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a b s t r a c t 

This paper derives and studies Bayesian Cramér-Rao lower bounds for the mean squared error of covari- 

ance matrices that are structured as weighted sums of symmetric positive definite matrices associated 

with a circularly-symmetric Gaussian statistical model. This model naturally appears in a number of im- 

portant applications, including multivariate multifractal analysis and vector-valued additive Gaussian pro- 

cesses. As an intermediary result, we derive a novel expression for the expectation of compositions of 

Wishart random matrices. We provide extensive numerical simulation results for analyzing the derived 

bounds and their properties, and illustrate their use for the multifractal analysis of bivariate time series. 

© 2023 The Author(s). Published by Elsevier B.V. 
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. Introduction 

The estimation performance for the parameters of a statistical 

odel can be analyzed by establishing fundamental lower bounds 

or the mean squared error (MSE) of these parameters. The lower 

ounds for parameters that are assigned an a priori probability 

istribution are commonly referred to as Bayesian bounds [1] . In 

he spirit of [2] , this paper derives the Bayesian Cramér-Rao bound 

in short BB) for the MSE of the matrix-valued parameters of a 

tatistical model described in the next section. 

Problem statement and statistical model. Consider N indepen- 

ent zero mean complex circularly-symmetric Gaussian random 

ectors z n ∈ C 

R , n = 1 , . . . , N, such that E [ z n ] = 0 , E [ z n z 
T 
n ] = 0 , and

 [ z n z 
H 
n ] = R n , i.e., z n ∼ CN ( 0 , R n ) , where E [ ·] denotes the usual

athematical expectation and operators (·) T and (·) H compute 

he matrix/vector transpose and the matrix/vector conjugate 

ranspose. The covariance matrix R n is assumed to be real-valued 

ositive definite (p.d.) and of the form R n = �1 g 1 (n ) + �2 g 2 (n ) ,

or n = 1 , . . . , N, where g 1 (·) , g 2 (·) > 0 are known real-valued

unctions and �1 , �2 are the R × R symmetric p.d. matrix-valued 

arameters to be estimated. Thus, the vector of the RN samples 

rranged as z = ( z T , . . . , z T ) ∈ C 

RN can be modeled as a zero mean

1 N 
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omplex circularly-symmetric Gaussian random vector with the 

N × RN real-valued covariance matrix R = �1 � G 1 + �2 � G 2 , 

here � is the Kronecker product and G 1 , G 2 are known diagonal 

atrices whose n th diagonal entries are given by [ G i ] nn = g i (n ) ,

or i ∈ { 1 , 2 } . 
The assumption that R is real-valued is not strictly necessary 

nd can be relaxed to complex-valued matrices as in [2] using the 

ame ideas and expressions as below. Here, we focus on the real- 

alued case because it appears in the application motivating this 

ork, and for convenience of presentation. 

Motivation and related works. Gaussian models with a zero 

ean vector and a covariance matrix R structured as above arise 

n several important contexts. An important example - and the 

ne motivating this work - is given by the multivariate multifractal 

nalysis for which the matrices �i , i ∈ { 1 , 2 } , correspond to param-

ters that describe the joint geometry of the fluctuations of the 

ointwise regularity of the data components, see, e.g., [3] for defi- 

itions, intuitions and applications of multifractal analysis, [4,5] for 

he multivariate case and [6–8] for recent Bayesian estimation 

rameworks. Another important example is given by vector-valued 

dditive Gaussian processes, in which the matrices G i subsume the 

ernels for the temporal/spatial isotropic covariance models, ex- 

ressed in the Fourier domain, and �i are the associated point co- 

ariance matrices for the vector-valued variates, see, e.g., [9–11] . 

ote that it is straightforward to generalize the expressions de- 

ived in this paper to more than 2 summands. For ease of pre- 

entation, we treat here the case with 2 summands, without loss 

f generality. 
under the CC BY-NC-ND license 
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Goals, outline and contributions. This paper, we consider 

1 , �2 to be unknown with inverse Wishart (IW) prior distribu- 

ions. Our goal is to derive lower bounds for the MSE of estima- 

ors of �1 , �2 . Assuming the estimation to be conducted within a 

ayesian formulation, Section 2 derives the BBs of �1 and �2 and 

nalytically studies their properties. Section 3 studies the prop- 

rties of the bounds in this framework using Monte Carlo simu- 

ations. The use of the proposed bounds for the parameters as- 

ociated with the bivariate multifractal spectrum is finally illus- 

rated in Section 3.3 . The main contributions of this paper are i) 

he derivation of the BB for the above specified statistical model, 

hich is a new theoretical result obtained from (4), (8), (9) and 

11) , ii) the derivation of a novel closed-form expression for com- 

uting non-trivial expectations involving Wishart random matrices, 

ee Proposition 1 , iii) the study of the analytic properties of the 

ounds (see Section 2 ) and iv) extensive numerical experiments 

nd results that validate and illustrate the obtained theoretical ex- 

ressions of the bounds (see Section 3 ). 

. Bayesian Cramér-Rao bound 

This section derives the BB for the MSE of estimators of �1 , �2 , 

hen �1 and �2 are assigned independent IW priors, i.e., for 

 ∈ { 1 , 2 } , �i ∼ IW (νi , �i ) , with νi degrees of freedom ( νi ∈ R and

i > R + 1 ), and mean matrix (νi − R − 1) −1 �i , where �i is a real-

alued p.d. scale matrix. To this end, we make use of the following 

ovel results. 

roposition 1. Moments of the type E [ W AW BW ] . 

If � ∼ IW (ν, �) , then W = �−1 has the Wishart distribution 

(ν, � = �−1 ) . Then, for any pair of real-valued symmetric matri- 

es ( A , B ) : 

 �

[
�−1 

A �−1 
B �−1 

]
= �A �B �(ν3 + 2 ν2 + ν) + �B �A �(ν2 + 3 ν) 

+ [ tr ( �A ) ] �B �(ν2 + ν) + [ tr ( �B ) ] �A �(ν2 + ν) 

+ �
[
(ν2 + ν) tr ( �A �B ) + νt r ( �A ) t r ( �B ) 

]
. (1) 

The proof of Proposition 1 can be conducted using the approach 

etailed in [12] . Moreover, according to [13] , for any real-valued 

ymmetric matrix A , we have 

 �

[
�−1 

A �−1 
]

= (ν2 + ν) �A � + νtr ( �A ) �. (2) 

Definitions. Let θ ∈ R 

p , with p = R 2 + R , the vector obtained by

oncatenating the vectors vec triu ( �1 ) and vec triu ( �2 ) , where the 

atrix operator vec triu ( A ) returns the vector of the elements of 

he upper triangular part of A . Note that the first and the last p/ 2

lements of θ, denoted as θ1: p 
2 

and as θ p 
2 

+1: p , correspond to the 

ain diagonal and all elements of �1 and �2 above the diagonal, 

espectively. In the following, the matrices R n will be denoted as 

 n ( θ) to emphasize the dependence of R n on θ. The evaluation of 

he BBs of �1 and �2 requires to invert the posterior Fisher infor- 

ation matrix (PFIM) defined as [1] 

 = E z , �1 , �2 

[
−∂ 2 L ( z , �1 , �2 ) 

∂ θ∂ θ
T 

]
, (3) 

here L ( z , �1 , �2 ) is the joint log-likelihood of the model, which

s twice differentiable with respect to (w.r.t.) θ and has a bounded 

upport independent of θ. These required regularity conditions en- 

ure the existence of the BB. Equation (3) can be rewritten as 

 = E �1 , �2 

[
E z | �1 , �2 

[
−∂ 2 L ( z | �1 , �2 ) 

∂ θ∂ θ
T 

]
− ∂ 2 π1 ( �1 ) 

∂ θ∂ θ
T 

− ∂ 2 π2 ( �2 ) 

∂ θ∂ θ
T 

]
, 

= E �1 , �2 

[
F θ + F �1 

+ F �2 

]
, (4) 
p

2 
here L ( z | �1 , �2 ) is the log-likelihood of z given �1 and �2 , 

hich can be expressed as 

 ( z | �1 , �2 ) = K − ln det R ( θ) − z H R ( θ) −1 z , (5) 

ith K = −N ln π . Moreover, πi ( �i ) is the log-prior of �i defined 

s 

i ( �i ) = −((νi + R + 1) / 2) ln det �i −
1 

2 

tr( �i �
−1 
i ) + constant , 

(6) 

here tr(·) denotes the trace operator. Note that functions (5) and 

6) also satisfy the regularity conditions ensuring the existence of 

he BBs of �1 and �2 . 

Computation of F θ , F �1 
and F �2 

.The matrix F θ is known as 

he Fisher information matrix of θ. Since z is a zero mean complex 

ircularly-symmetric Gaussian vector, the element of F θ located at 

he k th row and lth column, denoted as [ F θ] kl for k, l ∈ { 1 , . . . , p} ,
an be calculated as [14,15] 

 F θ] kl = tr 

{
R 

−1 ( θ) 
∂ R ( θ) 

∂θk 

R 

−1 ( θ) 
∂ R ( θ) 

∂θl 

}
. (7) 

ote that in general the computation of (7) needs O (R 3 N 

3 ) op-

rations because it requires to invert the matrix R ( θ) . This com- 

utation can lead to a high computational cost for large values 

f N and R . We propose to overcome this limitation by exploit- 

ng the block diagonal structure of R ( θ) . This structure allows the 

nverse of the matrix R ( θ) to be computed using the inverses 

f the R × R diagonal blocks R n ( θ) of R ( θ) . Specifically, R 

−1 
n ( θ) =

 

�1 g 1 (n ) + �2 g 2 (n ) ) 
−1 

and 

∂ R n ( θ) 

∂θl 

= B n,l = 

{
J 1 ,l g 1 (n ) if l ∈ { 1 , . . . , 

p 
2 
} , 

J 2 ,l g 2 (n ) if l ∈ { p 
2 

+ 1 , . . . , p} , 

here J i,l = 

∂ �i 

∂θl 

does not depend on θ, hence 
∂ 2 �i 

∂ θk ∂ θl 

= 0 . Thus, 

7) can be rewritten as 

 F θ] kl = 

N ∑ 

n =1 

tr 
{

R 

−1 
n ( θ) B n,k R 

−1 
n ( θ) B n,l 

}
, (8) 

hich can be computed with O (R 3 N) operations. Overall, the val- 

es of R considered in this paper are relatively small R � N and 

ead to feasible computational times. 

On the other hand, the following result is obtained 

 F �i 
] kl = −∂ 2 πi ( �i ) 

∂ θk ∂ θl 

= ((νi + R + 1) / 2) tr ( �−1 
i J i,k �

−1 
i J i,l ) 

−(1 / 2) tr ( �i [ �
−1 
i J i,k �

−1 
i J i,l �

−1 
i 

+ �−1 
i J i,l �

−1 
i J i,k �

−1 
i ]) . (9) 

Expectations. This section explains how to compute the ex- 

ectations in (4) . Calculating the expectation E �1 , �2 

[
F �1 

+ F �2 

]
educes to determining the expectation of − ∂ 2 π1 ( �1 ) 

∂ θ1: p 
2 
∂ θ

T 
1: p 

2 

w.r.t. 

1 and the expectation of − ∂ 2 π2 ( �2 ) 

∂ θ p 
2 

+1: p ∂ θ
T 
p 
2 

+1: p 

w.r.t. �2 , since the 

ther terms equal 0. Both expectations have a closed-form ex- 

ression that can be determined using the matrix expectations 

1) and (2) . The challenge here is to compute the expectation 

 �1 , �2 
[ F θ] , which involves calculating the expectation of the ex- 

ression R 

−1 
n B n,k R 

−1 
n B n,l with respect to �1 , �2 for all n = 1 , . . . , N. 
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his computation is possible provided we can compute the expec- 

ation 

 �1 , �2 

[
( a �1 + b �2 ) 

−1 
A ( a �1 + b �2 ) 

−1 
B 

]
(10) 

or a, b ∈ R + , �1 ∼ IW (ν1 , �1 ) , �2 ∼ IW (ν2 , �2 ) and any pair

f symmetric matrices A and B . If a or b equal zero, (10) can 

e calculated using (2) . Otherwise, we propose to approxi- 

ate (10) numerically via a Monte Carlo algorithm. Given a , 

, A and B , we can generate a large number S of sam- 

les { �(s ) 
1 

, �(s ) 
2 

} S 
s =1 

according to IW distributions, compute E 

(s ) = (
a �(s ) 

1 
+ b �(s ) 

2 

)−1 

A 

(
a �(s ) 

1 
+ b �(s ) 

2 

)−1 

B 

]
and approximate (10) by 

he average of the matrices { E 

(s ) } S 
s =1 

. 

The MSE of any estimator ( ̂  �1 , 
̂ �2 ) of ( �1 , �2 ) is de-

ned as the trace of the error covariance matrix MSE = 

r(E θ[ ( ̂ θ − θ)( ̂ θ − θ) T ]) , where ˆ θ is the vector obtained by concate- 

ating the vectors vec triu ( ̂
 �1 ) and vec triu ( ̂

 �2 ) . Finally, the inverse 

f the PFIM (3) denoted as [ F ] −1 yields the desired lower bound 

or the MSE of any estimator ( ̂  �1 , 
̂ �2 ) of ( �1 , �2 ) , when these

atrices are IW distributed: 

SE ≥ BB = tr([ F ] −1 ) . (11) 

Analytic properties. Assuming that a or b are zero and � is 

iagonal, (11) can be computed in closed-form. In particular, the 

ntries of F are given by 

 F ] kl = γ1 t r( �J k ) t r( �J l ) + γ2 tr( �J k �J l ) (12) 

here γ1 = 

1 
2 (ν

2 + ν(2 N − R + 3)) and γ2 = 

1 
2 (ν

3 + ν2 (2 N − R +
) + ν(2 N + 9 − R )) . When � is the identity matrix, the first term

f the PFIM is a matrix with zero entries except for an R × R di-

gonal block with non-zero entries whereas the second term is a 

iagonal matrix. In this case, it can be shown that the PFIM has 

 − 1 eigenvalues (ev.) equal to γ2 , R (R + 1) / 2 − R = (R 2 − R ) / 2 ev.

qual to 2 γ2 and one ev. equal to Rγ1 + γ2 . The trace of [ F ] −1 with

he above assumptions, denoted as aBB (for approximate BB), is 

BB = tr([ F ] −1 ) = 

R (R − 1) 

4 γ2 

+ 

R ((R − 1) γ1 + γ2 ) 

γ 2 
2 

+ Rγ1 γ2 

. (13) 

his shows that the bound behaves asymptotically as ν−3 as ν → 

 ∞ , and as a second order polynomial in ν as ν → R + 1 . More-

ver, the behavior is asymptotically linear in R , and a second order 

olynomial in R as R → 1 . As expected, the asymptotic decay with

ample size is N 

−1 . 

. Numerical illustrations 

In this section, extensive numerical simulations are used to 

tudy the properties of the BB for the MSE of any estimator of 

he pair of matrices � = ( �1 , �2 ) in the above probabilistic frame- 

ork, and compare the bounds against the MSEs of Bayesian esti- 

ators. 

.1. Monte Carlo simulations 

Estimation algorithms. We consider the maximum a posteriori 

MAP) and minimum mean square (MMSE) estimators, defined by: 

̂ 

MAP = 

argmax 

�
p( � | z ) , (14) 

̂ 

MMSE = E [ � | z ] . (15) 

n order to compute (14) and (15) , we use a Gibbs sampler [16] to

enerate a large collection N mc of samples distributed accord- 

ng the posterior distribution equation to be recalled here. After 
3 
 burn-in period, where the first N bi samples are discarded, the 

ayesian estimators ̂ �
MAP 

and 

̂ �
MMSE 

are approximated using the 

ast generated samples. 

Simulation setup. Unless otherwise stated R = 2 , N = 2 8 , �1 =
2 = I R ( R × R identity matrix) and ν1 = ν2 = 80 . Without loss of

enerality, we use the functions g 1 (n ) = 2 π cos 2 ( x [ n ]) + 0 . 1 and

 2 (n ) = 2 π sin 

2 ( x [ n ]) + 0 . 1 , where x is the vector of N compo-

ents whose values have been generated in the interval [0,2], equi- 

paced with a distance of 2 / (N − 1) . In all cases, the sample MSE

f the estimators is computed as the average of the trace of the 

rror covariance matrix over 10 0 0 independent realizations. Gibbs 

amplers are run with N mc = 10 0 0 and N bi = 50 0 , and (10) is ap-

roximated (when needed) as described before using S = 200 . 

.2. Performance analysis 

Performance vs. sample sizes. Fig. 1 displays the BB, its ap- 

roximation aBB, and the MSEs of the MMSE and MAP estimators, 

or various sample sizes, where �1 , �2 are random matrices with 

W prior distributions. The following comments are appropriate: 

• The BB decreases as N 

−1 when N → ∞ and to a constant when

N → 0 . 

• The BB and its approximation aBB are asymptotically close but 

tend to different constants for small sample size. 

• BB vs. MSE: The MSEs of both estimators are approaching the 

BBs when N increases - the more data, the tighter the bounds. 

• MMSE vs. MAP: Overall, the MMSE estimator has better perfor- 

mance than the MAP estimator, in particular for small sample 

size. This result was expected since the MMSE estimator mini- 

mizes the MSE. 

Performance vs. degrees of freedom. Fig. 2 compares the MSEs 

f the MMSE and MAP estimators and the BBs for various degrees 

f freedom, ν1 = ν2 ∈ { 10 , 15 , 20 , 25 , . . . , 120 } . We can observe that

he BB decreases when ν1 and ν2 increase; indeed, in that case, the 

riors are more informative. The approximation aBB is very simi- 

ar to BB and predicts that this decay is of order ν−3 . Moreover, the 

alues of the MSEs for both the MAP and MMSE estimators are ob- 

erved to be significantly larger than the lower BB for small values 

or ν1 and ν2 (uninformative priors), but very close to the bound 

or large values of ν1 , ν2 (informative priors). 

Performance vs. number of components. Fig. 3 displays the 

SEs of the MMSE and MAP estimators and the BBs when the 

umber of components R - thus, the number of parameter p - 

s varied, specifically R ∈ { 1 , 2 , 3 , . . . , 10 } . We can observe that: 1)

B vs. R : The BB increases with increasing values for R and is

ery tightly approximated by aBB, thus suggesting an asymptoti- 

ally linear behavior in R . 2) BB vs. MSE: The values taken by the

SE and the BB are very similar for a small number of compo- 

ents/parameters. For large values of R , the bound is slightly less 

ight. Since the sample size is fixed here, this behavior is coherent. 

ndeed, we would expect that larger sample sizes are required to 

onverge to the BB when more parameters are estimated. 

.3. Application to a multivariate multifractal analysis 

Finally, the theoretical results of this paper are applied to 

 practical example related to multivariate multifractal analysis 

4,5,17] . In particular, the model and estimation framework of 

7] are considered for bivariate time series ( R = 2 ). In this con-

ext, the Fourier transform of the logarithm of wavelet leaders, 

efined as nonlinear and nonlocal transformations of wavelet co- 

fficients, approximately obeys the data model considered in this 

aper, where the elements of �1 are directly related to the mul- 

ifractality of the data, i.e., �1 = −[ c 20 , c 11 ; c 11 , c 02 ] and thus

= −(c , c , c ) , where c , c < 0 are related to the widths
1:3 20 11 02 20 02 
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Fig. 1. Comparison between the sample MSEs of the MAP and MMSE estimators averaged over 10 0 0 independent realizations versus the BB for sample sizes N ∈ 
{ 2 5 , 2 6 , . . . , 2 12 } , ν1 = ν2 = 80 and R = 2 . 

Fig. 2. Comparison between the sample MSEs of the MAP and MMSE estimators averaged over 10 0 0 independent realizations versus the BB, varying the degrees of freedom 

ν1 = ν2 , for R = 2 and N = 2 8 . 

Fig. 3. Comparison between the sample MSEs of the MAP and MMSE estimators averaged over 10 0 0 independent realizations versus the BB, varying the number of compo- 

nents R , for N =2 8 , �1 = �2 = I R and ν1 =ν2 =80 . 
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f the marginal multifractal spectra, and c 11 quantifies the joint 

ultifractality. The matrix �2 is an adjustment parameter that 

ssentially subsumes the short-lag autocorrelation of log-wavelet 

eaders. Moreover, one can define a multifractal correlation parame- 

er as ρmf = − c 11 √ 

c 20 c 02 
(with −1 ≤ ρmf ≤ 1 ), that quantifies a depen- 

ence beyond linear correlation between the time series. Note that 

he BB of ρmf is obtained from the BB of �1 using the functional 

nvariance principle [1] . 

Simulation study. This section considers 20 0 0 independent 

opies of 2 10 × 2 time series of a canonical multifractal model pro- 

ess, i.e., a bivariate multifractal random walk (bMRW) [17–19] , 

o compute the sample MSE of the MMSE estimator, and the BB, 

or different multifractal parameter settings, controlled by �1 . In 

 first experiment, �1 is generated using �1 = [0 . 5 , 0 ; 0 , ω] ,

ith 0 . 37 ≤ ω ≤ 1 . 2 and ν1 = 10 , leading to realistic expected val-
4 
es for the multifractal parameters, i.e., −c 20 = 0 . 05 and −c 02 =
 0 . 037 , . . . , 0 . 12 } . In a second experiment �1 = [0 . 4 , γ ; γ , 0 . 4]

ith γ tuned such that 0 ≤ ρmf ≤ 0 . 8 in average. The parameters 

f �2 cannot be controlled by the bMRW synthesis and are thus 

nknown, and we set �2 = �1 and ν2 = ν1 . Results for the two 

xperiments are presented in Fig. 4 (top and bottom row, respec- 

ively). They indicate that the derived BBs provide good indications 

or the variations of the observed MSE of the multifractal parame- 

er estimates. In particular, they show that: 1) the MSE of the es- 

imator of c 20 does not depend on c 02 , which is expected since c 20 

s a marginal parameter of the first data component that is inde- 

endent of c 02 ; 2) the MSE of the estimator of c 02 increases with

 02 . Indeed, c 02 controls the variance of the marginal likelihood of 

he second data component; 3) the MSE of the estimator of c 11 

lso increases with c 02 because ρ is held fixed so that c 11 and 
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Fig. 4. Sample MSE for multifractal parameters c 20 , c 02 , c 11 as a function of c 02 (top) and sample MSE for multifractal correlation ρmf (bottom). 
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hus its covariance also increase; 4) the MSE of ρmf decreases in a 

on-trivial way when this parameter increases. 

. Conclusion 

This paper derived and studied Bayesian Cramér-Rao lower 

ounds for the MSE of estimators of two symmetric positive defi- 

ite matrices whose sum is the covariance matrix of a zero mean 

omplex circularly-symmetric Gaussian model. To calculate these 

ayesian bounds, a novel closed-form expression for a non-trivial 

xpectation involving Wishart random matrices was provided. The 

roperties of these Bayesian bounds were studied analytically. Var- 

ous numerical simulations were used to validate the theoretical 

esults and study the properties of the proposed Bayesian bounds. 

he practical interest of the bounds derived in this paper was fi- 

ally illustrated for the estimation of the parameters of the bivari- 

te multifractal spectrum. 
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