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Abstract: Accelerometers are powerful tools for behavioral ecologists studying wild animals, partic-
ularly species that are difficult to observe due to their cryptic nature or dense or difficult to access
habitats. Using a supervised approach, e.g., by observing in detail with a detailed ethogram the
behavior of an individual wearing an accelerometer, to train a machine learning algorithm and
the accelerometer data of one individual from a wild population of Javan slow lorises (Nycticebus
javanicus), we applied a Random Forest model (RFM) to classify specific behaviors and posture or
movement modifiers automatically. We predicted RFM would identify simple behaviors such as
resting with the greatest accuracy while more complex behaviors such as feeding and locomotion
would be identified with lower accuracy. Indeed, resting behaviors were identified with a mean
accuracy of 99.16% while feeding behaviors were identified with a mean accuracy of 94.88% and
locomotor behaviors with 85.54%. The model identified a total of 21 distinct combinations of six be-
haviors and 18 postural or movement modifiers in this dataset showing that RFMs are effective as a
supervised approach to classifying accelerometer data. The methods used in this study can serve as
guidelines for future research for slow lorises and other ecologically similar wild mammals. These
results are encouraging and have important implications for understanding wildlife responses and
resistance to global climate change, anthropogenic environmental modification and destruction, and
other pressures.

Keywords: animal behavior; supervised machine learning; random forest model

1. Introduction

Understanding behavior and physiology of animals in their natural environments is
fundamental to ecology [1]. For centuries, animal behaviorists and ecologists have relied
on direct observations to gather insights on animals’ activities. Wild animals may be
difficult to observe [2,3]; direct observations can introduce observer bias [1,4] as well as the
potential to affect animal behavior [3,5–7]. The use of bio-loggers, animal-borne devices that
provide data on animal movement, behavior, and physiology without the need for direct
observation, have proven to be powerful tools to study animal behavior. GPS trackers,
video cameras, temperature loggers, depth recorders, physiological loggers, etc. have aided
behavioral ecology researchers to observe and understand animal behavior [8,9]. Animal-
borne accelerometers, devices that provide data of static and dynamic acceleration, are
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particularly powerful tools that aid in the study of animal behavior and have applications
in the fields of captive animal welfare [10–13], behavioral ecology [14–16], and evolutionary
studies [16–18].

Accelerometers have enabled animal behavior researchers to study species that may
otherwise be very difficult or impossible to observe directly, either due to their cryptic
nature, behaviors or qualities that make them less easily detected by predators or prey [19],
or the difficulty of accessing or navigating their environments. The first study to utilize
accelerometers to discern behavioral patterns was conducted by Yoda et al. (1999) [20] to
classify the movement behaviors of Adélie penguins (Pygoscelis adeliae). Since then, im-
provements in technology (e.g., logger size as well as battery and storage capacity) enabled
opportunities to research a wider range of species that were previously inaccessible. For
example, Nakamura, Goto, and Sato (2015) [21] attached accelerometers to sun fish that
dive up to 200 m for extended periods of time making them nearly impossible to observe
directly. Nocturnal mammals are particularly difficult to observe, and researchers often
rely on other metrics such as vocalizations to determine abundance or radio tracking [22].
Although radio tracking is useful to discern general movement patterns and social organi-
zation, animals may remain completely out of view. To date, accelerometers have been used
most widely in studies of birds and marine mammals [15]. Only a few studies have used
accelerometers to study primate behavior [13,15,23–26] and the majority of these sought
to identify broad activity categories rather than specific behaviors. Even fewer studies
have focused on nocturnal primates (e.g., those for which accelerometers would be the
most useful).

Another benefit of bio-logging is the elimination of observer bias, since the presence
of humans can unintentionally influence animal behavior [6,7,27]. Even when animals
are habituated, human presence can affect the behavior of non-habituated animals and
influence their interactions with the habituated focal animals [5,28]. Direct observations
are also limited by the boundaries of our own physical and sensory abilities; our indi-
vidual experiences implicitly cause us to focus on certain events and subjects more than
others [1,2,4,29].

Modern accelerometers tend to last for longer periods than older models and collect
data continuously for an animal’s entire active period, which a human observer is rarely
capable of unless through video recording. Despite improvements, battery life of accelerom-
eters continues to be a major challenge. For instance, battery life can be affected by weather
and humidity; seasonal variation must also be considered when planning deployment and
retrieval of devices in the field [30–32]. Battery life of accelerometers is also affected by the
frequency interval at which the accelerometer is set to record data [32]. High recording
frequencies (>25 Hz) drain the device’s battery more quickly than low frequencies. Some
research has been carried out to determine whether lowering recording frequency to ex-
tend battery life significantly affected precision of behavior classification. Hounslow et al.
(2019) [33] tested a range of frequencies (1–30 Hz) on lemon sharks (Negaprion brevirostris)
and found that classification precision of fine-scale behaviors did not decrease significantly
until recording frequency reached as low as 5 Hz. McGowan et al. (2022) [34] compared two
accelerometer models and found that the model with higher capacity and higher recording
frequency outperformed the other. Generally, it is recommended to use mid to high range
frequencies when attempting to classify more complex behaviors, but low frequencies are
acceptable to classify less complex behaviors and will extend the life of the device’s battery.

The detailed three-dimensional datasets derived from accelerometers can be used
to identify specific animal behaviors and require complex stochastic analytical methods
to infer behavior [35]. Additionally, the raw accelerometer dataset only provides accel-
eration and orientation information so various models can be used to infer the actual
behaviors. Machine-learning models are used to develop an algorithm that automatically
identifies patterns within the dataset. Broadly, there are two categories of machine-learning
algorithms: supervised and unsupervised [36]. The most important difference between
supervised and unsupervised learning algorithms is their inputs and outputs. Supervised
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learning algorithms produce classifications based on the labels researchers assign to the
training dataset while unsupervised learning algorithms produce associative clusters of
data using pattern recognition. There are several ways to cluster the data, which means
there are multiple possible outcomes, so researchers must indicate a similarity measure for
the model to follow. Unsupervised learning algorithms are more complex and less precise
than supervised algorithms but may be used to identify the labels that can then be applied
to a supervised learning algorithm [37].

A supervised learning algorithm is used by behavioral ecologists when an ethogram, a
list of distinct behaviors and their descriptions, is already known [38–40]. These behaviors
are used to label a portion of the training dataset. A statistical model is then applied to
the data subset to classify behaviors using acceleration signatures [15,41]. This method
requires that the researchers have pre-existing knowledge of the species, which is often
not the case with many cryptic or difficult to access species that researchers know very
little about. In these cases, an unsupervised learning algorithm is used which forgoes the
need for direct observations [15,42,43]. Several supervised learning models have been used
to develop classification algorithms for animal acceleration data including decision trees,
support vector machines, and random forest models [44,45].

One group of primates that lend themselves particularly well to wearing accelerome-
ters are the Lorisidae—African pottos (Perodicticinae) and Asian lorises (Lorisinae) Their
cryptic lifestyles make them particularly difficult to observe, but at the same time, their
non-jumping movements that are often slow can be picked up well by an accelerometer [46].
Direct observations by human researchers have provided detail about behaviour of slow
lorises in particular in the wild, but for significant portions of time animals are out of
view [47]. Despite the challenge of following these nocturnal primates, they have been
shown to eat gum, nectar, and insects; their activity patterns are influenced by weather
and moon phase; they go into torpor often in dense foliage where this behavior may be
missed; and are frequently social, a behavior said to be rare for nocturnal primates [47–50].
Although all slow loris species are arboreal and prefer tree connectivity, several slow loris
species occur in agroforests with reduced canopy connectivity that may disrupt loris ac-
tivities or impact their energetics [51–54]. Understanding the impacts of these factors is
particularly important for Javan slow lorises, which are classified as Critically Endangered
by the International Union of the Conservation of Nature (IUCN) Red List due to intense
deforestation and fragmentation for agriculture [52,55]. Indeed, as natural forests shift
more and more to agriculture, there is a call to understand behavior and ecology within
agroforestry matrix environments [56,57].

Here we present a case study of applying a supervised learning approach to train a
model to identify behaviors from accelerometer data of a wild Javan slow loris (Nycticebus
javanicus), from a well-known population occurring within an agroforest in Indonesia.
Using direct behavioral observation data, we applied a supervised learning approach
to train a random forest model [58,59]. Next, we validated the accuracy of the model’s
predictions against our observations and present the results. It is predicted that movement
complexity will affect the model’s classification accuracy. We predicted resting behaviors
would be classified with highest accuracy and feeding and locomotor behaviors such as
climbing and walking would be classified with lower accuracy. We divided the results
by broad behavioral categories: Locomotive, Feeding, and Resting. This is the first time
accelerometry and machine learning have been applied to wild slow lorises to identify
specific behaviors. For this reason, we tested the method with a single animal as proof of
principle. The results imply exciting applications of accelerometry to behavioral ecology of
cryptic arboreal mammals.

2. Materials and Methods

Using data extracted from an accelerometer worn by a wild male Javan slow loris,
we developed an algorithm using a random forest model to identify behaviors. Direct
behavioral observations were used to validate the algorithm. The study area lies outside
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the village of Cipaganti in West Java, Indonesia (7◦16′44.30′ ′ S, 107◦46′7.80′ ′ E, 1200 m
asl) [52] and is part of the Little Fireface Project (LFP), which has been consistently studying
a wild population of Javan slow lorises since 2011. LFP is the longest continuous research
project of any nocturnal primate species, which is ideal to validate the methods of this
study. Cipaganti is located on the Gunung Puntang Mountain at 1345 m above sea level [60]
and exists nearby, but outside a strictly protected nature reserve, Gunung Papandayan.
The landscape of Cipaganti is agroforest, which is characterized by patchworks of forest
fragments, agricultural fields, and human settlements [61] (Figure 1). The climate of
the region is tropical rainforest with annual precipitation exceeding 2500 mm [52] and
temperatures remain relatively constant throughout the year but vary more between day
and night [62]. Between January and August 2022, minimum lows reached 22 ◦C at night
while maximum highs reached 35 ◦C during the day [60].
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Figure 1. A map of the study area of Cipaganti, Java, Indonesia, showing the anthropogenic landscape
in which the Javan slow lorises live.

2.1. Field Methods

A team of three to five people from LFP, using protocol recommended by Nekaris,
Munds, and Pimley (2020) [63], captured an adult male loris on 7 March 2022 and fitted
him with a collar affixed with a radio transmitter and accelerometer and recaptured him
on 11 April 2022 to retrieve the accelerometer. Any medical check-ups, sample collection,
measurements, notes, and collar fittings are conducted in situ and without the use of
anesthetic (Figure 2).

We recorded the target slow loris’ behavior between the hours of 18:30 and 23:00 on 10,
15, and 18 March 2022. We recorded general behavior and positional and locomotor behav-
iors using a scan sampling method at five-minute intervals plus ad libitum observations.
For the purposes of this study, and based on validation of an accelerometer in captivity,
we used a reduced ethogram combining six behavioral categories alongside 11 postures
(Tables 1–3). Since the captive slow loris was on her own, we did not have validation data
to include any social behaviors for the current study.
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Figure 2. Javan slow loris (Nycticebus javanicus) wearing a 17 g VHF radio collar (blue cell attached
with shrink wrap covered cable tie) with affixed 2.5 g accelerometer (white box). Photo courtesy of
Little Fireface Project.

Table 1. Ethogram of Nycticebus javanicus behaviors and behavioral modifiers used in this study to
label the accelerometer training dataset used to validate the Random Forest model.

Behavior Abbreviation Description

Alert al Remain stationary as in “rest” but active observation of
environment or observer

Explore ex Meandering movement associated with looking for food or
exploring the habitat

Feeding fe Consumption of a food item

Travel tr Continuous, directed movement from one location to another

Groom gr Autogroom, lick, or use tooth comb on own fur

Rest re Remain stationary, often with body hunched, eyes open

Table 2. Ethogram of Nycticebus javanicus positional behavior used in this study to label the accelerom-
eter training dataset used to validate the Random Forest model.

Posture Abbreviation Description

Sit si Remain stationary with body hunched and
head erect

Stand st Remain stationary supported on all fours,
limbs extended

Horizontal suspension 1 H1 Hanging from one foot

Horizontal suspension 2 H2 Hanging from two feet or bipedal standing

Horizontal suspension 3 H3 Hanging from three feet

Horizontal suspension 4 H4 Hanging from four feet

Vertical suspension 2 V2 Hanging towards the side of a support with 2 feet
(e.g., when foraging or observing)

Vertical suspension 3
(up or down)

V3u
V3d

Hanging towards the side of a support with 3 feet,
either facing upwards or downwards

Vertical suspension 4
(up or down)

V4u
V4d

Hanging towards the side of a support with 4 feet,
either facing upwards or downwards
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Table 3. Ethogram of Nycticebus javanicus locomotor behavior used in this study to label the ac-
celerometer training dataset used to validate the Random Forest model.

Locomotion Abbreviation Description

Walk wa Quadrupedal walking on 0◦ to 45◦ support

Racewalk rw Fast quadrupedal walking on 0◦ to 45◦ support

Suspensory walk sw Locomoting while hanging on 0◦ to −45◦ support

Bridge bg
Climbing from one support to the next (trunk or branches
of same or different trees) stretching over a gap of more
than 15 cm

Climb up cu Moving upwards on +/−45◦ to +/−90◦ support

Climb down cd Moving downwards on +/−45◦ to +/−90◦ support

Climb horizontally ch Moving horizontally through 0◦ to +/−45◦ support

2.2. Materials

We used a Technosmart Axy 5s accelerometer, with dimensions of 22 mm × 13 mm ×
10 mm, weighing 2.5 g, mounted to a Lotek VHF radio collar using two zip ties (Figure 2).
The combined weight of the collar and accelerometer is around 19 g, which is below the
recommended 5% of the animal’s body mass [64,65]. We set the accelerometers to record at
an interval of 25 Hz. The device in this study lasted the manufacturer suggested 60 days at
this rate [32].

2.3. Data Analysis

We conducted all data processing in Microsoft Excel and we used R and RStudio
version 2022.02.2+485 to run the Random Forest model and validate the R script. Raw
data from the Technosmart Axy 5s accelerometer provided information on acceleration and
orientation through measurements of 15 variables (Table 4).

Table 4. List of variables in raw accelerometer data from Technosmart Axy 5s model accelerometer.

Accelerometer Variables

AccX AccY AccZ
Static_DorsoVentral Static_Lateral Static_BackForward

Amplitude_DorsoVentral Amplitude_Lateral Amplitude_BackForward
Dynamic_DorsoVentral Dynamic_Lateral Dynamic_BackfForward

Pitch ODBA_vec Amplitude_Pitch

We extracted accelerometer data between 10–18 March 2022, which corresponded to
the direct observations taken in the field. Aligning the timestamps from both datasets, we
added labels to the raw dataset with behaviors from the direct behavioral observations.
Behaviors are recorded the moment the stopwatch signals and the accelerometer records
data 25 times per second. We thus labelled all 25 datapoints with the same behavior. For
instance, if a behavior is recorded for the time stamp 18:20 and there are 25 datapoints cor-
responding to the time 18:20:00, all 25 accelerometer datapoints are labelled with the same
behavior. The labelled subset of accelerometer data consists of a total of 2900 datapoints.
We divided the data into three parts and subsets (locomotive—explore and travel; feeding
behaviors—feeding on gum, nectar, insects, etc.; and resting behaviors—alert, groom, rest)
based on broad behavioral categories, then we ran the Random Forest model three times,
once for each subset.

We used the labelled accelerometer dataset to train a Random Forest model to classify
behaviors. We ran a Random Forest script in RStudio derived from the one used in Nekaris
et al. (2022) [13]. See Appendix A for the Random Forest script we used.



Ecologies 2023, 4 642

Random Forest models can be defined as:

“a classifier consisting of a collection of tree-structured classifiers {h(x,k), k = 1,. . .}
where the {k} are independent identically distributed random vectors and each
tree casts a unit vote for the most popular class at input x” [58]

The benefits to using random forests as opposed to a single decision tree are an
increase in prediction accuracy and outputs of variable importance and prediction uncer-
tainty [58,59]. A single decision tree is prone to overestimating the importance of certain
variables and overfitting classifications. Random forests avoid this problem by introducing
two random selection processes each time a tree is grown so that each tree is different
from the next, thus increasing variability. Variability reduces the risk of overfitting and
overemphasis of the importance of certain variables. Once all of the trees in the forest have
made their predictions, the predictions are aggregated, with the most popular being the
result of the model. The nodes of a decision tree terminate when the data included in each
node cannot be classified any further, thus they are ‘pure’. The purity or impurity of each
node is quantified with the Gini impurity index formula. The Gini index tends towards
zero when the subset is pure or contains only one kind of class (in this case, behaviors). The
model runs a subset through a decision tree which splits the data at nodes with the goal of
minimizing the Gini impurity index.

G =
n

∑
i=1

pi(1− pi)

where n is the number of behavioral classes and pi is the proportion of each class in a set of
observations.

First, a training subset was randomly selected from the labelled dataset while the
remaining 30% is used as a validation dataset, which was then used to test the accuracy
of the Random Forest model predictions. Once we built the model, we used it to predict
the behaviors of the validation dataset. We then compared the predicted behaviors to the
observed behaviors and produced a confusion matrix to assess the accuracy of the model.

3. Results

The Random Forest model identified 21 separate modified behaviors, wherein the raw
accelerometer variables yielded a mean overall prediction accuracy of 91.6% for the training
dataset and 94.6% for the validation dataset across all three behavior categories. The
behavior identified with the lowest accuracy in the training dataset was tr_wa (travel_walk)
at 74.08% and the behavior identified with the lowest accuracy in the validation dataset
was ex_bg (explore_bridge) at 80%. Resting behaviors were identified with the highest
accuracy—99.16% from the resting training dataset. Locomotive behaviors were identified
with the least accuracy—85.54% from locomotive training dataset. The sections that follow
are the results of the Random Forest model validation presented by broad behavioral
categories, locomotive, feeding, and resting.

3.1. Locomotive Behaviors

Locomotive behaviors were identified with a mean accuracy of 85.54%. Explore_climb
down (ex_cd) had the highest prediction accuracy (94.4%). Travel_walk (tr_wa) had
the lowest prediction accuracy (74.08) and was confused most often with explore_climb
down (ex_cd). Static_DorsoVentral was the most important variable to predict locomotive
behaviors including travel and explore (Table 5), based on mean decrease accuracy and
decrease GINI (Figure 3). Static_Lateral was the most important classifier (Figure 4).
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Table 5. Results of the Random Forest classification to assess the predictive power of the variables
retrieved from a three-axis accelerometer in assessing the locomotive behaviors of a wild Javan slow
loris. Prediction accuracy, main confusing behaviors, and the importance of variables in the Random
Forest classifier were based on the training set of data.

Behavior
Prediction

Accuracy (%)
Main Confusing

Behavior(s) (% Error)

Most Important Variables in Random Forest Classifier

1st Variable 2nd Variable 3rd Variable

ex_bg 85.72 ex_cd (11.9) Static_Lateral Static_DorsoVentral accY
ex_cd 94.4 tr_cu; tr_wa (1.3) Static_DorsoVentral Static_Lateral accZ
ex_ch 77.42 tr_cd (12.9) Static_DorsoVentral Static_Lateral accY
ex_cu 94.32 tr_bg (1.9) Static_DorsoVentral Static_Lateral accZ
ex_wa 81.63 ex_cd; ex_cu (9.18) Static_DorsoVentral accZ accY
tr_bg 82.44 ex_cd (9.16) Static_Lateral Static_DorsoVentral Pitch
tr_cd 86.86 ex_cd; tr_cu (2.85) Static_Lateral Static_DorsoVentral Pitch
tr_cu 94.12 ex_cu; tr_bg (1.96) Static_DorsoVentral Static_Lateral accZ
tr_rw 83.34 ex_cd (16.6) Static_DorsoVentral Static_Lateral Pitch
tr_sw 86.57 ex_cu (8.95) Static_Lateral Static_DorsoVentral Pitch
tr_wa 74.08 ex_cd (19.75) Static_DorsoVentral Static_Lateral Pitch
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3.2. Feeding Behaviors

Feeding behaviors were classified with a mean accuracy of 94.88%. Feeding_horizontal
3 (fe_h3) had the highest prediction accuracy (100%). Feeding_vertical 2 (fe_v2) had the
lowest prediction accuracy (93.75%) and was confused most often with feeding_vertical 4
(fe_v4) (Table 6). AccZ was the most important classifier (Figures 5 and 6). Acceleration on
the Z axis (accZ) was the most important variable to predict feeding behaviors (see Table 6),
based on mean decrease accuracy and decrease GINI (Figure 6).

Table 6. Results of the Random Forest classification to assess the predictive power of the variables
retrieved from a three-axis accelerometer in assessing the feeding behaviors of a wild Javan slow
loris. Prediction accuracy, main confusing behaviors, and the importance of variables in the Random
Forest classifier were based on the training set of data.

Behavior
Prediction

Accuracy (%)
Main Confusing

Behavior (% Error)

Most Important Variables in Random Forest Classifier

1st Variable 2nd Variable 3rd Variable

Fe_h3 100 Na accZ Static_DorsoVentral accX
Fe_h4 90.9 Fe_v2 (9.09) accX Static_BackForward Pitch
Fe_v2 93.75 Fe_h4 (6.25) accZ accX Static_DorsoVentral
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3.3. Resting Behaviors

Resting behaviors were identified with a mean accuracy of 99.16%. Alert_horizontal
2 (al_h2) had the highest prediction accuracy (100%). Alert_horizontal 4 (al_h4) had the
lowest prediction accuracy (94.12%) and was confused most often with alert_vertical 4
down (al_v4d) (Table 7). Static_DorsoVentral was the most important variable to predict
resting behaviors (see Table 7), based on mean decrease accuracy and decrease GINI
(Figure 7). Static_DorsoVentral was the most important classifier (Figure 8).
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Table 7. Results of the Random Forest classification to assess the predictive power of the variables
retrieved from a three-axis accelerometer in assessing the resting behaviors of a wild Javan slow loris.
Prediction accuracy, main confusing behaviors, and the importance of variables in the Random Forest
classifier were based on the training set of data.

Behavior
Prediction

Accuracy (%)
Main Confusing

Behavior(s) (% Error)

Most Important Variables in Random Forest Classifier

1st Variable 2nd Variable 3rd Variable

Al_h2 100 Na accZ Static_DorsoVentral Static_Lateral
Al_h4 94.12 Al_V4d (5.88) Static_DorsoVentral accZ Amplitude_Lateral
Al_si 100 Na Static_DorsoVentral accZ Static_Lateral
Al_st 100 Na Static_DorsoVentral accZ Static_Lateral

Al_v4d 100 Na Static_DorsoVentral accZ Static_BackForward
Gr_si 100 Na Static_DorsoVentral Static_Lateral accZ
Re_sb 100 Na Static_Lateral Static_DorsoVentral accY
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Figure 7. Mean decrease accuracy and mean decrease GINI of the predictor variables for resting
behaviors included in the Random Forest classifier ordered by importance to the model.
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4. Discussion

Our aim in this study was to see if an accelerometer could accurately predict behaviors
of a wild Javan slow loris, compared to those recorded by a human observer. By combining
direct behavioral observation data and accelerometer data within a Random Forest model
framework, we have successfully identified 21 combinations of six behaviors and 18 move-
ment/position modifiers from a wild Javan slow loris with a mean accuracy of 91.6% in
the training datasets and 94.6% in the validation datasets. The Random Forest model
identified resting behaviors with the greatest accuracy (99.16%) and locomotive behaviors
with the lowest accuracy (85.54%), which is consistent with the results of similar studies in
other species [13,15]. The reason for this disparity may be due to fundamental differences
between the two behavioral categories. Locomotive behaviors are more complex and
varied than resting behaviors [65], which likely increases the chances of confusion in the
Random Forest model. Evidence of this complexity can be seen by looking at the number
of combinations of behavior and position or locomotion; these included 11 combinations
for locomotive behaviors (see Table 5) and seven combinations for resting behaviors (see
Table 7). Interestingly, only three combinations were identified for feeding behaviors (see
Table 6), yet these were not identified with as high accuracy as resting behaviors. This
may be due to the relatively small sample size of feeding behaviors (150 datapoints) as
compared with resting (400 datapoints) or locomotive (2125 datapoints). Further study is
needed to determine how sample size influences classification accuracy.

Within locomotive behaviors (explore and travel), we found seven positional or loco-
motive modifiers. The primary difference between the two behaviors, explore and travel,
is the perceived intentionality of the loris by the human observer. The ethogram (see
Table 2) defines explore as “movement associated with looking for food or exploring the
habitat”. This implies that the purpose of the loris’ movement is to search for food, or
simply exploring their environment. Travel is defined as “continuous, directed movement
from one location to another”, which implies the purpose of the movement is to simply get
to another location. Both behaviors involve travelling from one place to another, and so, to
an accelerometer, look very similar and the device may not be sensitive enough to discern
visual and olfactory searching. Human observers are still important to interpret subtle
differences in behaviors such as these. For the purposes of future accelerometer studies, it
may be beneficial to classify explore and travel behaviors under one behavioral category
to avoid confusion until improvements in accelerometer technology make them sensitive
enough to discern the nuances of behavior.
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Across all behavior categories the most important variables were static_DorsoVentral,
static_Lateral, accZ, and pitch. This somewhat reflects the results of Nekaris et al. (2022) [13],
which examined accelerometer data from a captive individual of a different species of loris,
Nycticebus bengalensis. They found Static_Lateral and Static_DorsoVentral to be the first and
second most important variables respectively to predict behaviors while accZ was the third
most important variable for just one behavior. In the current study, the second and third
most important variables in the feeding category were undetermined due to the fact that
across the three distinct feeding behaviors, there were three distinct variables in second
and third place. Between all three behavior categories, feeding behaviors had the smallest
sample size. Replication of the model with a much larger sample size might reveal truer
variable importance for feeding behaviors.

A greater sample size is needed to further validate and increase the reliability of the
algorithm before we can run unlabeled data with confidence. The objective is to have ample
sample size with the maximum number of subjects and behavior variability to build an
algorithm that is robust enough to apply to any Javan slow loris accelerometer data without
the need for correlating behavioral data. A reliable algorithm may potentially be further
tested and then applied to any species with similar morphology and ecology [66] such as
other loris species although some scientists caution the use of one algorithm across different
species [67]. This study provides proof of method that can be applied to any lorisid species
with an established ethogram.

Comparison of results with previous studies is difficult to do for a variety of reasons.
Of the few studies that seek to investigate primate behavior using accelerometers, only
two [13,15] classify behaviors using similar methods and present their results using the
same metrics as those in the present study i.e., model accuracy and variable importance.
Table 8 shows a comparison of the results of the present study, two similar primate studies,
and three non-primate studies that classify animal behavior using accelerometers and
Random Forest models. Other studies using accelerometers may seek to distinguish
between periods of activity and inactivity [30], overall activity patterns [68], or may be
concerned with identifying just one type of behavior [69], requiring different methods and
results metrics.

Boyd et al. (2004) [3] pose a definition of bio-logging as the “investigation of phenom-
ena in or around free-ranging organisms that are beyond the boundary of our visibility or
experience”. Animals such as the Javan slow loris are small, arboreal, and nocturnal—all
conditions that make them difficult for humans to observe in the wild. Bio-logging devices
such as accelerometers effectively extend the capacity of our senses to allow us a previ-
ously inaccessible view into the activities and behaviors of animals such as the Javan slow
loris, deep diving sunfish [21], flying and diving seabirds [43], or arctic muskox [70]. The
information obtained from such studies is important to understand wildlife responses and
resistance to global climate change, anthropogenic environmental modification and destruc-
tion [3,65,71]. At the same time, we can use bio-logging data to reconstruct environmental
state and fluctuations since animal behavior is affected by the surrounding environment
and therefore contains environmental information [9]. These insights can be integrated into
ecosystem management programs to resist the effects of climate change and environmental
degradation, including for species across a broad geographic range [72–74].



Ecologies 2023, 4 648

Table 8. Comparison of model accuracy and variable importance across a selection of studies which classified animal behaviour using accelerometers and Random
Forest models.

Author Species Number of
Subjects

Accelerometer
Model

Sampling
Frequency (Hz)

Overall
Accuracy 3 Most Important Variables

Present study Javan slow loris
(Nycticebus javanicus) 1 (wild) Technosmart Axy

5S 25 94.60% Static_Lateral Static_DorsoVentral Z axis

Nekaris et al. [13] Javan slow loris
(Nycticebus bengalensis) 1 (captive) Technosmart Axy

5S 26 80.7% Static_Lateral Static_Dorsoventral Y axis

Fehlmann et al. [15] Chacma baboon (Papio ursinus) 9 (wild) Daily Diary sensor 40 88.3% Static X axis Pitch PSD1Z

Tatler et al. [45] Dingo (Canis dingo) 3 (captive) LISD2H 1 87% Z axis S.D. X Mean X

Kleanthouse et al. [75] Hebridian sheep (Ovis aries) 8 (captive) MetamorionR 12.5 99.43% -------------- Not given --------------

Jeantet et al. [76]
Hawksbill and Green turtles
(Eretmochelys imbricata and

Chelonia mydas)
2 (captive) Wilog Acquisition

Control Unit 50 86.96% Diff_Deep Statix X axis Min_VEDBA

Jeantet et al. [76] Loggerhead turtle
(Caretta caretta) 1 (captive) Wilog Acquisition

Control Unit 51 79.49% Diff_Deep Pitch Static X axis
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5. Conclusions

Accelerometry is an exciting technology that has the potential to significantly advance
the field of behavioral ecology. Improvements to size, battery life, and performance of
accelerometer devices are developing rapidly enabling researchers to collect animal data
movements over longer periods of time and on a growing variety of species. This study
shows that the combined use of accelerometers and Random Forest models can identify
resting, locomotion, and feeding behaviors in a Javan slow loris. In order to validate this
model, we needed to be able to observe a small nocturnal primate continuously for multiple
nights, which was a great challenge. This limited the sample size to a single individual,
and restricted the behavior we could observe during that period. For example, not enough
social behaviors were seen for the analysis. With this validation, however, we now can
apply the model to multiple individuals and begin to code behaviors in more detail. This
methodology is beneficial to behavioral ecologists in cases where direct observation is
limited and provides an alternative to habituation, which can be very challenging and time
consuming. Information gained from biotelemetry and machine learning techniques can
also be applied to conservation initiatives and can play a significant role in the protection
of the world’s biodiversity.
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Appendix A

Following is the Random Forest script we used in RStudio to classify behaviors.
Acc_Data<-read.csv(file.choose(), header=TRUE) #open file containing the behaviors

and acc data install.packages("randomForest")
library(randomForest)
set.seed(12345)

data_set_size <- floor(nrow(Acc_Data)*0.7)



Ecologies 2023, 4 650

indexes <- sample(1:nrow(Acc_Data), size = data_set_size)
training <- Acc_Data[indexes,] #corresponds to the 70%
validation1 <- Acc_Data[-indexes,] #corresponds to the 30%
training$Metadata = factor(training$Metadata)
rf_classifier = randomForest(Metadata ~ ., data=training, mtry=5, importance=TRUE) #this
runs the model
importance(rf_classifier)
varImpPlot(rf_classifier)
rf_classifier #accuracy for training (70%) dataset

predValid <- predict(rf_classifier, validation1, type = "class") #this predicts the remain-
ing 30% of the daset based on random forest model
mean(predValid == validation1$Metadata) #mean prediction accuracy table(predValid,
validation1$Metadata)

getTree(rf_classifier) MDSplot(rf_classifier, k=2) plot(rf_classifier)
ACC_variables<-read.csv(file.choose(), header=TRUE) #this is to open the file with

importance variables. Make a 2-column dataset using the matrices from above and save as
separate file. ACC_variables$variable = with(ACC_variables, reorder(variable, importance,
median)) #reorders in order of importance

install.packages("ggplot2")
library(ggplot2) #this summons the package that makes the box plot
install.packages("viridis")
library(viridis) png(filename="C:/Users/Location/Desktop/ImportanceAccelerometer
Movements.png", res=1000, units="in", width=9, height=5) #or tiff()
ggplot(ACC_variables, aes(x=variable, y=importance, fill=variable)) + geom_boxplot()+
theme(text = element_text(size=16))+ scale_fill_viridis(discrete = T, option="B", begin=0.95,
end=0.05)+ xlab("Variables in random forest") + ylab("Importance in random forest classi-
fier")+ theme(axis.text.x=element_blank(), axis.ticks.x=element_blank())+theme(panel.grid
= element_blank(),axis.line = element_line(colour = "black", size = 1, linetype = "solid"),
panel.background = element_blank())+theme(legend.title = element_blank())+scale_x_ dis-
crete(limits = rev(levels(ACC_variables$variable)))+guides(fill = guide_legend(reverse =
TRUE))
dev.off()

png(filename="C:/Users/Location/Desktop/RFClassifierAccelerometerMovements.png",
res=1000, units="in", width=9, height=5)
varImpPlot(rf_classifier)
dev.off()

References
1. Cooke, S.J.; HInch, S.G.; Wikelski, M.; Andrews, R.D.; Kuchel, L.J.; Wolcott, T.G.; Butler, P.J. Biotelemetry: A mechanistic approach

to ecology. Trends Ecol. Evol. 2004, 19, 334–343. [CrossRef] [PubMed]
2. Kooyman, G.L. Genesis and evolution of bio-logging devices: 1963–2002. Mem. Natl. Inst. Polar Res. Spec. Issue 2004, 58, 15–22.
3. Boyd, I.L.; Kato, A.; Ropert-Coudert, Y. Bio-logging science: Sensing beyond the boundaries. Mem. Natl. Inst. Polar Res. Spec. Issue

2004, 58, 1–14.
4. Altmann, J. Observational study of behavior: Sampling methods. Behavior 1974, 49, 227–266. [CrossRef]
5. Isbell, L.A.; Young, T.P. Human presence reduces predation in a free-ranging vervet monkey population in Kenya. Anim. Behav.

1993, 45, 1233–1235. [CrossRef]
6. Jack, K.M.; Lenz, B.B.; Healan, E.; Rudman, S.; Schoof, V.A.M.; Fedigan, L. The effects of observer presence on the behavior of

Cebus capucinus in Costa Rica. Am. J. Primatol. 2008, 70, 490–494. [CrossRef]
7. Crofoot, M.C.; Lambert, T.D.; Kays, R.; Wikelski, M.C. Does watching a monkey change its behavior? Quantifying observer effects

in habituated wild primates using automated radiotelemetry. Anim. Behav. 2010, 80, 475–480. [CrossRef]
8. Hawkes, L.A.; Fahlman, A.; Sato, K. Introduction to the theme issue: Measuring physiology in free-living animals. Philos. Trans.

R. Soc. B 2021, 376, 20200210. [CrossRef]
9. Yoda, K. Advances in bio-logging techniques and their application to study navigation in wild seabirds. Adv. Robot. 2019, 33,

108–117. [CrossRef]
10. Rothwell, E.S.; Bercovitch, F.B.; Andrews, J.R.M.; Anderson, M.J. Estimating daily walking distance of captive African elephants

using an accelerometer. Zoo Biol. 2011, 30, 579–591. [CrossRef]

https://doi.org/10.1016/j.tree.2004.04.003
https://www.ncbi.nlm.nih.gov/pubmed/16701280
https://doi.org/10.1163/156853974X00534
https://doi.org/10.1006/anbe.1993.1145
https://doi.org/10.1002/ajp.20512
https://doi.org/10.1016/j.anbehav.2010.06.006
https://doi.org/10.1098/rstb.2020.0210
https://doi.org/10.1080/01691864.2018.1553686
https://doi.org/10.1002/zoo.20364


Ecologies 2023, 4 651

11. Rushen, J.; Chapinal, N.; De Pasille, A.M. Automated monitoring of behavioral-based animal welfare indicators. Anim. Welf.
UFAW J. 2012, 21, 339–350. [CrossRef]

12. Whitham, J.C.; Miller, L.J. Using technology to monitor and improve zoo animal welfare. Anim. Welf. 2016, 25, 395–409. [CrossRef]
13. Nekaris, K.A.I.; Campera, M.; Chimienti, M.; Murray, C.; Balestri, M.; Showell, Z. Training in the dark: Using target training for

non-invasive application and validation of accelerometer devices for an endangered primate (Nycticebus javanicus). Animals 2022,
12, 411. [CrossRef]

14. Nams, V. Combining animal movements and behavioral data to detect behavioral states. Ecol. Lett. 2014, 17, 1228–1237. [CrossRef]
[PubMed]

15. Fehlmann, G.; O’Riain, M.J.; Hopkins, P.W.; O’Sullivan, J.; Holton, M.D.; Shephard, E.L.C.; King, A.J. Identification of behaviors
from accelerometer data in a wild social primate. Anim. Biotelem. 2017, 5. [CrossRef]

16. Leos-Barajas, V.; Photopoulou, T.; Langrock, R.; Patterson, T.A.; Yuuki, Y.W.; Murgatroyd, M.; Papastamatiou, Y.T. Analysis of
animal accelerometer data using hidden Markov models. Methods Ecol. Evol. 2017, 8, 161–173. [CrossRef]

17. Gleiss, A.C.; Jorgensen, S.J.; Liebsch, N.; Sala, J.E.; Norman, B.; Hays, G.C.; Quintana, F.; Frundy, E.; Campagna, C.; Trites, A.W.;
et al. Convergent evolution in locomotory patterns of flying and swimming animals. Nat. Commun. 2011, 2, 352. [CrossRef]

18. Brown, D.D.; Kays, R.; Wikelski, M.; Wilson, R.; Klimley, A.P. Observing the unwatchable through acceleration of animal behavior.
Anim. Biotelem. 2013, 1, 20. [CrossRef]

19. Allaby, M. (Ed.) A Dictionary of Zoology, 3rd ed.; Oxford University Press: Oxford, UK, 2009.
20. Yoda, K.; Sato, K.; Nizuma, Y.; Kurita, M.; Bost, C.A.; Le Maho, Y.; Naito, Y. Precise monitoring of porpoising behavior of Adélie

penguins determined using acceleration data loggers. J. Exp. Biol. 1999, 202, 3121–3126. [CrossRef]
21. Nakamura, I.; Goto, Y.; Sato, K. Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores. J. Anim.

Ecol. 2015, 84, 590–603. [CrossRef]
22. Duckworth, J.W. The difficulty of estimating population densities of nocturnal forest mammals from transect counts of animals. J.

Zool. 1998, 246, 466–468. [CrossRef]
23. Fernandez-Duque, E.; Erkert, H.G. Cathemerality and lunar periodicity of activity rhythms in owl monkeys of the Argentinian

Chaco. Folia Primatol. 2006, 77, 123–138. [CrossRef] [PubMed]
24. Papailiou, A.; Sullivan, E.; Cameron, J.L. Behaviors in rhesus monkeys (Macaca mulatta) associated with activity counts measured

by accelerometer. Am. J. Primatol. 2008, 70, 185–190. [CrossRef] [PubMed]
25. McFarland, R.; Hetem, R.S.; Fuller, A.; Mitchell, D.; Henzi, S.P.; Barrett, L. Assessing the reliability of biologger techniques to

measure activity in a free-ranging primate. Anim. Behav. 2013, 85, 861–866. [CrossRef]
26. Reinhardt, K.D.; Vyazovskiy, V.V.; Hernandez-Aguilar, R.A.; Imron, M.A.; Nekaris, K.A.I. Environment shapes sleep patterns in a

wild nocturnal primate. Sci. Rep. 2019, 9, 9939. [CrossRef]
27. Schneirla, T.C. The relationship between observation and experimentation in the field study of behavior. Ann. N. Y. Acad. Sci.

1950, 51, 1022–1044. [CrossRef]
28. Caine, N.G. Unrecognized anti-predator behavior can bias observational data. Anim. Behav. 1990, 39, 195–197. [CrossRef]
29. Cangacci, F.; Boitani, L.; Powell, R.A.; Boyce, M.S. Animal ecology meets GPS-based radiotelemetry: A perfect storm of

opportunities and challenges. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2157–2162.
30. Balestri, M. Ecology and Conservation of the Southern Woolly Lemur (Avahi meridionalis) in the Tsitongambarika Protected Area,

South-Eastern Madagascar. Ph.D. Thesis, Oxford Brookes University, Oxford, UK, 2018.
31. Campera, M. Ecological Flexibility and Conservation of Fleurette’s Sportive Lemur, Lepilemur fleuretae, in the Lowland Rainforest

of Amapasy, Tsitongambarika Protected Area. Ph.D. Thesis, Oxford Brookes University, Oxford, UK, 2018.
32. Reinhardt, K.D.; Campera, M.; Nekaris, K.A.I. Using accelerometers to measure nocturnal primate behavior. In Evolution, Ecology

and Conservation of Lorises and Pottos; Cambridge University Press: Cambridge, UK, 2020; pp. 316–325.
33. Hounslow, J.L.; Brewster, L.R.; Lear, K.O.; Guttridge, T.L.; Daly, R.; Whitney, N.M.; Gleiss, A.C. Assessing the effects of sampling

frequency on behavioral classification of accelerometer data. J. Exp. Mar. Biol. Ecol. 2019, 512, 22–30. [CrossRef]
34. McGowan, N.E.; Marks, N.J.; Maule, A.G.; Schmidt- Küntzel, A.; Marker, L.L.; Scantlebury, D.M. Categorising cheetah behaviour

using tri-axial accelerometer data loggers: A comparison of model resolution and data logger performance. Mov. Ecol. 2022, 10, 7.
[CrossRef]

35. Jonsen, I.D.; Basson, M.; Bestley, S.; Bravington, M.V.; Patterson, T.A.; Pedersen, M.W.; Thomson, R.; Thygesen, U.H.; Wotherspoon,
S.J. State-space models for bio-loggers: A methodological road map. Deep. -Sea Res. II 2013, 88–89, 34–46. [CrossRef]

36. Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning,
Big Data, Cloud and Parallel Computing (COMITCon 2019), Faridabad, India, 14–16 February 2019; pp. 35–39. [CrossRef]

37. Alloghany, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf, A.; Alloghany, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.;
Aljaaf, A. A systematic review on supervised and unsupervised machine learning algorithms for data science. In Supervised and
Unsupervised Learning for Data Science. Unsupervised and Semi-Supervised Learning; Springer: Cham, Switzerland, 2020; pp. 3–21.

38. Wang, Y.; Nickel, B.; Rutishauser, M.; Bryce, C.M.; Williams, T.M.; Elkaim, G.; Wilmers, C.C. Movement, resting, and attack
behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov. Ecol. 2015, 3, 2. [CrossRef] [PubMed]

39. Ladds, M.A.; Thompson, A.P.; Slip, D.J.; Hocking, D.P.; Harcourt, R.G. Seeing it all: Evaluating supervised machine learning
methods for the classification of diverse otariid behaviours. PLoS ONE 2016, 11, e0166898. [CrossRef] [PubMed]

https://doi.org/10.7120/09627286.21.3.339
https://doi.org/10.7120/09627286.25.4.395
https://doi.org/10.3390/ani12040411
https://doi.org/10.1111/ele.12328
https://www.ncbi.nlm.nih.gov/pubmed/25040789
https://doi.org/10.1186/s40317-017-0121-3
https://doi.org/10.1111/2041-210X.12657
https://doi.org/10.1038/ncomms1350
https://doi.org/10.1186/2050-3385-1-20
https://doi.org/10.1242/jeb.202.22.3121
https://doi.org/10.1111/1365-2656.12346
https://doi.org/10.1111/j.1469-7998.1998.tb00183.x
https://doi.org/10.1159/000089699
https://www.ncbi.nlm.nih.gov/pubmed/16415581
https://doi.org/10.1002/ajp.20476
https://www.ncbi.nlm.nih.gov/pubmed/17854071
https://doi.org/10.1016/j.anbehav.2013.02.005
https://doi.org/10.1038/s41598-019-45852-2
https://doi.org/10.1111/j.1749-6632.1950.tb27331.x
https://doi.org/10.1016/S0003-3472(05)80741-9
https://doi.org/10.1016/j.jembe.2018.12.003
https://doi.org/10.1186/s40462-022-00305-w
https://doi.org/10.1016/j.dsr2.2012.07.008
https://doi.org/10.1109/COMITCon.2019.8862451
https://doi.org/10.1186/s40462-015-0030-0
https://www.ncbi.nlm.nih.gov/pubmed/25709837
https://doi.org/10.1371/journal.pone.0166898
https://www.ncbi.nlm.nih.gov/pubmed/28002450


Ecologies 2023, 4 652

40. Dentinger, J.E.; Börger, L.; Holton, M.D.; Jafari-Marandi, R.; Normand, D.A.; Smith, B.K.; Oppenheimer, S.F.; Strickland, B.K.;
Wilson, R.P.; Street, G.M. A probabilistic framework for behavioral identification from animal-borne accelerometers. Ecol. Model.
2022, 464, 109818. [CrossRef]

41. Resheff, Y.; Rotics, S.; Harel, R.; Spiegel, O.; Nathan, R. AcceleRater: A web application for supervised learning of behavioral
modes from acceleration measurements. Mov. Ecol. 2014, 2, 27. [CrossRef]

42. Sakamoto, K.Q.; Sato, K.; Ishizuka, M.; Watanuki, Y.; Takahashi, A.; Daunt, F.; Wanless, S. Can ethograms be automatically
generated using body acceleration data from free-ranging birds? PLoS ONE 2009, 4, e5379. [CrossRef]

43. Chimienti, M.; Cornulier, T.; Owen, E.; Bolton, M.; Davies, I.M.; Travis, J.M.J.; Scott, B.E. The use of an unsupervised learning
approach for characterizing latent behaviors in accelerometer data. Ecol. Evol. 2016, 6, 727–741. [CrossRef]

44. Nathan, R.; Spiegel, O.; Fortmann-Roe, S.; Harel, R.; Wikelski, M.; Getz, W.M. Using tri-axial acceleration data to identify
behavioral modes of free-ranging animals: General concepts and tools illustrated for griffon vultures. Exp. Biol. 2012, 215,
986–996. [CrossRef]

45. Tatler, J.; Cassey, P.; Prowse, T.A.A. High accuracy at low frequency: Detailed behavioral classification from accelerometer data. J.
Exp. Biol. 2018, 221, jeb184085. [CrossRef]

46. Al-Razi, A.; Hasan, S.; Ahmed, T.; Muzaffar, S. Home range, activity budgets and habitat use in the Bengal slow loris (Nycticebus
bengalensis) in Bangladesh. In Evolution, Ecology and Conservation of Lorises and Pottos; Cambridge University Press: Cambridge,
UK, 2020; pp. 193–203.

47. Starr, C.; Nekaris, K.A.I.; Leung, L. Hiding from the moonlight: Luminosity and temperature affect activity of Asian nocturnal
primates in a highly seasonal forest. PLoS ONE 2012, 7, e36396. [CrossRef]

48. Nekaris, K.A.I. Extreme primates: Ecology and evolution of Asian lorises. Evol. Anthropol. 2014, 23, 177–187. [CrossRef] [PubMed]
49. Rode-Margono, E.J.; Nekaris, K.A.I. Impact of climate and moonlight on a venomous mammal, the Javan slow loris (Nycticebus

javanicus Geoffroy, 1812). Contrib. Zool. 2014, 83, 217–225. [CrossRef]
50. Nekaris, K.A.I.; Handby, V.; Campera, M. Impact of weather conditions, seasonality and moonlight on the use of artificial canopy

bridges by nocturnal arboreal mammals. Biodivers. Conserv. 2021, 30, 3633–3645. [CrossRef]
51. Pliosungnoen, M.; Gale, G.; Savini, T. Density and microhabitat use of Bengal slow loris in primary forest and non-native

plantation forest. Am. J. Primatol. 2010, 72, 1108–1117. [CrossRef] [PubMed]
52. Nekaris, K.A.I.; Poindexter, S.; Reinhardt, K.; Sigaud, M.; Cabana, F.; Wirdateti, W.; Nijman, V. Coexistence between Javan slow

lorises (Nycticebus javanicus) and humans in a dynamic agroforestry landscape in West Java, Indonesia. Int. J. Primatol. 2017, 38,
303–320. [CrossRef]

53. Biro Pusal Statistik (BPO). Estates Area by Crop. 2022. Available online: https://www.bps.go.id/indicator/54/1847/1/luas-
tanaman-perkebunan-besar-menurut-jenis-tanaman.html (accessed on 1 July 2023).

54. Campera, M.; Budiadi, B.; Adinda, E.; Ahmad, N.; Balestri, M.; Hedger, K.; Imron, M.; Manson, S.; Nijman, V.; Nekaris, K.A.I.
Fostering a wildlife-friendly program for sustainable coffee farming: The case of small-holder farmers in Indonesia. Land 2021, 10,
121. [CrossRef]

55. Whitten, A.J.; Soeriaatmadja, R.E.; Afiff, S.A. The Ecology of Java and Bali, the Ecology of Indonesia (Vol. II); Periplus: Singapore, 1996.
56. Flesher, K.M. The distribution, habitat use, and conservation status of three Atlantic Forest monkeys (Sapajus xanthosternos,

Callicebus melanochir, Callithrix sp.) in an agroforestry/forest mosaic in Southern Bahia, Brazil. Int. J. Primatol. 2015, 36, 1172–1197.
[CrossRef]

57. Hending, D.; Andrianiaina, A.; Rakotomalala, Z.; Cotton, S. The use of vanilla plantations by lemurs: Encouraging findings for
both lemur conservation and sustainable agroforestry in the Sava region, northeast Madagascar. Int. J. Primatol. 2018, 39, 141–153.
[CrossRef]

58. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
59. Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. In Ensemble Machine Learning; Springer: New York, NY, USA, 2012; pp.

157–175. [CrossRef]
60. Nekaris, K.A.I. The Little Fireface Project: Community conservation of Asia’s slow lorises via ecology, education, and empower-

ment. In Ethnoprimatology; Springer: Cham, Switzerland, 2016; pp. 259–272.
61. Nekaris, K.A.I.; Hedger, K.; Hathaway, A.; Adinda, E.; Ahmad, N.; Balestri, M.; Imrod, M.A.; Manson, S.; Nijman, V.; Campera, M.

Local farmers’ attitudes towards artificial wildlife bridges in a fragmented agroforestry environment. Folia Primatol. 2022, 93,
317–324. [CrossRef]

62. Reinhardt, K.D.; Wirdateti, W.; Nekaris, K.A.I. Climate mediated activity of the Javan slow loris (Nycticebus javanicus). AIMS
Environ. Sci. 2016, 3, 249–260. [CrossRef]

63. Nekaris, K.A.I.; Munds, R.A.; Pimley, E.R. Trapping, collaring, and monitoring the Lorisinae (Loris, Nycticebus) of Asia and
Perodicticinae (Arctocebus, Perodicticus) of Africa. In Evolution, Ecology and Conservation of Lorises and Pottos; Cambridge University
Press: Cambridge, UK, 2020; pp. 279–294.

64. Snijders, L.; Weme, L.E.N.; de Goede, P.; Savage, J.L.; van Oers, K.; Naguib, M. Context-dependent effects of radio transmitter
attachment on a small passerine. J. Avian Biol. 2017, 48, 650–659. [CrossRef]

65. Shepard, E.L.C.; Wilson, R.P.; Quintana, F.; Laich, A.G.; Liebsch, N.; Albareda, D.A.; Halsey, L.G.; Gleiss, A.; Morgan, D.T.;
Myers, A.E.; et al. Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 2008, 10, 47–60.
[CrossRef]

https://doi.org/10.1016/j.ecolmodel.2021.109818
https://doi.org/10.1186/s40462-014-0027-0
https://doi.org/10.1371/journal.pone.0005379
https://doi.org/10.1002/ece3.1914
https://doi.org/10.1242/jeb.058602
https://doi.org/10.1242/jeb.184085
https://doi.org/10.1371/journal.pone.0036396
https://doi.org/10.1002/evan.21425
https://www.ncbi.nlm.nih.gov/pubmed/25347976
https://doi.org/10.1163/18759866-08304001
https://doi.org/10.1007/s10531-021-02267-8
https://doi.org/10.1002/ajp.20875
https://www.ncbi.nlm.nih.gov/pubmed/20938966
https://doi.org/10.1007/s10764-017-9960-2
https://www.bps.go.id/indicator/54/1847/1/luas-tanaman-perkebunan-besar-menurut-jenis-tanaman.html
https://www.bps.go.id/indicator/54/1847/1/luas-tanaman-perkebunan-besar-menurut-jenis-tanaman.html
https://doi.org/10.3390/land10020121
https://doi.org/10.1007/s10764-015-9884-7
https://doi.org/10.1007/s10764-018-0022-1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1163/14219980-20211113
https://doi.org/10.3934/environsci.2016.2.249
https://doi.org/10.1111/jav.01148
https://doi.org/10.3354/esr00084


Ecologies 2023, 4 653

66. Campbell, H.A.; Gao, L.; Bidder, O.R.; Hunter, J.; Franklin, C.E. Creating a behavioral classification module for acceleration data:
Using a captive surrogate for difficult to observe species. J. Exp. Biol. 2013, 216, 4501–4506.

67. Dickinson, E.R.; Twining, J.P.; Wilson, R.; Stephens, P.A.; Westander, J.; Marks, N.; Scantlebury, D.M. Limitation of using surrogates
for behaviour classification of accelerometer data: Refining methods using random forest models in caprids. Mov. Ecol. 2021,
9, 28. [CrossRef]

68. Campera, M.; Balestri, M.; Chimienti, M.; Nijman, V.; Nekaris, K.A.I.; Donati, G. Temporal niche separation between the two
ecologically similar nocturnal primates Avahi meridionalis and Lepilemur fleuretae. Behav. Ecol. Soc. Biol. 2019, 73, 55. [CrossRef]

69. Costantini, D.; Sebastiano, M.; Gossens, B.; Stark, D.J. Jumping in the night: An investigation of the leaping activity of the Western
tarsier (Cephalopachus bancanus borneanus) using accelerometers. Folia Primatol. 2017, 88, 46–56. [CrossRef]

70. Chimienti, M.; van Beest, F.M.; Beumer, L.T.; Desforges, J.-P.; Hansen, L.H.; Stelvig, M.; Schmidt, N.M. Quantifying behavior and
life-history events of an Arctic ungulate from year-long continuous accelerometer data. Ecosphere 2021, 12, e03565. [CrossRef]

71. Watanabe, Y.Y.; Papastamatiou, Y.P. Biologging and biotelemetry: Tools for understanding the lives and environments of marine
animals. Annu. Rev. Anim. Biosci. 2023, 11, 247–267. [CrossRef]

72. Bradshaw, C.J.; Hindell, M.A.; Sumner, M.D.; Michael, K.J. Relating behavioral signals derived from dataloggers to foraging
success models for Southern elephant seals. In International Symposium on Bio-Logging Science; National Institute of Polar Research:
Tokyo, Japan, 2003; pp. 17–21.

73. Bograd, S.J.; Block, B.A.; Costa, D.P.; Godley, B.J. Biologging technologies: New tools for conservation. Introduction. Endanger.
Species Res. 2010, 10, 1–7. [CrossRef]

74. Davies, T.E.; Carneiro, A.P.; Tarzia, M.; Wakefield, E.; Hennicke, J.C.; Frederiksen, M.; Hansen, E.S.; Campos, B.; Hazin, C.;
Lascelles, B.; et al. Multispecies tracking reveals a major seabird hotspot in the North Atlantic. Conserv. Lett. 2021, 14, e12824.
[CrossRef]

75. Kleanthous, N.; Hussain, A.; Khan, W.; Sneddon, J.; Liatsis, P. Deep transfer learning in sheep activity recognition using
accelerometer data. Expert Syst. Appl. 2022, 207, 117925. [CrossRef]

76. Jeantet, L.; Dell’Amico, F.; Forin-Wiart, M.A.; Coutant, M.; Bonola, M.; Etienne, D.; Gresser, J.; Regis, S.; Lecerf, N.; Lefebvre, F.;
et al. Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data. J. Exp.
Biol. 2018, 221, jeb177378. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s40462-021-00265-7
https://doi.org/10.1007/s00265-019-2664-1
https://doi.org/10.1159/000477540
https://doi.org/10.1002/ecs2.3565
https://doi.org/10.1146/annurev-animal-050322-073657
https://doi.org/10.3354/esr00269
https://doi.org/10.1111/conl.12824
https://doi.org/10.1016/j.eswa.2022.117925
https://doi.org/10.1242/jeb.177378
https://www.ncbi.nlm.nih.gov/pubmed/29661804

	Introduction 
	Materials and Methods 
	Field Methods 
	Materials 
	Data Analysis 

	Results 
	Locomotive Behaviors 
	Feeding Behaviors 
	Resting Behaviors 

	Discussion 
	Conclusions 
	Appendix A
	References

