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This paper is devoted to stochastic flows of measurable mappings in a locally compact separable metric space (M, ρ). We propose a new construction that produces strong measurable continuous modifications for certain stochastic flows of measurable mappings in metric graphs.

Jan and Raimond 2020 and the complete corrected version that can be downloaded at arXiv:math/0203221v6; in our references to Le Jan and Raimond 2020 we use the numeration of Theorems from arXiv:math/0203221v6). To describe the problem we briefly review the characterization of stochastic flows of measurable mappings obtained in Le Jan and Raimond 2020. By B(M) we denote the Borel σ-field in the space M. For every n ∈ N, let (P (n) t , t ≥ 0) be a Feller transition function on M n . We will say that (P (n)

• : n ∈ N) is a consistent sequence of "coalescing" Feller transition functions on M, if (TF 1) For any {i 1 , . . . , i k } ⊂ {1, . . . , n}, t ≥ 0, x ∈ M n and B ∈ B(M k )

P (n) t (x, π -1 i 1 ,...,i k B) = P (k)
t (π i 1 ,...,i k x, B), where π i 1 ....,i k : M n → M k is defined by π i 1 ,...,i k x = (x i 1 , . . . , x i k ); (TF 2) For any x ∈ M and t ≥ 0

P (2) t ((x, x), ∆) = 1, where ∆ = {(x, x) : x ∈ M} is the diagonal in M 2 .
The results of Le Jan and Raimond 2020 imply that to any consistent sequence (P (n)

• : n ∈ N) of coalescing Feller transition functions on M one can associate a stochastic flow of measurable mappings ψ = (ψ s,t : -∞ < s ≤ t < ∞) in M (see Le Jan and Raimond 2020, Def. 1.3.1). Let F be the space of all measurable mappings f : M → M equipped with the cylindrical σ-field. Denote by C 0 (M n ) the space of continuous functions f : M n → R that vanish at infinity. A stochastic flow of measurable mappings on M is a family ψ = (ψ s,t : -∞ < s ≤ t < ∞) of random elements in F defined on a probability space (Ω, A, P), such that (SF 1) For any s ≤ t, n ∈ N, x ∈ M n and f ∈ C 0 (M n ), Ef (ψ s,t (x 1 ), . . . , ψ s,t (x n )) = P (n) t-s f (x); (SF 2) There exists a family (J t : t ≥ 0) of measurable mappings J t : F × M → M, such that for all s ≤ t ≤ u and x ∈ M, J t-s (ψ s,t )(x) = ψ s,t (x) a.s., ψ s,u (x) = J u-t (ψ t,u ) • ψ s,t (x) a.s., and ψ s,s (x) = x; (SF 3) For any t 1 ≤ t 2 ≤ . . . ≤ t n , the family (ψ t i ,t i+1 : 1 ≤ i ≤ n -1) is a family of independent random mappings; (SF 4) For any f ∈ C 0 (M) and s ≤ t, lim (u,v)→(s,t)

sup x∈M E f (ψ u,v (x)) -f (ψ s,t (x)) 2 = 0;
(SF 5) For any f ∈ C 0 (M), x ∈ M and s ≤ t, lim y→x E f (ψ s,t (y))f (ψ s,t (x)) 2 = 0 and lim y→∞ E f (ψ s,t (y)) 2 = 0.

Let ψ be a stochastic flow of measurable mappings in M and let ψ ′ be a family of random elements in (F, F ), such that ψ ′ s,s (ω, x) = x for all (s, x, ω) ∈ R × M × Ω, and P ψ ′ s,t (x) = ψ s,t (x) = 1 for all s ≤ t and x ∈ M, then ψ ′ is also a stochastic flow of measurable mappings in M (see Le Jan and Raimond 2020, Remark 1.3.2). If ψ ′ is such that the mapping (s, t, x, ω) → ψ ′ s,t (ω, x) is measurable, then the flow ψ ′ will be called a measurable modification of ψ.

Note that for all (s, x), the process ψ s,• (x) is Feller, and has a càdlàg modification. However, it is not obvious that there exists a measurable modification ψ ′ of ψ with càdlàg trajectories (i.e. such that ψ ′ s,• (x) is càdlàg for all (s, x, ω) ∈ R × M × Ω). We are interested in the existence of such measurable modifications. It is also natural to address the question of the existence of such modification to satisfy the following strong flow property that improves the flow property (SF 2): (SF 6) For all s ≤ t ≤ u and ω ∈ Ω (to simplify the notation, we have omitted the dependency on ω), ψ s,u = ψ t,u • ψ s,t . In this paper we only work with flows with continuous trajectories t → ψ s,t (x). In particular, we will always assume that the transition function (P A measurable modification ψ ′ of a stochastic flow of measurable mappings ψ on M will be called a strong measurable continuous modification of ψ if ψ ′ has continuous trajectories (i.e. ψ ′ s,• (x) is continuous for all (s, x, ω) ∈ R × M × Ω) and if ψ ′ satisfies the strong flow property (SF 6). A new method to construct such modification is given in this paper. This method requires an additional "compactness" condition (TF 4) on the sequence of n-point transition functions (P (n)

• : n ∈ N) of ψ. This condition will be given in Section 3.1.3.

The existence of strong measurable continuous modifications of stochastic flows of measurable mappings is known in several cases. For a stochastic flow of solutions to a stochastic differential equation (SDE) with smooth coefficients in a finite-dimensional smooth manifold M, the existence of a strong measurable continuous modifications was proved in [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF]. Strong measurable continuous modifications of certain instantaneously coalescing stochastic flows of measurable mappings in the real line were constructed in Riabov 2018. In Schertzer, Sun, and Swart 2014 it was proved that stochastic flows of kernels associated to the Brownian web possess strong measurable continuous modifications. We note that in [START_REF] Darling | Constructing nonhomeomorphic stochastic flows[END_REF] a strong stochastic flow associated to a consistent sequences of coalescing transition functions on M, even without the Feller property, was constructed. However, this flow is not measurable in either of the variables s, t, x. We apply our results to some stochastic flows in metric graphs. Stochastic flows of solutions to SDE's on metric graphs were studied in Hajri 2011, Le Jan and Raimond 2014, Hajri and Raimond 2014, Hajri and Raimond 2016.

The approach we propose is based on the analysis of families of deterministic continuous mappings θ s,• (x) : [s, ∞) → M, θ s,s (x) = x. In Section 2 we define the notion of skeleton. A skeleton ϕ is a sequence of continuous functions ϕ n : [s n , ∞) → M, n ∈ N, such that • {(s n , ϕ n (s n )) : n ∈ N} is dense in R × M;

• if ϕ n (t) = ϕ m (t) then ϕ n (u) = ϕ m (u) for all u ≥ t;

• for any compact L ⊂ R × M, the restrictions ϕ n to [s, ∞) for all n, s such that s n ≤ s and (s, ϕ n (s)) ∈ L form a relatively compact set in the space of all continuous paths on M. Given a skeleton ϕ we prove the existence of a family of continuous mappings θ s,• (x) : [s, ∞) → M, such that for all (s, x) ∈ R × M, θ s,s (x) = x and θ s,t (ϕ n (s)) = ϕ n (t) for all n ∈ N, s n ≤ t. We refer to the latter property as the preservation of the skeleton. In our construction each function θ s,• (x) is a limit point of the sequence (θ sn,• [s, ∞) : s n ≤ s) in the space of continuous paths. The existence of the family θ follows from the measurable selection Lemma 7.1 given in Appendix 7.

The strong flow property

(1.1) θ s,u = θ t,u • θ s,t , ∀s ≤ t ≤ u,
may fail due to the existence of the so-called bifurcation points of the skeleton ϕ. The set B(ϕ) of bifurcation points of the skeleton ϕ is defined in Section 2.3. The main idea of our approach is to achieve 1.1 by modifying functions θ s,• (x) when they hit the set of bifurcation points B(ϕ) (to be precise, when they hit some larger closed set F ⊃ B(ϕ)) in such a way that 1.1 holds. Theorem 2.8 gives a sufficient condition under which one can construct a new family of continuous mappings

ψ s,• (x) : [s, ∞) → M, ψ s,s (x) = x,
that preserves the initial skeleton ϕ and that satisfies 1.1.

In Section 3, we let ψ 0 be a stochastic flow of measurable mappings on M that is associated to a consistent sequence of coalescing Feller transition functions (P

(n) • : n ∈ N)
on M that satisfies conditions (TF 1), (TF 2), (TF 3) and (TF 4). A first measurable continuous modification θ of ψ 0 is given. The results of Section 2 are then applied to give sufficient conditions under which there exists a strong measurable continuous modification ψ of ψ 0 . These conditions are stated in Theorem 3.9.

In Section 4 we study stochastic flows and their skeletons that possess the instantaneous colasecing property. For such flows we give sufficient conditions under which they possess strong measurable continuous modifications (Proposition 4.9).

In Section 5 we study instantaneously coalescing stochatic flows on metric graphs. Corollary 5.5 gives a sufficient condition for the existence of strong measurable continuous modifications for stochastic flows of measurable mappings in a metric graph.

In the final Section 6 we give several applications of our approach. In Section 6.1 we prove the existence of a strong measurable continuous stochastic flow of measurable mappings in a metric graph, whose trajectories are coalescing Walsh Brownian motions independent before the meeting time. In Section 6.2 we prove the existence of a strong measurable continuous stochastic flows of mappings in R, whose trajectories are solutions to Tanaka's SDE. In Section 6.3 we prove the existence of a strong measurable continuous stochastic flow of mappings in R, whose trajectories are solutions to the Harrison-Shepp SDE for the skew Brownian motion (a Burdzy-Kaspi flow, see [START_REF] Burdzy | Lenses in skew Brownian flow[END_REF]. In Section 6.4 we prove the existence of a strong measurable continuous stochastic flow of mappings in a metric graph M, whose trajectories are solutions to the Tanaka's SDE on M (see Hajri 2011, Hajri and Raimond 2014).

Flow extensions of skeletons on M

In Section 2.1 we introduce X, the space of continuous paths in M, and the notion of a skeleton in M. In Section 2.2 a measurable mapping Θ : R × M × S(M) → X that will allow us to construct for every skeleton ϕ a family of continuous mappings

θ s,• (x) : [s, ∞) → M, such that (i) for all (s, x) ∈ R × M, θ s,s (x) = x; (ii) for all n ∈ N and t ≥ s ≥ s n , θ s,t (ϕ n (s)) = ϕ n (t).
A family θ satisfying (i) and (ii) will be said to preserves the skeleton ϕ.

In Section 2.3 the set B(ϕ) of bifurcation points of a skeleton ϕ is defined. Out of θ we define a new family of mappings ψ s,• (x) : [s, ∞) → M that by construction satisfies the property ψ s,t • ψ r,s (x) = ψ r,t (x) at certain points (s, ψ r,s (x)) ∈ B(ϕ). In Theorem 2.8 we give a sufficient condition under which ψ is a family of continuous mappings that preserves the skeleton ϕ and satisfies the strong flow property (1.1).

2.1. The space of skeletons in M. As above, (M, ρ) is a locally compact separable metric space. Without loss of generality we will assume that ρ is complete and that all bounded subsets of (M, ρ) are relatively compact1 . For any interval I ⊂ R (possibly, unbounded) the space C(I : M) of continuous functions from I to M is equipped with the topology of uniform convergence on compact subsets of I. Let us introduce the space of continuous paths in M:

X = s∈R C([s, ∞) : M).
Each element of X is a continuous function f : [s, ∞) → M. The starting time s will be denoted by i(f

) : i(f ) = s. If f ∈ X and s = i(f ), we denote e(f ) ∈ C(R : M) the continuous extension of f onto R, e(f )(t) = f (s ∨ t), t ∈ R.
Let δ be a distance on C(R : M) associated with the topology of uniform convergence on compact subsets of R2 . The space R × C(R : M) equipped with the metric

d 1 ((s, f ), (t, g)) = |t-s|+δ(f, g) is a complete separable metric space. Let X ′ = {(s, f ) ∈ R × C(R : M) : ∀t ≤ s, f (t) = f (s)}. Then X ′ is a closed subset of R × C(R : M)
and is a complete separable metric space. Let us equip X with the distance d defined by d(f, g) = |i(f )i(g)| + δ(e(f ), e(g)). Then the mapping f → (i(f ), e(f )) from X onto X ′ is an isometry. As a consequence, (X, d) is a complete separable metric space and its Borel σ-field B(X) is the σ-field generated by the mappings f → e(f )(t) for all t ∈ R and f → i(f ).

For any f ∈ X and any interval I, we will denote by f I the restriction of e(f ) to I. Note that the mapping f → f I is a continuous (hence, Borel measurable) mapping from X to C(I : M).

Let ϕ = (ϕ n : n ∈ N) ∈ X N be a sequence in X. For n ∈ N, set s n = i(ϕ n ) and

x n = ϕ n (s n ). For s ∈ R, set I s := {n ∈ N : s n ≤ s}.
Definition 2.1. The sequence ϕ ∈ X N is called a skeleton if the following properties are satisfied:

(Sk 1) If s ∈ R and if (m, n) ∈ I s × I s are such that ϕ m (s) = ϕ n (s), then ϕ m [s, ∞) = ϕ n [s, ∞) (i.e. ϕ m (t) = ϕ n (t) for all t ≥ s); (Sk 2) The sequence ((s n , x n ) : n ∈ N) is dense in R × M; (Sk 3) For any compact L ⊂ R × M, the set {ϕ n [s, ∞) : n ∈ I s , (s, ϕ n (s)) ∈ L} is relatively compact in X.
Let us denote by S(M) the space of all skeletons on M. The space X N , equipped with the product topology, is a separable completely metrizable space (see Srivastava 1998, Th. 2.4.3). Note that S(M) is a Borel subset of X N . We equip S(M) with the subspace topology induced from X N and its corresponding Borel σ-field. Thus, the σ-field on S(M) is generated by the mappings ϕ

→ i(ϕ n ), ϕ → e(ϕ n )(t), n ∈ N, t ∈ R.
Let us prove the following lemma that is satisfied by every skeleton ϕ. Throughout the paper B(x, r) (resp., B(x, r)) will denote an open (resp., closed) ball in M with center x and radius r.

Lemma 2.2. If ϕ ∈ S(M), then for all s ∈ R and δ > 0 the set {ϕ n (s) :

n ∈ I s \ I s-δ } is dense in M.
Proof. Let us fix s ∈ R, x ∈ M and ε > 0. By (Sk 3) the set of trajectories {ϕ n : (s n , x n ) ∈ (sδ, s) × B(x, ε)} is relatively compact in X. In particular, there exists α ∈ (0, δ) such that for any n with

(s n , x n ) ∈ (s -δ, s) × B(x, ε), we have sup t∈[sn,sn+α] ρ(ϕ n (t), x n ) < ε 2 . Using (Sk 2), there exists n ∈ N such that (s n , x n ) ∈ (s -α, s) × B(x, ε
2 ). Then we get that ρ(ϕ n (s), x) < ε.

2.2. The measurable mapping Θ. From Lemma 7.1 stated in Appendix 7, it follows that there exists a measurable mapping ℓ : X N → X such that for any relatively compact sequence (f n : n ∈ N) in X, ℓ((f n : n ∈ N)) is a limit point of this sequence. We fix such a mapping from now on.

Let (ε k : k ∈ N) be a sequence of measurable functions from M into (0, ∞) such that for every x ∈ M, the sequence

(ε k (x) : k ∈ N) is non-increasing and converges to 0 as k → ∞. For all (s, x) ∈ R × M and all k ∈ N, set (2.2) n s,x k = inf{n ∈ I s : ρ(ϕ n (s), x) < ε k (x)}, ϕ s,x k = ϕ n s,x k [s, ∞). Lemma 2.2 ensures that n s,x
k < ∞ for all (s, x) ∈ R × M and all k ∈ N. This defines a sequence (ϕ s,x k : k ∈ N) in C([s, ∞) : M). Let us now define the mapping Θ such that for all (s, x, ϕ) ∈ R × M × S(M), Θ(s, x, ϕ) = ℓ (ϕ s,x k : k ∈ N) . Theorem 2.3. The mapping Θ : R × M × S(M) → X is measurable and satisfies the following properties for all (s, ϕ) ∈ R × S(m):

• For all

x ∈ M, Θ(s, x, ϕ) ∈ C([s, ∞) : M) and Θ(s, x, ϕ)(s) = x. • For all n ∈ I s , Θ(s, ϕ n (s), ϕ) = ϕ n [s, ∞). Proof. Let us fix (s, x, ϕ) ∈ R × M × S(M). By (Sk 3) the sequence (ϕ s,x k : k ∈ N) is relatively compact in C([s, ∞) : M) with lim k→∞ ϕ s,x k (s) = x. This implies that for all (s, x, ϕ) ∈ R × M × S(M), Θ(s, x, ϕ) ∈ C([s, ∞) : M) and Θ(s, x, ϕ)(s) = x.
We now verify that Θ preserves the trajectories of the skeleton. Let us fix (s, ϕ) ∈ R × S(M) and let n ∈ I s . Set x = ϕ n (s). Then the sequence (n s,x k : k ∈ N) is stationary and Θ(s, x, ϕ) = ϕ n * [s, ∞) for some n * ∈ I s . We have that

ϕ n * (s) = ϕ n (s) = x. Now, property (Sk 1) implies that ϕ n [s, ∞) = ϕ n * [s, ∞) = Θ(s, x, ϕ).
It remains to show that Θ is measurable. Let us fix k ∈ N. The mapping (s, x, ϕ) → n s,x k is measurable since for all m ∈ N,

{(s, x, ϕ) : n s,x k ≥ m} = ∩ n<m {(s, x, ϕ) : s n ≤ s ⇒ ρ (ϕ n (s), x) ≥ ε k (x)}. Clearly, m → ϕ m is measurable. As a consequence, (s, x, ϕ) → ϕ s,x
k is measurable, and the measurability of the mapping ℓ implies that Θ is measurable.

Bifurcation points.

Let Θ be the measurable mapping constructed in Section 2.2 out of a given sequence (ε k : k ∈ N), and let ϕ ∈ S(M) be a skeleton. For s ≤ t and x ∈ M, set θ s,t (x) = Θ(s, x, ϕ)(t). Then θ s,• (x) ∈ C([s, ∞) : M) defines a family of continuous mappings that preserves the skeleton ϕ (i.e., θ s,s (x) = x and θ s,t (ϕ n (s)) = ϕ n (t) if s n ≤ s ≤ t). Note that the mapping (s, t, x, ϕ) → θ s,t (x) is measurable.

For s < t, ε > 0 and x ∈ M, denote by K s,t ε,x the closure of {ϕ n [s, t] : n ∈ I s , ϕ n (s) ∈ B(x, ε)} in C([s, t] : M). Assumption (Sk 3) implies that K s,t ε,x is a compact subset of C([s, t] : M) for all ε > 0. Lemma 2.2 implies that K s,t ε,x is non-empty. Therefore, K s,t

x := ∩ ε>0 K s,t ε,x is a non-empty compact subset of C([s, t] : M). In fact, K s,t x contains the restriction θ s,• (x)[s, t]. For s < t, set ν s,t

x := #K s,t x (with ν s,t x = ∞, if K s,t x is infinite). Lemma 2.4. For all (s, x), the mapping t → ν s,t

x is left-continuous and non-decreasing. Proof. Let us be given s < t < u and

x ∈ M. If f ∈ K s,u x , then the restriction f [s, t] of f to [s, t] belongs to K s,t x . The mapping f → f [s, t] is a surjective mapping from K s,u x onto K s,t
x , which shows that ν s,t x ≤ ν s,u x and so t → ν s,t x is non-decreasing. It remains to prove that t → ν s,t

x is left-continuous. Let t > s and let m be an integer such that 1 ≤ m ≤ ν s,t

x . There are at least m distinct functions f 1 , . . . , f m ∈ K s,t x . By continuity, for some r ∈ (s, t) the restrictions

f 1 [s, r], . . . , f m [s, r] ∈ K s,r
x are all distinct. Hence, ν s,t-

x ≥ ν s,r x ≥ m. It follows that ν s,t- x = ν s,t x . For (s, x) ∈ R × M, set τ s x = inf{t > s : ν s,t
x ≥ 2}. Definition 2.5. The set B(ϕ) := {(s, x) ∈ R×M : τ s x = s} is called the set of bifurcation points of the skeleton ϕ.

For every (s, x) ∈ R × M and every t ∈ (s, τ s x ) the set K s,t x contains a single function θ s,• (x)[s, t].

Lemma 2.6. If τ s

x < ∞, then τ s x , θ s,τ s x (x) ∈ B(ϕ). Proof. For any t > τ s

x we have ν s,t x ≥ 2 and there exist at least two distinct functions g 1 , g 2 ∈ K s,t

x . Let (n 1 k : k ≥ 1) and (n 2 k : k ≥ 1) be two sequences in I s such that

ϕ n i k [s, t] converges uniformly towards g i , i ∈ {1, 2}. Since g 1 [s, τ s x ] = g 2 [s, τ s x ] = θ s,• (x)[s, τ s x ], it follows that g 1 [τ s x , t] = g 2 [τ s x , t]. Further, lim k→∞ ϕ n i k (τ s x ) = θ s,τ s x (x). Since ϕ n i k [τ s x , t] → g i [τ s x , t] uniformly on [τ s x , t], it follows that g i [τ s x , t] ∈ K τ s x ,t θ s,τ s x (x) . Hence, ν τ s x ,t θ s,τ s x (x) ≥ 2 for all t > τ s
x . Consider a closed set F ⊃ B(ϕ). We define for every (s,

x) ∈ R × M a sequence ((σ s x (k), z s x (k)) : k ≥ 0) in [s, ∞] × M. Let σ s x (0) = s and z s x (0) = x. For k ≥ 0 let σ s x (k + 1) = inf t > σ s x (k) : t, θ σ s x (k),t (z s x (k)) ∈ F if σ s x (k) < ∞ ∞ if σ s x (k) = ∞ z s x (k + 1) = θ σ s x (k),σ s x (k+1) (z s x (k)) if σ s x (k + 1) < ∞ x if σ s x (k + 1) = ∞ For all (s, x) ∈ R×M, (σ s x (k) : k ≥ 0) is a non-decreasing sequence in [s, ∞]. If σ s x (k) = ∞, then σ s x (j) = ∞ and z s x (j) = x for all j ≥ k. Let us also define k s x := inf{k ≥ 0 : σ s x (k) = σ s x (k + 1)}. For all j ≥ k s x , σ s x (j) = σ s x (k s x ) and z s x (j) = z s x (k s x ). Set σ s x (∞) = lim k→∞ σ s x (k), which is equal to σ s x (k s x ) when k s x < ∞.
Lemma 2.7. For all k ≥ 0, the mapping (s, x, ϕ) → (σ s x (k), z s x (k)) is measurable. Proof. For k = 0 the statement clearly holds. We proceed by induction on k. The inequality σ s

x (k + 1) > t holds if and only if either σ s x (k) > t or σ s x (k) ≤ t and (r, θ σ s x (k) , r)(z s x (k)) ∈ F for all r ∈ (σ s x (k), u) with some u > t. Measurability of z s x (k + 1) follows from measurability of σ s x (k), σ s x (k + 1), z s x (k) and measurability of θ s,t (x) as a function of (s, t, x, ϕ).

Out of θ, we now define for all (s,

x) ∈ R × M a function ψ s,• (x) : [t, ∞) → ∞: let t ≥ s. • If t < σ s x (∞), then there is k < k s x such that t ∈ [σ s x (k), σ s x (k + 1)) and we set ψ s,t (x) = θ σ s x (k),t (z s x (k)). • If t ≥ σ s x (∞) and k s x < ∞, then σ s x (∞) = σ s x (k s x ) and we set ψ s,t (x) = θ σ s x (k s x ),t (z s x (k s x )). • If t ≥ σ s x (∞) and k s x = ∞, then we set ψ s,t (x) = x. The function ψ s,• (x) is continuous if σ s x (∞) = ∞, or if k s x < ∞.
The next theorem gives a sufficient condition under which ψ is a strong flow.

Theorem 2.8. Suppose that for any

(s, x) ∈ R × M, • k s x < ∞; • if k s x = 0, then for any t > s there is n ∈ I t such that θ s,• (x)[t, ∞) = ϕ n [t, ∞).
Then ψ is a family of continuous mappings that satisfies the strong flow property and preserves the skeleton ϕ, i.e.

(i) for all (s,

x) ∈ R × M, ψ s,• (x) ∈ C([s, ∞) : M) and ψ s,s (x) = x; (ii) for all s ≤ t and n ∈ I s , ψ s,t (ϕ n (s)) = ϕ n (t). (iii) for all s ≤ t ≤ u, ψ t,u • ψ s,t = ψ s,u .
Proof of Theorem 2.8. The fact that ψ preserves the skeleton ϕ follows from the fact that θ preserves the skeleton ϕ. To prove the theorem, it suffices to verify that ψ satisfies the strong flow property (iii), i.e. that for all (s, x) it holds that

(2.3) ψ t,u • ψ s,t (x) = ψ s,u (x), ∀u ≥ t ≥ s. For d ≥ 0, set S d = {(s, x) ∈ R × M : k s x = d}.
We claim that for all d ≥ 0 it holds that (2.3) is satisfied for all (s, x) ∈ S d . We prove this claim by induction on d.

Assume that (s, x) ∈ S 0 . Then ψ s,• (x) = θ s,• (x) and the assumption of the theorem implies that for all t > s, ψ s,t (x) = ϕ n (t) for some n ∈ I t . This implies that for all u > t

ψ s,u (x) = ϕ n (u) = ψ t,u (ϕ n (t)) = ψ t,u (y). Let d ≥ 1 and suppose that (2.3) is satisfied for (s, x) ∈ ∪ d-1 k=0 S k . Let (s, x) ∈ S d . Let t > s and set y = ψ s,t (x). If t < σ s x (1) then (t, y) ∈ F . Hence, t = σ t y (0) < σ t y (1) ≤ τ t y and ψ t,• (y)[t, σ t y (1)) = θ t,• (y)[t, σ t y (1)) = θ s,• (x)[t, σ t y (1)). This implies that σ s x (1) = σ t y (1) and ψ s,• (x)[t, σ s x (1)) = ψ t,• (y)[t, σ s x (1))
. By construction, we obtain that (σ s x (j), z s x (j)) = (σ t y (j), z t y (j)) for all j ≥ 1. The definition of ψ then implies that ψ s,u (x) = ψ t,u (y) for all u ≥ σ s

x (1).

If t ≥ σ s x (1). Denote r = σ s x (1) and w = z s x (1). Then (r, w) ∈ S d-1 and ψ s,• (x)[r, ∞) = ψ r,• (w). Since (2.3) is satisfied by (r, w), we obtain that ψ s,u (x) = ψ r,u (w) = ψ t,u (ψ r,t (w)) = ψ t,y (y).
We have thus proved that (2.3) is satisfied for all (s, x) ∈ ∪ ∞ d=0 S d = R × M, i.e. (iii) is satisfied.

Strong measurable continuous modifications of stochastic flows

Let ψ 0 be a stochastic flows of measurable mappings in M associated to a consistent sequence (P (n)

• : n ∈ N) of coalescing Feller transition functions on M. We assume that the sequence (P

(n) •
: n ∈ N) satisfies properties (TF 1), (TF 2), (TF 3) and (TF 4) (the condition (TF 4) is introduced in Section 3.1.3). We define a random skeleton Φ and using the mapping Θ from Section 2.2, we construct a measurable continuous modification θ of ψ 0 . In Section 3.1.3 we state sufficient conditions under which the construction of Section 2.3 is a.s. applicable to θ and produces a strong measurable continuous modification of ψ 0 .

A measurable modification of a stochastic flow. Let (P (n) •

: n ∈ N) be a consistent sequence of coalescing Feller transition functions on M that satisfies (TF 1), (TF 2) and (TF 3), and let ψ 0 be a corresponding measurable stochastic flow of mappings in M. For n ∈ N and x ∈ M n , we will denote by P

(n) x the distribution on C([0, ∞) : M n ) under which the canonical process X (n) = (X 1 , . . . , X n
) is a Markov process with transition function P (n) and starting point x. When n = 1 and n = 2, we will denote X (1) and X (2) by X and (X, Y ), respectively.

3.1.1.

A first lemma. Before formulating condition (TF 4), we deduce some consequences of (TF 3) that will be used later.

Lemma 3.1. For any compact K ⊂ M and any r > 0, as t → ∞

sup x∈K P (1) x sup s∈[0,t] ρ(X s , x) > r = o(t).
Proof. The proof follows the one given in Riabov 2018 for the case M = R. Let us fix a compact K ⊂ M and r > 0. By (TF 3) for any α > 0 there exists δ > 0 such that for all t ∈ [0, δ] and x ∈ M with ρ(x, K) ≤ r, we have

P (1) x ρ(X t , x) > r 2 ≤ αt.
Then, for any x ∈ K we introduce the stopping time τ = inf{t > 0 : ρ(X t , x) ≥ r} and estimate

P (1) x sup s∈[0,t] ρ(X s , x) ≥ r = P (1) x {τ ≤ t} ∩ ρ(X t , x) ≥ r 2 + P (1) x {τ ≤ t} ∩ ρ(X t , x) < r 2 ≤ P (1) x ρ(X t , x) ≥ r 2 + E (1)
x

1 {τ ≤t} P (1) x ρ(X t , X τ ) ≥ r 2 F τ ≤ 2αt,
where we have used the strong Markov property at time τ and the fact that ρ(X τ , K) ≤ r when τ < ∞.

3.1.2. The random sequence Φ. Let D = {(s n , x n ) : n ∈ N} be a dense countable set in R × M. Let Φ n be a continuous modification of ψ 0 sn,• (x n ), such that Φ n (s n ) = x n . The sequence Φ := (Φ n : n ∈ N) is a random element in X N . Its distribution will be denoted P ∞ D .
We remark that, with probability 1, the sequence Φ satisfies condition (Sk 1) (by (TF 1)). Condition (Sk 2) is satisfied by construction. Using (TF 3), we can prove the following lemma.

Lemma 3.2. Almost surely, for all t ∈ R the set {Φ n (t) : s n < t} is dense in M.

Proof. In this proof, we let {y i : i ∈ N} be a dense sequence in M.

For a < b, let

Ω [a,b] = {ω ∈ Ω : ∃t ∈ [a, b] {Φ n (ω, t) : s n < t} is not dense in M}. We will prove that the set Ω [a,b] is negligible, i.e. P * Ω [a,b] = 0, where P * is an outer measure that corresponds to P. On Ω [a,b] , there are t ∈ [a, b], y ∈ {y i : i ∈ N} and r ∈ Q * + such that {Φ n (t) : s n < t} ∩ B(y, 2r) = ∅.
Then for all δ > 0 and all n ∈ N such that t -2δ < s n < t and such that ρ(x n , y) < r we have that ρ(Φ n (t), x n ) > r and as a consequence that sup s∈[0,2δ] ρ(Φ n (s n + s), x n ) > r. This implies that on Ω [a,b] there are y ∈ {y i : i ∈ N} and r ∈ Q * + such that for all δ > 0, there is

j ∈ Z ∩ [δ -1 a -1, δ -1 b) such that for all n ∈ N, (3.4) s n ∈ ((j -1)δ, jδ] and ρ(x n , y) < r =⇒ sup s∈[0,2δ] ρ(Φ n (s n + s), x n ) > r. For δ > 0, y ∈ {y i : i ∈ N}, r ∈ Q * + and j ∈ Z ∩ [δ -1 a -1, δ -1 b],
denote by Ω δ,j y,r the event "(3.4) is satisfied for all n ∈ N". Then

(3.5) Ω [a,b] ⊂ y,r δ>0 j Ω δ,j y,r . Since {(s n , x n ) n∈N } is dense in R × M,
there is an n such that s n ∈ ((j -1)δ, jδ] and ρ(x n , y) < r, and so

P[Ω δ,j y,r ] ≤ P sup s∈[0,2δ] ρ(Φ n (s n + s), x n ) > r = P (1) xn sup s∈[0,2δ] ρ(X s , x n ) > r ≤ sup x∈B(y,r) P (1) x sup s∈[0,2δ] ρ(X s , x) > r .
Therefore

P j Ω δ,j y,r ≤ δ -1 b -δ -1 a + 2 sup x∈B(y,r) P (1) x sup s∈[0,2δ] ρ(X s , x n ) > r ,

and

(3.6)

P * Ω [a,b] ≤ y,r lim δ↓0 (b -a + 2δ) δ -1 sup x∈B(y,r) P (1) x sup s∈[0,2δ] ρ(X s , x n ) > r .
Applying Lemma 3.1, we can conclude that P * Ω [a,b] = 0. This proves the lemma.

3.1.3. Assumption (TF 4). The next assumption is formulated in terms of P ∞ D : (TF 4) P ∞ D (S(M)) = 1. Another formulation of (TF 4) is to say that if a random variable Φ in X N is distributed as P ∞ D , then Φ is a skeleton a.s. Condition (TF 4) is equivalent to the following condition:

(TF 4') For any compact subset L ⊂ R × M, the set {Φ n [s, ∞) : n ∈ I s , (s, Φ n (s)) ∈ L} is a.s. relatively compact in X.
Remark 3.3. The authors don't know whether condition (TF 4) follows from conditions (TF 1), (TF 2) and (TF 3). In Theorem 5.1 we prove this fact for instantaneously coalescing stochastic flows on metric graphs.

3.1.4.

A sequence of measurable mappings (ε k : k ∈ N). We recall that (X, Y ) denotes the canonical process on C([0, ∞) : M 2 ), so that under P

(2) (x,y) the process (X, Y ) is a Markov process with transition function P

(2)

• and starting point (x, y). By d 0 we denote the restriction of the metric d from X to C([0, ∞) : M), and by d s we denote its shift: 

d s (f, g) = d 0 (f (s + •), g(s + •)), (f, g) ∈ C([s, ∞) : M) 2 . Lemma 3.4. For any ε > 0, the function (x, y) → P (2) (x,y) [d 0 (X, Y ) ≥ ε] is upper- semicontinuous on M 2 . In particular, (3.7) lim y→x P (2) (x,y) [d 0 (X, Y ) ≥ ε] = 0. Proof. Let (x n , y n ) → (x, y) in M 2 .
(xn,yn) → P

(2)

(x,y) in the space C([0, ∞) : M 2 ). Hence, lim sup n→∞ P (2) (xn,yn) [d 0 (X, Y ) ≥ ε] ≤ P (2) (x,y) [d 0 (X, Y ) ≥ ε].
The second statement follows from the relation

P (2) (x,x) [d 0 (X, Y ) ≥ ε] = 0. We define for every k ∈ N a mapping ε k such that for all x ∈ M (3.8) ε k (x) = 2 -k ∧ inf r > 0 : sup y∈B(x,r) P (2) (x,y) [d 0 (X, Y ) ≥ 2 -k ] > 2 -k .
Lemma 3.5. The sequence (ε k : k ∈ N) is a non-increasing sequence of positive measurable functions, that converges uniformly towards 0 as k → ∞.

Proof. The facts that the sequence (ε k : k ∈ N) is non-increasing and converges to 0 for every x ∈ M easily follow from its definition. Lemma 3.4 implies that ε k (x) > 0 for all k ∈ N and x ∈ M. Let us now prove that for every k ∈ N, the mapping ε k is measurable. For r > 0 and k ∈ N, let

g k : M 2 → [0, 1] and g r,k : M → [0, 1] be functions defined by g k (x, y) = P (2) (x,y) [d 0 (X, Y ) ≥ 2 -k ] and g r,k (x) = sup y∈B(x,r) g k (x, y).
Then g k is uppersemicontinuous (Lemma 3.4) and this implies that g r,k is also upper-semicontinuous.

For any a ∈ (0, 2 -k ], the set ε -1 k ((-∞, a)) has the following decomposition:

{x ∈ M : ε k (x) < a} = (r,s)∈Q 2 : r∈(0,a), s>2 -k {x ∈ M : g r,k (x) ≥ s}.
Since g k is upper-semicontinuous, the set {x ∈ M : g r,k (x) ≥ s} is closed, and this proves that ε k is measurable.

3.1.5. The measurable continuous modification θ. Assume that conditions (TF 1), (TF 2), (TF 3) and (TF 4) are satisfied. In particular, the sequence Φ is a.s. a skeleton. We restrict to an event of full measure on which Φ is a skeleton. Using the sequence of functions (ε k : k ∈ N) given by (3.8), we let Θ : R × M × S(M) → X be the mapping defined in Section 2.2. Let us now define θ = (θ s,• (x) : (s, x) ∈ R × M) the family of random continous mappings on M such that for s ≤ t and (x, ω) ∈ M × Ω, (3.9) θ s,t (ω, x) = Θ(s, x, Φ(ω))(t).

Theorem 3.6. The family of random mappings θ is a measurable continuous modification of ψ 0 that preserves the skeleton Φ.

Proof. The facts that (s, t, x, ω) → θ s,t (ω, x) is measurable and that θ s,s (ω, x) = x follow immediately from Theorem 2.3. Let us now prove that θ is a modification of ψ 0 . Let us fix (s, x) ∈ R × M. Taking a continuous modification of ψ 0 s,• (x) we may assume that

ψ 0 s,• (x) ∈ C([s, ∞) : M). Recall that Θ(s, x, ϕ) = ℓ((ϕ s,x k : k ∈ N)), with ϕ s,
x k and n s,x k defined by (2.2). We denote by Φ s,x k the random variable in X defined by (2.2) with ϕ replaced by Φ. It holds that for each k ∈ N, ρ(Φ s,x k (s), x) < ε k (x), which implies that (see the definition of ε k (x) given in (3.8))

P[d s (Φ s,x k , ψ 0 s,• (x)) ≥ 2 -k ] ≤ 2 -k , since (Φ s,x k , ψ 0 s,• (x)
) is a Markov process in M 2 with transition function given by P (2) . The Borel-Cantelli lemma shows that a.s. Φ s,x k → ψ 0 s,• (x) in X. This implies that a.s. Θ(s, x, Φ) = ψ 0 s,• and so that for all t ≥ s, a.s. θ s,t (x) = ψ 0 s,t (x), which proves that θ is a modification of ψ 0 . In particular, θ is a stochastic flow of measurable mappings in M (as it has been remarked in the Introduction). The fact that θ preserves the skeleton Φ follows from Theorem 2.3.

The measurable continuous modification θ possesses one useful feature: it a.s. satisfies the flow property at stopping times.

Let A θ = (A θ t : t ∈ R) be the natural filtration associated to θ, where for every t ∈ R ∪ {∞} the σ-field A θ t is defined by A θ t = σ({θ r,s : -∞ < r ≤ s ≤ t}). An R ∪ {∞}-valued random variable σ will be called an A θ -stopping time, if for all t ∈ R, {σ < t} ∈ A θ t (equivalently, for all t ∈ R, {σ ≤ t} ∈ A θ t+ ). With an A θ -stopping time σ we associate a σ-field

A θ σ = {A ∈ A θ ∞ : ∀t ∈ R, A ∩ {σ < t} ∈ A θ t }. Lemma 3.7. Let (s, x) ∈ R × M and let σ be an A θ -stopping time. Then θ σ,• (θ s,σ (x)) = θ s,• (x)[σ, ∞)
a.s. on the set {s ≤ σ < ∞}.

Proof. Denote ξ = θ s,σ (x). For k ≥ 1, let g k be the function defined in Lemma 3.5, i.e.

g k (x, y) = P (2) (x,y) [d 0 (X, Y ) ≥ 2 -k ].
Then, for all y ∈ B(x, ε k (x)), we have g k (x, y) ≤ 2 -k . Finite point motions of the flow θ are Feller processes, in the sense that for any n ∈ N, (s 1 , x 1 ), . . . , (s n , x n ) ∈ R × M and s ≥ s 1 ∨ . . . ∨ s n the process ((θ s 1 ,t (x 1 ), . . . , θ sn,t (x n )) : t ≥ s) is an (A θ t : t ≥ s)-Markov process in M n with transition function P

(n)

• . Below we will use the equality

Φ n = θ sn,• (x n ).
For any m ∈ N and k ≥ 1, let us introduce the event

E m,k = {σ ∈ [s, ∞), n σ,ξ k = m} ∈ A θ σ .
By the strong Markov property for the two-point motions of θ at time σ we find that

P s ≤ σ < ∞, d σ (Φ σ,ξ k , θ s,• (x)[σ, ∞)) ≥ 2 -k = m P E m,k d σ (Φ m [σ, ∞), θ s,• (x)[σ, ∞)) ≥ 2 -k = m E 1 E m,k P d σ (θ sm,• (x m )[σ, ∞), θ s,• (x)[σ, ∞)) ≥ 2 -k A θ σ = m E 1 E m,k P d 0 (θ sm,σ+• (x m ), θ s,σ+• (x)) ≥ 2 -k A θ σ = m E 1 E m,k g k (θ sm,σ (x m ), ξ) ≤ 2 -k .
The latter estimate follows from the fact that on the event E m,k we have ρ(θ sm,σ (x m ), ξ) < ε k (ξ). By the Borel-Cantelli lemma, a.s. on the set {s ≤ σ < ∞} the sequence (Φ σ,ξ k : k ≥ 1) converges to θ s,• (x)[σ, ∞). Hence, on this set a.s. θ σ,• (ξ) = θ s,• (x)[σ, ∞) and the lemma is proved.

3.2. Existence of a strong measurable continuous modification. Assume that conditions (TF 1), (TF 2), (TF 3) and (TF 4) are satisfied. In particular, the sequence Φ is a.s. a skeleton.

Definition 3.8. A closed set F ⊂ R × M is called a closed shell of the set of bifurcation points of Φ, if a.s. B(Φ) ⊂ F.
Let F be a closed shell of the set of bifurcation points of Φ. We define stopping times σ s

x (k), random variables z s x (k), k s x , and random functions ψ s,• (x) as in Section 2.3. Theorem 3.9. Assume that a.s.

• for all (s,

x) ∈ R × M, k s x < ∞; • for all (s, x) ∈ R × M, if k s x = 0 then for every t > s there is n ∈ I t such that θ s,• (x)[t, ∞) = Φ n [t, ∞).
Then ψ is a strong measurable continuous modification of ψ 0 . Proof. Using Theorem 2.8 one obtains that a.s. ψ is a random family of continuous mappings that satisfies the strong flow property and preserves Φ. It remains only to check that ψ is a modification of θ, which follows from Lemma 3.7 and the definition of ψ out of θ.

The instantaneous coalescence property

In this section we study skeletons ϕ in M that possess the instantaneous coalescing property (ICP). By ψ 0 we denote a stochastic flow of measurable mappings in M associated to a consistent sequence (P : n ∈ N) satisfies conditions (TF 1), (TF 2), (TF 3) and (TF 4). As in Section 3, we let D = {(s n , x n ) : n ∈ N} be a dense subset of R × M and let Φ = (Φ n : n ∈ N) be the skeleton of ψ 0 constructed in Section 3.1.2. Recall that for each n, Φ n is a continuous modification of ψ 0 sn,• (x n ). Let also θ be the measurable continuous modification of ψ 0 defined in Section 3.1.5 such that θ preserves Φ a.s. In this section, it will be proves that if Φ satisfies the ICP a.s., then θ is a strong measurable continuous modification of ψ 0 . 4.1. A sufficient condition for the strong flow property. We give a simple condition under which θ is a strong measurable continuous modification of ψ 0 . Note that if one takes F = R × M in Theorem 2.8, then k s x = 0 for all (s, x) ∈ R × M and ψ s,t = θ s,t for all s ≤ t.

Lemma 4.1. Assume that a.s., for any s < t and x ∈ M (4.10)

∃n ∈ I t , θ s,• (x)[t, ∞) = Φ n [t, ∞).
Then θ is a strong measurable continuous modification of ψ 0 .

Proof. Let Ω 0 be an event of probability one on which Φ is a skeleton, θ preserves Φ and (4.10) is satisfied for all s < t and x ∈ M. Let us fix ω ∈ Ω 0 . Let s < t and x ∈ M. Then (4.10) with the fact that θ preserves the skeleton implies that for all u > t,

θ t,u (θ s,t (x)) = θ t,u (Φ n (t)) = Φ n (u) = θ s,u (x).
This proves the lemma.

The condition given in Lemma 4.1 means that after any arbitrary short time, trajectories of θ meet trajectories of Φ. This happens under the instantaneous coalescence property we introduce in the next section. 4.2. The instantaneous coalescence property. In this section we give a sufficient condition that allows to apply Lemma 4.1 and therefore to prove that θ is a strong measurable continuous modification of ψ 0 . Definition 4.2. A sequence ϕ ∈ X N is said to possess the instantaneous coalescence property (ICP) if for any s < t, the set {ϕ n (t) : n ∈ I s } is locally finite.

Lemma 4.3. Assume that Φ possesses the ICP almost surely. Then θ is a strong measurable continuous modification of ψ 0 .

Proof. We just have to verify that the condition of Lemma 4.1 is satisfied by θ. Let us place on an event of probability one on which Φ is a skeleton possessing the ICP and θ preserves Φ. Let t > s, x ∈ M and y = θ s,t (x). The set {Φ s,x k } k≥1 being relative compact, there is a subsequence {Φ s,x k i } i≥1 such that lim i→∞ Φ s,x k i = θ s,• (x) and in particular that lim i→∞ Φ s,x k i (t) = y. The ball B(y, ε) is relatively compact. The ICP implies that B(y, ε) ∩ {Φ n (t) : n ∈ I s } is a finite set and so there is i 0 such that for all i ≥ i 0 , Φ s,x k i (t) = y. Hence, there exists n ∈ I s such that for all

i ≥ i 0 , Φ s,x k i [t, ∞) = Φ n [t, ∞). It follows that θ s,u (x) = Φ n (u), u ≥ t.
The condition of Lemma 4.1 is verified and, as a consequence, θ is a strong measurable continuous modification of ψ 0 . 4.3. Sufficient condition ensuring the a.s. ICP for Φ. The sufficient condition given in this section is an extension of the one given in Evans, Morris, and Sen 2013. We recall that (X, Y ) denotes the canonical process on C([0, ∞) : M 2 ), so that under P (2) (x,y) the process (X, Y ) is a Markov process with transition function P

(2)

• and starting point (x, y). Also, X (n) = (X 1 , . . . , X n ) denotes the canonical process on C([0, ∞) : M 2 ), so that under P (n)

x the process X (n) is a Markov process with transition function P (n) • and starting point x.

Let us say that a compact set K ⊂ M satisfies P if there are positive and finite constants α, β, κ, p and C, such that ακ > 1 and such that conditions (P1) and (P2) given below are satisfied: (P1) For all ε > 0, (x, y) ∈ K 2 , it holds that (4.11) ρ(x, y) ≤ ε =⇒ P

(2)

(x,y) [σ ∧ τ > βε α ] ≤ 1 -p where σ = inf{t : (X t , Y t ) ∈ K 2 } and τ = inf{t : X t = Y t }; (P2) For all A ⊂ K and n ≥ 1, it holds that (4.12) #A ≥ n =⇒ ρ(x, y) ≤ Cn -κ for some (x, y) ∈ A 2 , x = y.
We will use the following notation in this section: for s ≤ t and n ∈ I s , the point Φ n (t) will be denoted ϕ s,t (x) where x = Φ n (s). Then ϕ s,

• : [s, ∞) → M, t → ϕ s,t (x) is continuous (i.e. ϕ s,• ∈ C([s, ∞) : M)) and ϕ s,s (x) = x.
Let us first prove a localized ICP. For all s ≤ t and compact

K ⊂ M, set A K s,t = {Φ n (t) : n ∈ I s , Φ n ([s, t]) ⊂ K}.
Proposition 4.4. If K ⊂ M is a compact set satisfying P, then a.s. A K s,t is a finite set for all t > s.

For the following lemmas 4.5, 4.6, 4.7 and in the proof of Proposition 4.4, we let K be a compact subset of M satisfying P and let α, β, κ, p and C be constants such that ακ > 1 and such that (P1) and (P2) are satisfied. For n ≥ 1, let σ n = inf{t : X (n) t ∈ K n } and for m ≤ n, let τ n m be the first time t such that #{X 1 t , . . . , X n t } ≤ m.

Lemma 4.5. Let x ∈ K n and k ≥ 1 be such that #{x 1 , . . . , x n } ≤ k. Then for all t ≥ 0 and ε = Ck -κ (4.13)

P (n) x [σ n ∧ τ n k-1 > βε α + t] ≤ (1 -p)P (n) x [σ n ∧ τ n k-1 > t] Proof. Let x ∈ K n and k ≥ 1. If #{x 1 , . . . , x n } ≤ k -1 then τ n
k-1 = 0 and (4.13) holds. If #{x 1 , . . . , x n } = k, then there is i = j such that ρ(x i , x j ) ≤ Ck -κ . Therefore, since ε = Ck -κ ,

P (n) x [σ n ∧ τ n k-1 > βε α ] ≤ P (2) (x i ,x j ) [σ ∧ τ > βε α ] ≤ 1 -p.
Using the Markov property at time t, we have

P (n) x [σ n ∧ τ n k-1 > βε α + t] = E n x 1 {σ n ∧τ n k-1 >t} P (n) X n t [σ n ∧ τ n k-1 > βε α ] ≤ (1 -p)P (n) x [σ n ∧ τ n k-1 > t]
Where we have used in the last inequality the fact that, on the event

{σ n ∧ τ n k-1 > t}, X (n) t ∈ K n and #{X 1 t , . . . , X n t } = k. Lemma 4.6. Let x ∈ K n and k ≥ 1. Then, if #{x 1 , . . . , x n } ≤ k, (i) for all j ≥ 1, P (n) x [σ n ∧ τ n k-1 > jβε α ] ≤ (1 -p) j , where ε = Ck -κ ; (ii) E (n) x [σ n ∧ τ n k-1 ] ≤ C 1 k κα , where C 1 = βC α p .
Proof. Applying Lemma 4.5 j times, one easily obtains (i). Now, using (i), we obtain

E (n) x [σ n ∧ τ n k-1 ] = ∞ j=0 (j+1)βε α jβε α P (n) x [σ n ∧ τ n k-1 > t] dt ≤ ∞ j=0 βε α × P (n) x [σ n ∧ τ n k-1 > jβε α ] ≤ ∞ j=0 βε α × (1 -p) j ≤ βC α pk κα .
This proves (ii).

Lemma 4.7. Let x ∈ K n and 1 ≤ m ≤ n. Then

(4.14) E (n) x [σ n ∧ τ n m ] ≤ C 2 m κα-1 , where C 2 = C 1 κα-1 . Proof. Since σ n ∧ τ n m = n k=m+1 (σ n ∧ τ n k-1 -σ n ∧ τ n k )
, using the strong Markov property and Lemma 4.6-(ii), we obtain

E (n) x [σ n ∧ τ n m ] = n k=m+1 E (n) x [σ n ∧ τ n k-1 -σ n ∧ τ n k ] = n k=m+1 E (n) x E (n) X (n) σ n ∧τ n k [σ n ∧ τ n k-1 ] ≤ ∞ k=m+1 C 1 k κα ≤ C 1 (κα -1)m κα-1 .
The lemma is proved.

Proof of Proposition 4.4. We suppose at first that s = 0 and set A t = A K 0,t for t ≥ 0. Given A 0 = σ(Φ n (r) : n ∈ N, s n ≤ r ≤ 0), the set A 0 is at most countable. For n ≥ 1, set P n (A 0 ) the set of all subsets of A 0 with cardinality n. If {x 1 , . . . , x n } ∈ P n (A 0 ), we have that (ϕ 0,• (x 1 ), . . . , ϕ 0,• (x n )) is a Markov process of law P (n) (x 1 ,...,x n ) . Then, for all t > 0,

P[#A t = ∞|A 0 ] = lim m→∞ P[#A t ≥ m + 1|A 0 ] ≤ lim m→∞ lim n→∞ sup {x 1 ,...,x n }∈Pn(A 0 ) P (n) (x 1 ,...,x n ) [σ n ∧ τ n m > t] ≤ lim m→∞ lim n→∞ sup {x 1 ,...,x n }∈Pn(A 0 ) 1 t × E (n) (x 1 ,...,x n ) [σ n ∧ τ n m ]
≤ lim m→∞ C 2 tm κα-1 = 0 Therefore P[#A t = ∞] = 0 and this implies that (using that {#A t = ∞} ⊂ {#A r = ∞} for all r < t) a.s. for all t > 0, A t is a finite set.

We have thus proved that for all s ∈ R, a.s. for all t > s, A K s,t is a finite set. This implies that a.s. for all s ∈ Q and t > s, A K s,t is a finite set. Let E be an event on which there is s < t such that #A K s,t = ∞. Then on E, there is a ∈ Q such that s < a < t and such that #A K a,t = ∞. This implies that P

[E] ≤ a∈Q P[∃t > a, #A K a,t = ∞] = 0.
Remark 4.8. When the space M is compact, Proposition 4.4 shows that if M satisfies P, then a.s. for all s < t, {Φ n (t) : n ∈ I s } is a finite set, and Φ possesses the ICP.

When M is locally compact, then it is not clear that Proposition 4.4 implies that Φ possesses the ICP a.s. To prove the ICP, we need an additional assumption. Proposition 4.9. Let (K l : l ∈ N) be an increasing sequence of compact sets such that ∪ l∈N K l = M. Suppose that (i) for any l ∈ N, K l satisfies P;

(ii) a.s. for all k ∈ N and s < t, there are l > k and r ∈ (s, t) such that for all n ∈ N, (4.15)

s n ≤ s and Φ n (t) ∈ K k =⇒ Φ n ([r, t]) ⊂ K l .
Then a.s. Φ possesses the ICP.

Proof. For l ∈ N and s < t, we set A l s,t = A K l s,t and B l s,t = {Φ n (t) : n ∈ I s } ∩ K l . Let Ω 0 be an event of probability one on which for all k ∈ N and s < t, it holds that A k s,t is a finite set and that there are l > k and r ∈ (s, t) such that (4.15) is satisfied for all n ∈ N. On Ω 0 ,

B k s,t ⊂ {Φ n (t) : s n ≤ s and Φ n ([r, t]) ⊂ K l } ⊂ {Φ n (t) : s n ≤ r and Φ n ([r, t]) ⊂ K l } = A l r,t
which is a finite set. Therefore on Ω 0 , for all s < t and k ∈ N, B k s,t is a finite set. This implies that on Ω 0 , {Φ n (t) : n ∈ I s } is locally finite for all s < t.

Stochastic flows on metric graphs

Let (M, ρ) be a metric graph (metric graphs are defined in Section 5.1). Let ψ 0 be a stochastic flow of measurable mappings in M associated to a consistent sequence of coalescing Feller transition functions (P (n)

• : n ∈ N) on M. It is assumed that (P (n)

• : n ∈ N) satisfies conditions (TF 1), (TF 2) and (TF 3). As in Section 3, we let D = {(s n , x n ) : n ∈ N} be a dense subset of R × M and let Φ = (Φ n : n ∈ N) be the random sequence constructed out of ψ 0 in Section 3.1.2. Then Φ a.s. satisfies conditions (Sk 1) (by (TF 2)) and (Sk 2) (by construction). In subsection 5.2, we show that if Φ possesses the ICP a.s. then Φ a.s. satisfies (Sk 3), and a.s. is a skeleton. In subsection 5.3 a sufficient condition on Φ to satisfy the ICP a.s. is given.

Notations.

A locally compact separable metric space (M, ρ) is said to be a metric graph if there are a countable set (of vertices) V ⊂ M and a partition {E j } j∈J of M \ V (into edges) such that

• For each j ∈ J, -the edge E j is an open subset of M; -there is an isometry e j : (0,

L j ) → E j , 0 < L j ≤ ∞; • for each v ∈ V ,
the set J(v) = {j ∈ J : v ∈ ∂E j } is non-empty and finite; -the set {v} ∪ j∈J(v) E j is a neighborhood of v. For every j ∈ J, the isometry e j can be extended by continuity at 0 and at L j (when L j < ∞). By abuse of notation, this extension will also be denoted e j . Then e j (0) ∈ V and e j (L j ) ∈ V when L j < ∞.

For a vertex v ∈ V , the cardinality of J(v) is denoted by d(v) and is called the degree of V . For a point x ∈ M \V , the degree of x is defined by d(x) = 2. In this case, x = e j (t) for some j ∈ J and t ∈ (0, L j ), and the sets e -1 j ((0, t)) and e -1 j ((t, L j )) will be viewed as the two adjacent edges to x.

Local compactness of the space (M, ρ) implies d(v) < ∞ for every v ∈ V . Without loss of generality we will assume that M has no loops, i.e. if L j < ∞ then ∂E j contains exactly two vertices 3 .

When x and y are two points belonging to the same edge E j , then there is (r, s) ∈ [0, L j ] 2 such that x = e j (r) and y = e j (s). When r ≤ s will denote by [x, y] (respectively [x, y), (x, y] and (x, y)) the set e -1 j [r, s] (respectively e -1 j [r, s), e -1 j (r, s] and e -1 j (r, s)). When r > s, we will denote by [x, y] (respectively [x, y), (x, y] and (x, y)) the set [y, x] (respectively (y, x], [y, x) and (y, x)).

A bounded connected open set O ⊂ M that contains at most one vertex v ∈ V and whose boundary contains no vertices v ∈ V (∂O ∩ V = ∅) will be called a simple open set. The closure of a simple open set is compact and will be called a simple compact set.

Let O be a simple open set. There are two possibilities:

• V ∩ O = ∅ and there are j ∈ J and (u 1 , u 2 ) ∈ E 2 j such that O = (u 1 , u 2 ). In this case O will be called a simple neighborhood of x for any x ∈ O and will be denoted by U x {u 1 , u 2 } . • V ∩ O = {v} and for any j ∈ J(v), there is u j ∈ E j such that

O = ∪ j∈J(v) [v, u j ).
In this case O will be called a simple neighborhood of v will be denoted by

U v {u j : 1 ≤ j ≤ d(v)} .
Note that for any x ∈ M and all sufficient small ε > 0, the ball B(x, ε) is a simple neighborhood of x. For all x ∈ M, we denote by E x 1 , . . . , E x d(x) the edges adjacent to x.

Instantaneous coalescence property on metric graphs.

Theorem 5.1. On a metric graph, if Φ possesses the ICP a.s., then Φ is a skeleton a.s.

Before proving this theorem, let us prove the following simple lemma.

Lemma 5.2. Almost surely, Φ satisfies the following property:

• For all x ∈ M, ε > 0 and s ∈ R, with ε < ρ(x, V \ {x}), there are δ = δ ε s,x > 0 and {n 1 , . . . , n d(x) } ⊂ I s-δ such that (i)

Φ n j ([s -δ, s + δ]) ⊂ E x j ∩ B(x, ε) \ B(x, 3ε/4) for all j ∈ {1, . . . , d(x)}. (ii) For all t ∈ [s -δ, s + δ], U ε s,x (t) := U x {Φ n 1 (t), . . . , Φ n d(x) (t)} is a simple neighborhood of x, such that B(x, 3ε 4 ) ⊂ U ε s,x (t) ⊂ B(x, ε). Proof.
Let Ω 0 be an event of probablility one on which Φ satisfies (SK 1), (SK 2) and on which it holds that for all t ∈ R the set {Φ n (t) : s n < t} is dense in M. Lemma 3.2 implies that such event exists. We now check that the property claimed in the lemma is satisfied by Φ on Ω 0 . Let us fix x ∈ M, ε > 0 and s ∈ R, with ε < ρ(x, V \ {x}).

Let us also fix j ∈ {1, . . . , d(x)} and let y j ∈ E x j be such that ρ(y j , x) = 7ε 8 . Then there is n j such that s n j < s and ρ(Φ n j (s), y j ) < ε 8 . The mapping Φ n j being continuous, there is δ j > 0 such that s n j < sδ j and such that Φ n j ([sδ j , s + δ j ]) ⊂ B(y j , ε 8 ) ⊂ E x j ∩ B(x, ε) \ B(x, 3ε/4). Taking δ = inf j δ j , this proves (i), and (ii) is a straightforward consequence of (i).

Proof of Theorem 5.1. Let us place on an event Ω 0 of probability one on which Φ possesses the ICP and satisfies (Sk 1), (Sk 2) and the property given in Lemma 5.2. In order to prove that Φ is a skeleton on Ω 0 , it remains to verify that for any compact L ⊂ R × M, the set F L = {Φ n [s, ∞) : n ∈ I s , (s, Φ n (s)) ∈ L} is relatively compact in X. This will be done using Theorem 5.3 given below, which is a version of the Ascoli-Arzela theorem for the space X.

Let L ⊂ R × M be a compact set. Item (i) of Theorem 5.3 is satisfied by F L since for all f ∈ F L , there is (n, s) such that n ∈ I s , (s, Φ n (s)) ∈ L and f = Φ n [s, ∞), which implies that (i(f ), f (i(f ))) = (s, ϕ n (s)) ∈ L, and L is compact.

We now verify that item (ii) of Theorem 5.3 is satisfied by F L for all ω ∈ Ω 0 . We fix ε > 0 and let C < ∞ be such that s ≤ C for all (s, x) ∈ L. For any

x ∈ M, set ε(x) = ε ∧ 1 2 ρ(x, V \ {x}). Lemma 5.2 implies that on Ω 0 , for any (s, x) ∈ R × M there exist δ ε(x) s,x > 0 and a simple neighborhood U ε(x) s,x (t) of x such that B(x, 3ε(x) 4 ) ⊂ U ε(x) s,x (t) ⊂ B(x, ε(x)) for all t ∈ [s -δ ε(x) s,x , s + δ ε(x) s,x ]. The set W ε(x) s,x = s - δ ε(x) s,x 2 , s + δ ε(x) s,x 2 × B x, 3ε(x) 4 is a neighborhood of (s, x) ∈ R × M and for all (t, y) ∈ W ε(x) s,x , we have that y ∈ U ε(x) s,x (t) 
. The set L being compact, there exists a finite covering of

L: L ⊂ ∪ m k=1 W ε(x k ) s k ,x k . By the ICP, for each k ∈ {1, . . . , m}, setting δ k = δ ε(x k ) s k ,x k , the set Φ n (s k + δ k ) : n ∈ I s k + δ k 2 ∩ B(x k , ε) is finite. So, for every k, there is a finite family {n l k : 1 ≤ l ≤ N k } ⊂ I s k + δ k 2 such that Φ n (s k + δ k ) : n ∈ I s k + δ k 2 ∩ B(x k , ε) = {Φ n l k (s k + δ k ) : 1 ≤ l ≤ N k }. We will set s l k = i(Φ n l k ) and C k = C ∨ (s k + δ k ). Then s l k ≤ s k + δ k 2 ≤ C k .
The family of mappings {Φ n l k } being finite, this family is uniformly equicontinuous and so there exists α > 0 such that for all (k, l) and (r

1 , r 2 ) ∈ [s l k , C k ] 2 with |r 2 -r 1 | < α , we have ρ(Φ n l k (r 1 ), Φ n l k (r 2 )) < ε. Let now s ∈ R and n ∈ I s be such that (s, Φ n (s)) ∈ L. Then (s, Φ n (s)) ∈ W ε(x k ) s k ,x k for some k ∈ {1, . . . , m}. It follows that |s-s k | ≤ δ k 2 and Φ n (s) ∈ U ε s k ,x k (s). Then n ∈ I s k + δ k 2 . • Using (Sk 1) and the fact that U ε(x k ) s k ,x k (t) is a simple neighborhood of x k for all t ∈ [s, s k + δ k ], we have that for all t ∈ [s, s k + δ k ], Φ n (t) ∈ U ε(x k ) s k ,x k (t) ⊂ B(x k , ε(x k )) ⊂ B(x k , ε). This implies that for all (r 1 , r 2 ) ∈ [s, s k + δ k ] 2 , ρ(Φ n (r 1 ), Φ n (r 2 ) ≤ 2ε. • Since n ∈ I s k + δ k 2 and Φ n (s k +δ k ) ∈ B(x k , ε), we have that Φ n (s k +δ k ) = Φ n l k (s k +δ k )
for some l. Hence, using (Sk 1),

Φ n [s k + δ k , ∞) = Φ n k l [s k + δ k , ∞). for some l ∈ {1, . . . , N k }. This implies that for all (r 1 , r 2 ) ∈ [s k + δ k , C k ] 2 such that |r 2 -r 1 | < α, ρ(Φ n (r 1 ), Φ n (r 2 ) ≤ ε. that Φ n ij,k (t) ∈ (u ij,k , u ij,k+1
). By continuity of the trajectories Φ n ij,k , there exists r ∈ (s, t) such that for all i ≤ k and j ∈ {1, . . . , d

(x i )}, Φ n ij,k ([r, t]) ⊂ (u ij,k , u ij,k+1 ) ⊂ U ij,k+1 . Let now n ≥ 1 be such that s n ≤ s and Φ n (t) ∈ K k . Then, there is i ≤ k such that Φ n (t) ∈ Ūi,k . Since s n < r, the coalescing property implies that for all t ′ ∈ [r, t], Φ n (t ′ ) ∈ U x i ({Φ n ij,k (t ′ ) : 1 ≤ j ≤ d(x i )}) ⊂ U i,k+1 . This proves that Φ n ([r, t]) ⊂ K k+1 . Proposition 4.9-(i) is verified.
Applying Proposition 4.9, we prove that Φ possesses the ICP a.s. Applying now Theorem 5.1, we can conclude that Φ is a skeleton a.s.

Using the results of Theorem 3.6 and Lemma 4.3, we get the following corollary of Theorem 5.4.

Corollary 5.5. Assume that the sequence (P (n) •

: n ∈ N) satisfies conditions (TF 1), (TF 2), (TF 3) and (TF 5). Then the family of mappings θ defined by (3.9) is a strong measurable continuous modification of ψ 0 .

Examples

6.1. Coalescing independent Walsh Brownian motions on a metric graph. Let M be a metric graph with vertices V , edges (E j : j ∈ J), and isometries e j : (0, L j ) → E j , 0 < L j ≤ ∞ (see Section 5.1). We equip M with the shortest path distance ρ. For all j ∈ J, denote g j = e j (0) and d j = e j (L j ) (with

d j = ∞ when L j = ∞). Further, for any v ∈ V denote J + (v) = {j ∈ J : g j = v} and J -(v) = {j ∈ J : d j = v}, so that J(v) = J + (v) ∪ J -(v). Assume that inf j∈J L j > 0.
To each v ∈ V and j ∈ J(v) we associate a parameter p j (v) ∈ [0, 1], such that j∈J(v) p j (v) = 1. Denote by D the set of all continuous functions f : M → R, such that for every j ∈ J, f • e j ∈ C 2 ((0, L j )) with bounded first and second derivatives, and

j∈J + (v) p j (v)(f • e j ) ′ (0+) = j∈J -(v) p j (v)(f • e j ) ′ (L j -). For f ∈ D and x = e j (t) set f ′ (x) = (f • e j ) ′ (t), f ′′ (x) = (f • e j ) ′′ (t), and for v ∈ V set f ′ (v) = f ′′ (v) = 0. Let Af = 1 2 f ′′ , f ∈ D.
The operator A generates a continuous Feller Markov process on M (see, [START_REF] Freidlin | Diffusion processes on graphs and the averaging principle[END_REF]). We will call such process the Walsh Brownian motion (WBM) on M with transmission parameters p j (v), v ∈ V , j ∈ J(v). We are interested in the existence of a strong measurable modification of a stochastic flow of measurable mappings in M, whose trajectories are WBM's that are independent before meeting and coalesce at the meeting time. Let (P t : t ≥ 0) be the transition function of a WBM on M with transmission parameters p j (v), v ∈ V , j ∈ J(v). We define (P

• : n ∈ N) to be a unique consistent sequence of coalescing Feller transition functions on M obtained from (P ⊗n • : n ∈ N) (see Le Jan and Raimond 2020, Theorem 4.3.1). Let ψ 0 be a stochastic flow of measurable mappings in M associated to the consistent sequence of coalescing Feller transition functions (P (n)

• : n ∈ N). Theorem 6.1. There exists a strong measurable continuous modification of ψ 0 .

Proof. According to Theorem 5.4 it is enough to verify (TF 5), i.e. for any simple compact K, there are β, p > 0 such that that (5.16) holds. Without loss of generality we will suppose that K is a neighborhood a vertex v ∈ V (in the case K doesn't contain any vertices, it suffices to add a vertex v ∈ K of degree 2 so that K is a compact neighborhood of v, and to set the transmission parameters to p 1 = p 2 = 1 2 ). Let M be a star graph that contains a simple compact isometric to K. Then M is a metric graph with only one vertex v and d = d(v) edges. We denote v by 0 and let the adjacent edges of 0 be E 1 , . . . , E d . Then for each j ∈ {1, . . . , d} there is a bijection e j : (0, ∞) → E j such that e j (0+) = 0. When x = e j (r), we set |x| = r and define the distance on M by: ρ(e i (r), e j (s)) = |r -s|, i = j r + s, i = j

Denote by p 1 , . . . , p d ∈ [0, 1] the transmissions parameters associated to v and assign them to the edges of M . Let P x,y (= P x ⊗ P y ) be the distribution of (X, Y ) where X and Y are two independent WBM's on M started at x and y, respectively. Set T ∆ = inf{t :

X t = Y t }. We note that if ρ(x, y) ≤ ǫ, then P (2) x,y [σ ∧ τ > βǫ 2 ] ≤ P x,y [T ∆ > βρ(x, y) 2 ].
Hence, it is enough to show that for some β > 0, (6.18) inf

(x,y)∈ M 2 P x,y [T ∆ ≤ βρ(x, y) 2 ] > 0.
The proof is separated into several lemmas. We first consider the case when y = 0 : Lemma 6.2. For any β > 0, there is p = p(β) > 0 such that for all x ∈ M, (6.19)

P x,0 [T ∆ ≤ β|x| 2 ] ≥ p.
Proof. The WBM on M is scaling invariant : if X is a WBM started at x, then for all λ > 0, the process X λ defined by X λ (t) = λ -1 X(λ 2 t) is a WBM started at λx. Using this scaling property with λ = |x| -1 , we obtain that

P x,0 [T ∆ ≤ β|x| 2 ] = P u,0 [T ∆ ≤ β]
where u = x/|x|. In other words, to prove the lemma it suffices to prove that for all j, we have that (6.20) P e j (1),0 [T ∆ ≤ β] > 0.

We therefore fix j and let X, Y be distributed as P e j (1),0 . Let i ∈ {1, . . . , d} be such that p i > 0. With positive probability (X( β 2 ), Y ( β 2 )) ∈ E 2 i . It remains to note that with positive probability during the time interval [0, β 2 ] two independent Brownian motions (BMs) meet before leaving R + .

We now consider the case where x, y belong to two different edges : Lemma 6.3. There exists p > 0 such for all (x, y) ∈ E i × E j with i = j, (6.21)

P x,y [T ∆ ≤ 2ρ(x, y) 2 )] ≥ p. Proof. Let (x, y) ∈ E i × E j with i = j. Note that ρ(x, y) = |x| + |y|. Denote τ Y = inf{t ≥ 0 : Y (t) = 0}.
Then, using the strong Markov property at time τ Y ,

P x,y T ∆ ≤ 2ρ(x, y) 2 = P x,y T ∆ ≤ 2(|x| + |y|) 2 ≥ P x,y τ Y ≤ |y| 2 , |X(τ Y )| ≤ |x| + |y| and T ∆ -τ Y ≤ (|x| + |y|) 2 ≥ E x,y 1 {τ Y ≤|y| 2 }∩{|X(τ Y )|≤|x|+|y|} P X(τ Y ),0 T ∆ ≤ (|x| + |y|) 2
On the event {|X(τ Y )| ≤ |x| + |y|}, we have that

P X(τ Y ),0 T ∆ ≤ (|x| + |y|) 2 ≥ p(β) ≥ p(1) > 0,
where β = (|x|+|y|) 2 |X(τ Y )| 2 | ≥ 1 and p(1) is defined in Lemma 6.2. We therefore have that

P x,y T ∆ ≤ 2ρ(x, y) 2 ≥ p(1) × P x,y {τ Y ≤ |y| 2 } ∩ {|X(τ Y )| ≤ |x| + |y|} .
Since |X| is a BM reflected at 0, we have that under P x , |X| is distributed as ||x| + B| where B is a Brownian motion started at 0. Setting ϕ(t) = P [|B t | ≤ 1] for all t > 0, we thus have that

P x [|X t | ≤ |x| + |y|] = P [||x| + B t | ≤ |x| + |y|] ≥ P [|B t | ≤ |y|] = ϕ t |y| 2 .
We therefore have that, using again the scaling property for Y ,

P x,y T ∆ ≤ 2ρ(x, y) 2 ≥ p(1) × E y 1 {τ Y ≤|y| 2 } × ϕ τ Y |y| 2 ≥ p(1) × E e j (1) 1 {τ Y ≤1} × ϕ (τ Y ) > 0.
which proves the lemma.

We finally consider the case where x, y both belong to the same edge : Denote by q the probability that two independent BMs started at distance one meet before time 1. Then q is a positive probability. Let ε > 0 be such that (6.22)

P[|B 1 | ≥ ε -1 ] = q 2 .
Lemma 6.4. There exists p > 0 such for all (x, y) ∈ E i × E i , (6.23)

P x,y [T ∆ ≤ 2ρ(x, y) 2 )] ≥ p. Proof. Let (x, y) ∈ E i × E i with 0 < |y| < |x|. Note that ρ(x, y) = |x| -|y|. Denote τ Y = inf{t ≥ 0 : Y (t) = 0}.
The scaling property implies that, setting r = |x| |y| , P x,y T ∆ ≤ ρ(x, y) 2 = P i r,1 T ∆ ≤ (r -1) 2 where P i r,1 = P e i (r),e i (1) . Further,

P i r,1 T ∆ ≤ (r -1) 2 ≥ P i r,1 T ∆ ≤ (r -1) 2 ≤ τ Y = Q r,1 T ∆ ≤ (r -1) 2 ≤ τ Y
where under Q r,1 , X and Y are two independent Brownian motions respectively started at r and 1. We thus have that

P i r,1 T ∆ ≤ (r -1) 2 ≥ Q r,1 T ∆ ≤ (r -1) 2 -Q r,1 τ Y ≤ (r -1) 2
We have that (using again the scaling property)

Q r,1 T ∆ ≤ (r -1) 2 = Q r-1,0 T ∆ ≤ (r -1) 2 = Q 1,0 [T ∆ ≤ 1] = q > 0.
Using the reflection principle, we have that

Q r,1 τ Y ≤ (r -1) 2 = 2P B (r-1) 2 ≤ -1 = P |B 1 | ≥ (r -1) -1 .
where under P, B is a BM started at 0. For all r ∈ (1, 1 + ε], (6.22) implies that P [|B 1 | ≥ (r -1) -1 ] ≤ q 2 . We therefore have that for all r ∈ (1, 1 + ε],

P i r,1 T ∆ ≤ (r -1) 2 ≥ q - q 2 = q 2 .
Let us suppose now that r > 1 + ε. In this case, using the strong Markov property at time τ Y ,

P i r,1 T ∆ ≤ 2(r -1) 2 ≥ P i r,1 τ Y ≤ ε 2 , |X τ Y | ≤ 1 + r, T ∆ -τ Y ≤ (r -1) 2 ≥ E i r,1 1 {τ Y ≤ε 2 }∩{|Xτ Y |≤1+r} P Xτ Y ,0 [T ∆ ≤ (r -1) 2 ] Set β ε = inf r>1+ε (r-1) 2 (1+r) 2
> 0. On the event {|X(τ Y )| ≤ 1 + r}, we have

P X(τ Y ),0 T ∆ ≤ (r -1) 2 ≥ P u,0 T ∆ ≤ β ε (1 + r) 2 ≥ p(β ε ) > 0,
where |u| = 1 + r. We therefore have that

P i r,1 T ∆ ≤ 2(r -1) 2 ≥ p(β ε ) × P i r,1 {τ Y ≤ ε 2 } ∩ {|X(τ Y )| ≤ 1 + r} .
Since |X| is a BM reflected at 0, we have that under P i r,1 , |X| is distributed as |r + B| with B a BM started at 0. We thus have that

P i r,1 [|X t | ≤ 1 + r] = P [|r + B t | ≤ r + 1] ≥ P [|B t | ≤ 1] = ϕ(t)
Finally,

P i r,1 T ∆ ≤ 2ρ(x, y) 2 ≥ p(β ε ) × E i r,1 1 {τ Y ≤ε 2 } × ϕ(τ Y ) > 0 which proves the lemma.
This proves (6.18) and the Theorem. 6.2. Coalescing Tanaka flow. In this section we consider a stochastic flow of measurable mappings in R that consists of solutions to Tanaka's SDE (6.24)

dX(t) = sign(X(t)) dW (t),
where W is a Brownian motion and sign(

x) = 1 if x ≥ 0 -1 if x < 0
. It is well-known that Tanaka's SDE does not possess a strong solution. When two solutions meet they may not coalesce. Let us assume coalescence in the definition of the n-point motions. More precisely, the n-point motion (X 1 , . . . , X n ) starting from x ∈ R n solves the following problem

X i (t) = x i + t 0 sign(X i (s)) dW (s), 1 ≤ i ≤ n, X i (s) = X j (s) ⇒ X i (t) = X j (t), 1 ≤ i < j ≤ n, s ≤ t
The problem has a unique weak solution, which is a Feller process. We denote its transition function by P

(n)

• . The sequence (P (n)

• : n ∈ N) is a sequence of coalescing Feller transition functions that satisfies (TF 1), (TF 2) and (TF 3). Let ψ 0 be a stochastic flow of measurable mappings in R associated to (P (n)

• : n ∈ N). Let D = {(s n , x n ) : n ∈ N} be a countable dense set in R × R, and let Φ be the random sequence constructed in Section 3.1.2. Recall that for each n, Φ n is a continuous modification of ψ 0 sn,• (x n ) with Φ n (s n ) = x n . In Lemma 6.5 we verify that (TF 4) is satisfied and thus we can construct a measurable continuous modification θ of ψ 0 as in Section 3.1. Let W n (t) = t sn sign(Φ n (s)) dΦ n (s), t ≥ s n . Note that a.s.

(6.25) (n, m) ∈ N 2 , s ≥ s n ∨ s m ⇒ W n (t) -W n (s) = W m (t) -W m (s), t ≥ s. Denote σ n = inf{t ≥ s n : Φ n (t) = 0}.
Lemma 6.5. Let L ⊂ R × R be a compact set. Then a.s. the set

{Φ n [s, ∞) : n ∈ I s , (s, Φ n (s)) ∈ L)} is relatively compact in X.
Proof. For a continuous real-valued function f denote its modulus of continuity on [a, b] by m a,b (δ; f ) : 

m a,b (δ; f ) = sup{|f (t) -f (s)| : (s, t) ∈ [a, b]
(t)| = |x n | + W n (t), t ∈ [s n , σ n ); W n (t) -inf s∈[σn,t] W n (s) t ∈ [σ n , ∞).
Hence, a.s. for any a, b, s n ≤ a < b, we have that m a,b (δ;

|Φ n |) ≤ 2m a,b (δ; W n ). Since Φ n is continuous, it follows that m a,b (δ, Φ n ) ≤ 4m a,b (δ, W n ). Let L ⊂ R × R be a compact set. Let n 0 and C be such that s n 0 < s < C for all (s, x) ∈ L. Given ε > 0 there exists δ > 0 such that m sn 0 ,C (δ, W n 0 ) ≤ ε. Assume that (s, Φ n (s)) ∈ L. Then s ≥ s n ∨ s n 0 , hence W n (t) -W n (s) = W n 0 (t) -W n 0 (s), t ≥ s. In particular, m s,C (δ, W n ) = m s,C (δ, W n 0 ). It follows that if (t 1 , t 2 ) ∈ [s, C] 2 and |t 1 -t 2 | ≤ δ, then |Φ n (t 1 ) -Φ n (t 2 )| ≤ 4m s,C (δ, W n ) ≤ 4m sn 0 ,C (δ, W n 0 ) ≤ 4ε.
The result follows from Theorem 5.3. Lemma 6.5 ensures that a.s. Φ is a skeleton. Lemma 6.6. F := R × {0} is a closed shell of B(Φ), the set of bifurcation points of Φ.

Proof. Let (s, x) ∈ R × (0, ∞). There exist n ∈ I s and t > s such that Φ n ([s, t]) ⊂ (0, x).

It is easy to see from (6.26) and (6.25) that K s,t x contains only the single function f defined by

f (r) = x + Φ n (r) -Φ n (s), r ∈ [s, t].
This proves that τ s x > t > s and that (s, x) ∈ B(Φ). Similarly, R × (-∞, 0) ⊂ B(Φ) c . Thus B(Φ) ⊂ F . Theorem 6.7. There exists a strong measurable continuous modification of ψ 0 .

Proof. Since Φ is a skeleton a.s., we can construct θ, the measurable continuous modification of ψ 0 , as in Section 3.1.

To prove this theorem we apply Theorem 3.9. We take for closed shell of B(Φ) the set F = R × {0} and as in Section 3.2 define out of θ the stopping times σ s x (k) and the random variables z s x (k), k s x . Note that z s x (0) = x and z s x (k) = 0 if k ≥ 1. To apply Theorem 3.9, we have to verify that a.s. for all (s, x) ∈ R × R, k s x < ∞, and if k s x = 0, then for every t > s there is n

∈ I t such that θ s,• (x)[t, ∞) = Φ n [t, ∞).
We note that with probability 1 for every (s, x) ∈ R × R and every n

∈ I s , s ≤ a < b, inf t∈[a,b] |θ s,t (x)| > 0 =⇒ |θ s,t (x)| = |θ s,a (x)| + W n (t) -W n (a), t ∈ [a, b].

Suppose that k s

x ≥ 3 for some (s, x) ∈ R × R and let n ∈ I s . Then s = σ s x (0) < σ s

x (1) < σ s x (2) < σ s x (3). It follows that |θ σ s x (j),t (z s x (j))| > 0 for t ∈ (σ s x (j), σ s x (j + 1)), j ∈ {0, 1, 2}, and z s andW n (σ s x (1)) = W n (σ s x (2)) = W n (s) -|x|. It follows that W n has two local minima at the level W n (s) -|x|, which is a.s. impossible (see [START_REF] Tanaka | Some theorems concerning extrema of Brownian motion with d-dimensional time[END_REF]. As a consequence, we have that a.s., k s

x (1) = z s x (2) = 0. Hence, |x| + W n (t) -W n (s) > 0 for t ∈ (s, σ s x (1)), W n (t)-W n (σ s x (1)) > 0 for t ∈ (σ s x (1), σ s x (2)), W n (t)-W n (σ s x (2)) > 0 for t ∈ (σ s x (2), σ s x (3)),
x ≤ 2 for all (s, x) ∈ R × R. Suppose that k s x = 0 for some (s, x) ∈ R × R. Then σ s x (1) = s and x = 0. If Φ n (s) = 0 for some n ∈ I s , then for all t > s, θ s,t (0) = Φ n (t). Otherwise, there exists a sequence (n j : j ∈ N) in I s , such that lim j→∞ Φ n j [s, ∞) = θ s,• (0) in X. Without loss of generality we can assume that Φ n j (s) > 0 for all j ∈ N, and

Φ n j (s) ↓ 0, j → ∞. Assume that inf r∈[s,t] Φ n j (r) > 0 for all j. Then Φ n j (r) = Φ n j (s) + W n 1 (r) -W n 1 (s), r ∈ [s, t], and θ s,r (0) = W n 1 (r) -W n 1 (s), r ∈ [s, t]. It follows that inf r∈[s,t] W n 1 (r) + Φ n j (s) -W n 1 (s) > 0, and W n 1 (s) = inf r∈[s,t] W n 1 (r). Since s = σ s x (1), there exist distinct u, v in (s, t) such that θ s,u (0) = θ s,v (0) = 0. Then u and v are both local extrema of W n 1 with W n 1 (u) = W n 1 (v).
This is a.s. impossible (see [START_REF] Tanaka | Some theorems concerning extrema of Brownian motion with d-dimensional time[END_REF]. Hence, Φ n j 0 (r) = 0 for some j 0 ≥ 1 and r ∈ (s, t]. It follows that Φ n j (r) = 0 = Φ n j 0 (r) for all j ≥ j 0 , and θ s,

• (0)[r, ∞) = Φ n j 0 [r, ∞).
This verifies the condition of Theorem 3.9 and proves that ψ is a strong measurable continuous modification of ψ 0 . 6.3. Burdzy-Kaspi flows. In this section we consider a stochastic flow of measurable mappings in R that consists of solutions to the Harrison-Shepp SDE for the skew Brownian motion (6.27) dX(t) = dW (t) + βdL(t),

where W = (W (t) : t ∈ R) is a Brownian motion on R, L is the symmetric local time of X at zero and β ∈ [-1, 1]. It is well-known that for all (s, x) ∈ R × R the equation (6.28)

X(t) = x + W (t) -W (s) + βL(t), t ≥ s L(t) = lim ε→0 1 2ε t s 1 (-ε,ε) (X(r)
)dr, t ≥ s has a unique strong solution (see [START_REF] Harrison | On skew Brownian motion[END_REF]. Define

P (n) t (x, B) = P[(X 1 (t), . . . , X n (t)) ∈ B],
where x ∈ R n , B ∈ B(R n ), t ≥ 0, and X i is the solution of (6.28) with initial condition X i (0) = x i , i ∈ {1, . . . , n}. The sequence (P (n)

• : n ∈ N) is then a sequence of coalescing Feller transition functions that satisfies (TF 1), (TF 2) and (TF 3). Let ψ 0 be a stochastic flow of measurable mappings in R associated to (P (n)

• : n ∈ N). Let D = {(s n , x n ) : n ∈ N} be a countable dense set in R × R, and let Φ be the random sequence constructed in Section 3.1.2. Recall that for each n, Φ n is a continuous modification of ψ 0 sn,• (x n ) with Φ n (s n ) = x n . By Burdzy and Kaspi 2004, Prop. 2.1, the condition (TF 4) is satisfied and

Φ is a.s. a skeleton. Denote L n (t) = lim ε→0 1 2ε t s 1 (-ε,ε) (Φ n (r))dr, W n (t) = Φ n (t) -x n - βL n (t), t ≥ s n . Note that a.s. (6.29) (n, m) ∈ N 2 , s ≥ s n ∨ s m =⇒ W n (t) -W n (s) = W m (t) -W m (s), t ≥ s.
Theorem 6.8. There exists a strong measurable continuous modification of ψ 0 .

Proof. Similarly to the proof of Lemma 6.6 it can be checked that F = R × {0} is a closed shell of B(Φ), the set of bifurcation points of Φ. We then construct θ, the measurable continuous modification of ψ 0 , as in Section 3.1. As in Section 3.2 we define out of θ the stopping times σ s x (k) and the random variables

z s x (k), k s x . Note z s x (0) = x and z s x (k) = 0 if k ≥ 1.
To apply Theorem 3.9, we have to verify that a.s. for all (s, x) ∈ R × R, k s

x < ∞, and if k s x = 0, then for every t > s there is n ∈ I t such that θ s,• (x)[t, ∞) = Φ n [t, ∞).

The case β = 0 is trivial, and in this case ψ s,t (x) = θ s,t (x) = x + W m (t) -W m (s) for all s ≤ t, x ∈ R and m ∈ I s . We consider the case β = 0. Suppose that k s x ≥ 3 for some (s, x) ∈ R × R and n ∈ I s . Then s = σ s x (0) < σ s

x (1) < σ s x (2) < σ s x (3). It follows that θ σ s x (j),t (z s x (j)) = 0 for t ∈ (σ s x (j), σ s x (j + 1)), j ∈ {0, 1, 2}, and z s

x (1) = z s x (2) = 0. Hence, x + W n (t) -W n (s) = 0 for t ∈ (s, σ s x (1)), W n (t)-W n (σ s

x (1)) = 0 for t ∈ (σ s x (1), σ s x (2)), W n (t)-W n (σ s x (2)) = 0 for t ∈ (σ s x (2), σ s x (3)), and W n (σ s

x (1)) = W n (σ s x (2)) = W n (s)-x. The Brownian motion has no points of increase or decrease Dvoretzky, Erdős, and Kakutani 1961. Hence, W n has two local extrema at the level W n (s)x, which is a.s. impossible (see [START_REF] Tanaka | Some theorems concerning extrema of Brownian motion with d-dimensional time[END_REF]. As a consequence, we have that a.s., k s

x ≤ 2 for all (s, x) ∈ R × R. Suppose that k s x = 0 for some (s, x) ∈ R × R. Then σ s x (1) = s and x = 0. Let us fix m ∈ I s . If Φ n (s) = 0 for some n ∈ I s , then for all t > s, θ s,t (0) = Φ n (t). Otherwise, either θ s,t (0) = inf{Φ n (t) : n ∈ I s , s n < x, Φ n (s) > x}, ∀t ≥ s, or θ s,t (0) = sup{Φ n (t) : n ∈ I s , s n < x, Φ n (s) < x}, ∀t ≥ s.

In either case, θ s,t (0) = W m (t)-W m (s)+βL s,t , where L s,t = lim ε→0 1 2ε t s 1 (-ε.ε) (θ s,r (0))dr (see Burdzy and Kaspi 2004, Prop. 1.1). Since σ s

x (1) = s, there exists a sequence u 1 > u 2 > . . . in (s, t), such that θ s,un (0) = 0 for all n ∈ N. If L s,t = 0, then L m (t) -L m (s) = 0. Hence, the Brownian motion W m hits the level a = W m (s) infinitely often in the interval (s, t), while its local time at the level a does not increase between times s and t, which is impossible by [START_REF] Ray | Sojourn times of diffusion processes[END_REF]. It follows that L s,t > 0. By Burdzy and Kaspi 2004, Lemma 2.7 there exists n ∈ I t , such that θ s,• (x)[t, ∞) = Φ n [t, ∞). This verifies the condition of Theorem 3.9, and proves that ψ is a strong measurable continuous modification of ψ 0 . 6.4. Coalescing Tanaka flow on a star graph. In this section, we let M be a star graph, i.e. a metric graph with only one vertex 0 and d ≥ 2 edges E 1 , . . . , E d , and we consider a stochastic flow of measurable mappings in M, that consists of solutions to Tanaka's SDE on M. For each j ∈ {1, . . . , d} there is a bijection e j : (0, ∞) → E j such that e j (0+) = 0. When x = e j (r), we set |x| = r and define the distance on M by: ρ(e i (r), e j (s)) = |r -s|, i = j r + s, i = j Denote by p 1 , . . . , p d ∈ [0, 1] the transmissions parameters associated to the vertex 0 and edges E 1 , . . . , E d , respectively. For any function f : M → R we introduce functions f j = f • e j : (0, ∞) → R, j ∈ {1, . . . , d}. Denote by C 2 0 (M) the space of continuous functions f : M → R, such that for all j ∈ {1, . . . , d}, f j ∈ C 2 ((0, ∞)), f j , f ′ j , f ′′ j are bounded, and all limits f j (0+), f ′ j (0+), f ′′ j (0+) exist. For f ∈ C 2 0 (M) we let f ′ (x) = f ′ j (|x|), f ′′ (x) = f ′′ j (|x|), if x ∈ E j . Let D = {f ∈ C 2 0 (M) : d j=1 p j f ′ j (0+) = 0}. To each vertex E j we associate a sign ε j ∈ {-1, 1}, in such a way that ε 1 = . . . = ε l = 1, ε l+1 = . . . = ε d = -1, l ∈ {1, . . . , d -1}. Let ε(x) = 1,

x ∈ E j , j ≤ l -1, x ∈ E j , j > l or x = 0 .

There exists a stochastic flow ψ 0 of measurable mappings in M, such that for all (s, x) ∈ R × M and all f ∈ D, f (ψ 0 s,t (x)) = f (x) + Theorem 6.9. There exists a strong measurable continuous modification of ψ 0 .

Proof. Similarly to the proof of Lemma 6.6 it can be checked that F = R × {0} is a closed shell of B(Φ), the set of bifurcation points of Φ. Let θ be the measurable continuous modification of ψ 0 defined from Φ and the mapping Θ. As in Section 3.2 we define out of θ the stopping times σ s x (k), and the random variables z s x (k), k s x . Consider the mapping G : M → R, G(x) = ε(x)|x|. To have notations consistent with Hajri 2011, we now suppose without loss of generality that D = Q × M Q , where M Q is a countable dense set in M. Out of the random skeleton Φ, we construct a family of random mappings Y such that Y n = G(Φ n ). The family Y is a random skeleton of a Burdzy-Kaspi flow (see [START_REF] Hajri | Stochastic flows related to Walsh Brownian motion[END_REF], in which ψ 0 is constructed with a Burdzy-Kaspi flow). Let us now define Y, the Burdzy-Kaspi flow, out of the skeleton Y in the same way as ψ 0 is constructed out of Φ (note that G(ψ 0 s,t (x)) = Y s,t (G(x))). The proof of Theorem 6.8 implies that a.s. for all (s, x) ∈ R × M, k s

x ≤ 2 (the random variables k s x and k s ε(x)|x| are equal, where k s ε(x)|x| is defined out of Y ). Suppose that k s x = 0. Then x = 0 and σ s x (1) = s. The proof of Theorem 6.8 implies that a.s. the local time at zero L s,r of Y s,• (0) is positive for all r > s. Following the proof of Burdzy and Kaspi 2004, Prop. 1.1(iii), for all small enough positive ε, {Φ n (t) : n ∈ I s , ρ(Φ n (s), 0) < ε} is a finite set. Since there is a sequence (n k : k ∈ N), such that Φ n k [s, ∞) converges towards θ s,• (0) in X, the sequence Φ n k [t, ∞) is stationary. This shows that there is n ∈ I t in such that θ s,u (0) = Φ n (u) for all u ≥ t. Hence, conditions of Theorem 3.9 are verified and there exists a strong measurable continuous modification of ψ 0 .

The following Corollary extends the result of Theorem 6.9 to general metric graphs. For the definition of the Tanaka SDE on a metric graph we refer to Hajri and Raimond 2014.

MODAL'X, Université Paris Nanterre, 200 Avenue de la République, 92000 Nanterre, France

Email address: oraimond@parisnanterre.fr

Institute of Mathematics of NAS of Ukraine

Email address: ryabov.george@gmail.com

:

  t ≥ 0) satisfies the condition (TF 3) For any compact K ⊂ M and r > 0, lim t↓0 t -1 sup x∈K P (1) t (x, {y : ρ(x, y) > r}) = 0.

•

  : n ∈ N) of coalescing Feller transition functions on M. It is assumed that (P (n) •

  0 s,r (x))f ′ (ψ 0 s,r (x))dW (r) + 1 2 t s f ′′ (ψ 0 s,r (x))dr, t ≥ s,where W is a Brownian motion on R Hajri 2011. Let D = {(s n , x n ) : n ∈ N} be a countable dense set in R × R. For each n ∈ N, we let Φ n be a continuous modification ofψ 0 sn,• (x n ) with Φ n (s n ) = x n .The proof of Lemma 6.5 shows that Φ is a.s. a skeleton.

  2 , |t -s| ≤ δ}.

	By Tanaka's formula and Skorokhod's reflection lemma (Revuz and Yor 2005, Ch. VI,
	Th. (1.2), L. (2.1)),
	(6.26)	|Φ n

When it is not the case, then there is a distance ρ ′ topologically equivalent to ρ for which these two additional properties are satisfied.

For example, one can take δ(f, g)= n≥1 2 -n 1 ∧ sup x∈[-n,n] ρ(f (x), g(x)) .
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Combining these two items, we obtain that for all (r 1 , r 2 ) ∈ [s, C] such that |r 2r 1 | < α, ρ(Φ n (r 1 ), Φ n (r 2 ) ≤ 3ε.

Item (ii) of Theorem 5.3 is verified and, by the Ascoli-Arzela theorem, the family F L is relatively compact in X for every compact L and the Theorem is proved.

Theorem 5.3 (Ascoli-Arzela theorem). A family of mappings F ⊂ X is relatively compact if and only if F is uniformly equicontinuous, i.e. if and only if the following items are satisfied:

5.3. Sufficient condition for the ICP on a metric graph. In this section we give a sufficient condition on P

(2)

• , the Feller transition function of the two-point motion of ψ 0 , under which Φ possesses the ICP a.s.

Consider the following condition: (TF 5) For any simple compact K ⊂ M there are constants β, p > 0 such that for all (x, y) ∈ K 2 and ε > 0,

Theorem 5.4. Assume that the sequence (P (n) •

: n ∈ N) satisfies conditions (TF 1), (TF 2), (TF 3) and (TF 5). Then a.s. Φ is a skeleton that possesses the ICP.

Proof. Using Proposition 4.9, we will prove that a.s. Φ possesses the ICP by verifying that simple compact sets satisfy P given in Section 4.3, i.e. (4.11) and (4.12) are satisfied, and by verifying Proposition 4.9-(i). Let K be a simple compact and let β, p > 0 be the constants given in Assumption (TF 5), taking α = 2 we obtain that (4.11) holds and so (P 1) is satisfied. Let us remark that on a metric graph, for any simple compact K there is C > 0 such that for all A ⊂ K and n ≥ 1, it holds that (5.17)

This implies that (4.12) and so (P 2) holds with κ = 1. Since ακ = 2 > 1, the simple compact K satisfies P.

We now verify Proposition 4.9-(i). Let (U i,k ) i≥1, k≥1 be a sequence of simple open sets such that

. The space M being a locally compact separable metric space, such sequence exists.

For every k ≥ 1, let

Let us place on an event of probability one such that for all for all t the set {Φ n (t) : s n < t} is dense in M. Lemma 3.2 ensures that this event exists. Let us fix k ≥ 1 and s < t. Then for all i ≤ k and j ∈ {1, . . . , d(x i )}, there exists n ij,k such that s n ij,k < t and such Corollary 6.10. There exists a strong measurable continuous modification of a stochastic flows of measurable mappings in a metric graph M, whose trajectories are solutions to the Tanaka SDE on M. Remark 6.11. We expect that the proposed approach implies the existence of strong measurable continuous modifications of stochastic flows in metric graphs, that consist of solutions to interface SDE's in the sense of Hajri and Raimond 2016.

Appendix. Measurable selection Lemma

Lemma 7.1. Let (X, d) be a complete separable metric space. Then, there exists a measurable function ℓ :

) is a limit point of (x n : n ∈ N). Proof. Consider the compact metric space K = [0, 1] N . From Le Jan and Raimond 2004, Lemma 1.1 it follows that there exists a measurable mapping l : K N → K such that for any sequence (x n : n ∈ N) the point l((x n : n ∈ N)) is a limit point of (x n : n ∈ N).

There exists a homemorphism f of X onto a Borel subset of K Srivastava 1998, Remark 2.2.8. Denote by g a Borel mapping of K onto X, such that g(f

n=1 {x n } is compact. Then f (V ) is a compact subset of K, and y = l ((f (x n ) : n ∈ N)) ∈ f (V ). Extracting subsequences we may assume that y = lim k→∞ f (x n k ) and that the limit lim k→∞ x n k =: x * ∈ V exists. It follows that f (x * ) = y, and ℓ((x n : n ∈ N)) = g(y) = x * .

This proves Lemma 7.1.