR NORMAL
MODES OF THE BEAM AT 0 RPM. THE MESH IS THE INITIAL GE-
OMETRY.

solutions are extracted and a SVD is performed on the matrix
gathering the residuals. Figure 2 shows the first singular values
of the SVD as well as the linearized strain energies of the SVD
modes. On this graph, we notice that the first two SVD modes
with the largest linearized strain energies correspond also to those
with the highest singular values.

1074 4

1075 4

1076 4

10-7 4

FIGURE 2: NORMALIZED SINGULAR VALUES (GREEN) AND LIN-
EARIZED STRAIN ENERGY (PURPLE) OF THE MODES OBTAINED
BY THE SVD OF THE MATRIX OF RESIDUALS.

Those two modes lead to sufficient precision and are there-
fore selected as dual modes to enhance the linear normal modes
basis. The shape of those dual modes is illustrated in Fig.3
showing that those modes are characterized by a purely axial de-
formation. Indeed, the first linear normal modes correspond to
bending movements, triggering membrane displacements due to
geometric nonlinearity.

FIGURE 3: DUAL MODES ADDED TO THE LINEAR BASIS.

First, a static external load of amplitude 30000 N is applied
vertically at the tip of the beam. Figure 4 presents a comparison of
the static deflections between the nonlinear FOM and the ROMs.
For such a case, the reduced-order models ICE and IC with dual
modes (later referred to as ICDual) are superimposed with the
nonlinear FOM solution. Both the static nonlinear solutions
obtained with the ICE method and the ICDual method capture the
nonlinear behavior of the structure. Nevertheless, the nonlinear
static solution of the ICE method matches with the FOM solution
after the expansion postprocessing step, while with the ICDual
approach, the nonlinear solution is captured directly from the
resolution of the reduced system.
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FIGURE 4: COMPARISON OF THE NONLINEAR STATIC SOLUTION
BETWEEN THE NONLINEAR FOM AND THE DIFFERENT ROMS.

A dynamic sinusoidal load is then applied vertically at the
tip of the beam, with an amplitude of 2500 N, and a forcing fre-
quency equal to the one of the first linear normal mode (3.38 Hz).
The time integration is performed using an HHT-a& scheme with
@y = 0.05 and a time step of 2.1073s. Besides, a Rayleigh vis-
cous damping is considered: C = 2éwoM with a damping ratio
& = 0.05 and wq the pulsation of the first linear normal mode.
Fig.5 depicts the nonlinear displacement of the FOM over one
period and Figure 6 represents the axial and vertical temporal
displacements of the node in the center of the tip of the beam.

z

FIGURE 5: NONLINEAR FOM DISPLACEMENTS OVER A PERIOD.

For such levels of deformation, the geometric nonlinearity
of the structure is significant. Figure 7 compares the maximal
displacements in periodic regime of the FOM solution, the linear
ROM solution and the solutions obtained with the reduced-order
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FIGURE 6: TEMPORAL AXIAL AND VERTICAL DISPLACEMENTS
OF THE TIP OF THE BEAM.

models ICE and ICDual. The linear ROM solution does not
capture at all the axial shortening of the beam resulting from the
nonlinearity. Such axial shortening is captured by the Expansion
step of the ICE method but slightly differs from the FOM solution,
which was not the case for the previous test case with a static
load. This difference results from the Expansion step of the ICE
method which is based on a static reconstruction of the solution
from the bending dynamics, but the membrane dynamics itself
is not solved in the reduced equation of the dynamics. On the
contrary, the addition of dual modes to the reduction basis leads
to the resolution of the dynamics in traction-compression directly
in the reduced equation of the dynamics Eq.(6). Therefore, no
reconstruction is needed and the dynamics is more accurately
captured.
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FIGURE 7: COMPARISON OF THE MAXIMAL DISPLACEMENTS
IN PERIODIC REGIME BETWEEN THE FOM AND THE DIFFERENT
ROM SOLUTIONS. THE BEAM IS SUBJECTED TO A VERTICAL SI-
NUSOIDAL LOAD AT THE TIP OF AMPLITUDE 2500 N AND FRE-
QUENCY 3.38 HZ.

4.2 Rotation at Constant Rotating Velocity

In this section, the beam is shifted of 10 cm from the vertical axis
and rotates around the latter at a constant speed of 500 rpm. Cen-
trifugal effects arise and the equilibrium position of the structure
is the prestressed position due to the centrifugal forces, around
which the linear normal modes are computed. The shape of the
3 linear normal modes are very similar to those without rota-
tion (see Fig.1) but their respective modal frequencies become
9.67 Hz, 10.86 Hz and 30.22 Hz. Then the process of deter-
mining the dual modes is applied. Fig.8 represents the singular
values and the linearized strain energies of the SVD modes. The
dual modes selected are the first two SVD modes, which have a
similar shape as those of the case without rotation illustrated in
Fig.3.

100 4

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

FIGURE 8: NORMALIZED SINGULAR VALUES (GREEN) AND LIN-
EARIZED STRAIN ENERGY (PURPLE) OF THE SVD MODES OF THE
BEAM IN ROTATION AT 500 RPM.

Similarly to the non-rotating analysis of the beam, a static



load is applied vertically at the tip. In order to reach a compara-
ble level of displacement, the applied load amplitude (210000 N)
is seven times larger than in the case without rotation. Figure
9 compares the nonlinear FOM static deflection with the ROM
solutions. As in the non-rotating case, the linear ROM solution
does not capture the bending/membrane displacements coupling
due to geometric nonlinearity. Both the ICE and ICDual mod-
els capture the nonlinear coupling leading to axial shortening.
Nevertheless, due to the axial centrifugal forces and the vertical
loading at the tip, the curvature of the beam is larger than the
case without rotation. Such curvature is not perfectly captured
by the ROMs. Regarding the position of the tip, the ICDual so-
lution matches with the FOM solution, while the ICE solution
underestimates the vertical displacement.
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FIGURE 9: COMPARISON OF THE STATIC DEFLECTIONS BE-
TWEEN THE FOM AND THE DIFFERENT ROMS. THE BEAM IS IN
ROTATION AT 500 RPM SUBJECT TO A VERTICAL STATIC LOAD
AT THE TIP OF 210000 N.

To echo the test case of the beam without rotation, this second
study deals with a dynamic loading applied vertically at the tip.
The frequency of excitation is the one of the first linear normal
mode in rotation (9.67 Hz) and its amplitude is 7350 N, about
three times the load of the non-rotating case in order to reach
a similar magnitude of displacements. The same integration
scheme as for the case without rotation is used but the time step
is reduced by half. The Rayleigh damping is kept unchanged.

The nonlinear solutions with the reduced-order models ICE
and ICDual are also computed. Figure 10 compares the maximal
amplitudes in periodic regime between the FOM, the ICE, the IC-
Dual and the linear ROM solutions, under the above-mentioned
dynamic load. While the solution with dual modes has a negli-
gible error with respect to the nonlinear FOM solution, the ICE
method slightly underestimates the amplitude of displacement;
more linear normal modes would be needed in the reduction ba-
sis for the ICE method.
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FIGURE 10: COMPARISON OF THE MAXIMAL DISPLACEMENT IN
PERIODIC REGIME BETWEEN THE FOM AND THE DIFFERENT
ROM SOLUTIONS. THE BEAM IS SUBJECT TO A VERTICAL SI-
NUSOIDAL LOAD AT THE TIP, OF AMPLITUDE 7350 N AND FRE-
QUENCY 9.67 HZ.

5. APPLICATION TO A FAN BLADE

In this section, we consider a complex 3D structure of a fan
blade representative of a UHBR turbofan. The objective is to
investigate the accuracy and robustness of the structural reduced
order model for such structures with representative acrodynamic
loads.

FIGURE 11: VISUALIZATION OF THE FULL ENGINE MODEL AND
THE FAN BLADES.

Figure 11 illustrates the full engine configuration (on the
left) and the fan blade of interest (on the right). In the present
work, we consider a single fan blade (all blades being the same).
The original blade structural model has been adapted to enable a
dynamic analysis restricted to a single fan blade: for that purpose,
the blade root was removed and replaced by a clamped boundary
condition. The Young’s modulus is equal to 110 GPa, the density
4500 kg.m ™ and the Poisson’s ratio is equal to 0.318. The blade
is discretized in 66640 HEXS finite elements, with 6 elements in
the blade thickness. The structural mesh of the blade is shown in
Fig.12 from two different angles of view.

The structure is in rotation around a fixed axis, centrifugal
effects are present and the dynamics of the structure is studied
around the prestressed position. The linear normal modes shapes
of the structure and their associated modal frequencies are modi-
fied by the rotation speed since they are computed relative to the



FIGURE 12: MESH OF THE BLADE.

prestressed position. Fig.13 is a Campbell diagram showing the
evolution of the frequencies of the first three linear normal modes
with respect to the rotation speed.
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FIGURE 13: CAMPBELL OF THE BLADE FOR THE FIRST 3 STRUC-
TURAL MODES.

The first linear normal modes are respectively the first bend-
ing mode (named 1F), the second bending mode (2F) and the first
torsion mode (1T). Figure 14 presents the modes 1F, 2F and 1T
at the rotation speed of 2750 rpm. It is noticed on the Campbell
diagram, that at 2750 rpm, the modes 2F and 1T are close to mul-
tiples of the rotation speed. Resonance can therefore be observed
at this rotating speed for those modes, which should be avoided.

In what follows, the rotating speed considered is 2750 rpm.
The centrifugal effects lead to an untwisting of the blade. First, a
static load will be applied to the structure, then a dynamic forcing.

5.1 Nonlinear Response under a Static Load

In this section, a static load is applied to the structure. The load
is based on the shape of the first linear normal mode at 2750 rpm
as follows:

¢%750

foxt = —15HK(Q) (12)

2750, °
max|¢y 50|

with & the average thickness of the blade tip. For such a load
shape, the maximal amplitude of the linear solution is 15 times

FIGURE 14: FIRST 3 LINEAR NORMAL MODES (1F, 2F AND 1T) OF
THE BLADE AT 2750 RPM.

the thickness of the blade tip. The linear and ICE ROMs are both
built using the first 3 linear normal modes and the first dual mode
is added for the ICDual ROM. Figure 15 represents the solution
obtained under the static load of Eq.(12) and Fig.16 under its
opposite.
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FIGURE 15: COMPARISON BETWEEN THE FOM AND THE ROM SO-
LUTIONS UNDER THE STATIC LOAD (12).
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FIGURE 16: COMPARISON BETWEEN THE FOM AND THE ROM SO-
LUTIONS UNDER THE OPPOSITE OF THE STATIC LOAD (12).

The geometrical nonlinearity is significant for such ampli-



tudes. The nonlinear ICDual solution matches perfectly with the
FOM solution but the ICE solution presents a slight deviation
at the tip and the linear ROM solution overestimates the static
displacement.

5.2 Nonlinear Response under a Dynamic Load

The previous section compared the nonlinear displacement be-
tween the linear and the nonlinear solutions under a static load.
The purpose of this section is to compare the FOM solution to
the linear and nonlinear reduced solutions under a dynamic load.
Like the static load, the dynamic load is based on the mode shape
of the normal mode 1F with a sinusoidal forcing at its resonance
frequency:

#2750
foxt = 1.51K(Q) !

2750
sin(wy""t), (13)
max|¢%750| ) ( 0 )

with w(2)750 the pulsation of the first linear normal at 2750 rpm. A

Rayleigh damping is considered: C = 2£w(”"M with £ = 0.05.
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FIGURE 17: TIME RESPONSE OF THE TIP TRAILING EDGE ALONG
THE Y DIRECTION.

Figure 17 represents the time evolution of the tip leading
edge of the blade along the Y direction. As expected, the levels
of vibration of the nonlinear models are much lower than the
linear one. There is a significant difference between the ICE and
ICDual ROMs, the latter depicting lower levels of vibrations that
are closer to those obtained with the FOM computation. The
computation of the FOM dynamic solution takes about 10 hours
using parallel computing and a significant memory while the res-
olution with the ROMs takes less than 10 seconds on a single
processor. The precision of both the ICE and ICDual models
can be improved with a more accurate choice of external loads,
closer to the targeted dynamic displacement. Indeed, during the
construction of the model, the nonlinear static solutions obtained
under the loads fj, are approximated in the reduction basis. There-
fore, the precision of the ICE method is strongly dependent on
the amplitude of the external loads which is less the case with the
ICDual method due to the richer reduction basis.

5.3 Aerodynamic Forces

In the previous sections, the external forces applied to the blade
were arbitrary loads. Ongoing work is to impose aerodynamic
forces resulting from unsteady CFD computations of the entire
engine fan. Figure 18 illustrates the components of the aerody-
namic forces in the 3 spatial directions resulting from a steady
CFD computation. The objective is to assess the behavior of
the ROM under distributed loads, first in a static case under the
aerodynamic forces resulting from the steady CFD computation,
then for dynamic analyses under unsteady aerodynamic loads.
Finally, the aim is to carry out an aeroelastic computation using a
partitioned approach by coupling the CFD solver with the ROM.

puy

FIGURE 18: STEADY AERODYNAMIC FORCES ON THE SUCTION
SIDE (TOP) AND THE PRESSURE SIDE (BOTTOM) OF THE BLADE.

6. CONCLUSION

In this paper, a reduced-order model for 3D structures subject to
geometric nonlinearities is developed based on dual modes and
Implicit Condensation. This ROM is compared to the usual ICE
method in the cases of a cantilever beam in rotation and a fan
blade. The results obtained show that the proposed approach
better captures the nonlinear geometric behavior. The applica-
tion to a fan blade under aerodynamic loading is introduced and
preliminary results are obtained under external forcing.
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