
HAL Id: hal-04253885
https://hal.science/hal-04253885

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variational Autoencoders for Unsupervised Object
Counting from VHR Imagery: Applications in Dwelling
Extraction from Forcibly Displaced People Settlement

Areas
Getachew Workineh Gella, Hugo Gangloff, Lorenz Wendt, Dirk Tiede, Stefan

Lang

To cite this version:
Getachew Workineh Gella, Hugo Gangloff, Lorenz Wendt, Dirk Tiede, Stefan Lang. Variational Au-
toencoders for Unsupervised Object Counting from VHR Imagery: Applications in Dwelling Extrac-
tion from Forcibly Displaced People Settlement Areas. IGARSS 2023 - 2023 IEEE International
Geoscience and Remote Sensing Symposium, Jul 2023, Pasadena, United States. pp.1162-1165,
�10.1109/IGARSS52108.2023.10281849�. �hal-04253885�

https://hal.science/hal-04253885
https://hal.archives-ouvertes.fr


VARIATIONAL AUTOENCODERS FOR UNSUPERVISED OBJECT COUNTING FROM VHR
IMAGERY: APPLICATIONS IN DWELLING EXTRACTION FROM FORCIBLY DISPLACED

PEOPLE SETTLEMENT AREAS

Getachew Workineh Gella*, Hugo Gangloff**, Lorenz Wendt*, Dirk Tiede*, Stefan Lang*

*Paris Lodron University of Salzburg (PLUS)
Christian Doppler Laboratory for Geospatial and EO-Based Humanitarian Technologies (GEOHUM)

Department of Geoinformatics—Z GIS, Salzburg, Austria
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ABSTRACT

Even though computer vision models are excellent for auto-
matic scene segmentation and object identification from re-
motely sensed imagery, they demand a huge corpus of an-
notated data for the training and validation which is a huge
challenge in humanitarian emergency response. To tackle this
problem, we propose unsupervised dwelling object counting
combining Variational Autoencoder (VAE) with an anomaly
detection approach. The approach is tested in six Forcibly
Displaced People (FDP) settlement areas situated in differ-
ent parts of the world. Using an anomaly map computed
with the VAE model, we demonstrated the possibility of prop-
erly locating dwelling objects using anomaly maps. Dwelling
counts are obtained by further segmenting anomaly maps. Re-
sults show that, though it has strong spatio-temporal variation,
the VAE model exhibits promising potential for locating and
counting dwellings. It is also observed that in FDP settle-
ments with dense buildings and extremely low contrast be-
tween buildings and ground or environment, the performance
is relatively lower than the performance achieved in settle-
ment areas with regularly spaced and less complex building
structures.

Index Terms— Anomaly detection, Dwelling extraction,
Emergency response, Variational Autoencoder

1. INTRODUCTION

A growing proportion of the global population is facing dis-
placement from their home, either staying in the Internally
Displaced Persons (IDP) sites or crossing international bor-
ders mostly staying in refugee camps. Hereafter we use the
inclusive term Forcibly Displaced People (FDP) settlement
sites both for IDPs and refugee settlements. Dwelling infor-
mation is crucial to monitor camp and temporary settlement
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expansion, estimate residing populations, and provide respec-
tive humanitarian emergency responses and long-term socio-
economic planning. For the last decade, the proliferation of
high-resolution Earth Observation (EO) imaging has enabled
closer monitoring of FDP sites [1]. Key elements for efficient
information retrieval workflows are speed and automation.

In this aspect, advances in computer vision, especially
deep learning, have paved new opportunities for automatic in-
formation retrieval about various aspects of FPD settlements.
For example, [2] quantified the spatial expansion and inter-
nal densification of FDP settlements from time series high-
resolution satellite images. More specifically, [3, 4] used
instance and semantic segmentation models for dwelling ex-
traction. Similarly, [5] used an instance segmentation model
for rapid mapping in complex urban settings in response to
a pandemic alert, which has helped humanitarian emergency
response operations.

Although deep learning models have proven performance
for the detection and segmentation of objects from remote
sensing images, the traditional supervised deep learning ap-
proaches require an extensive amount of training and valida-
tion data, which is often impractical during emergency re-
sponse because of two reasons, (1) short response time re-
quired for humanitarian service delivery, (2) frequent spatial
monitoring and extensive geographic coverage is required.
This constrains the operational utility of deep learning mod-
els in EO-based operational humanitarian response. As a so-
lution, label-efficient strategies like transfer learning [4] and
domain adaptation approaches could be employed which both
assume the presence of some amount of annotated data for
fine-tuning of pretrained models or a sufficient amount of
source labeled data for joint training. Beyond the assump-
tion of data availability, sometimes it also fails to transfer
relevant representations to undertake intended detection and
object counting tasks under different data distributionsand in-
deed, the scene and object characteristics vary a lot.

Recently, generative models, especially Variational Au-
toencoders [6] (VAE), have shown significant performance in



image reconstruction and anomaly detection. They have been
successfully applied in wild animal detection from aerial im-
ages [7], ship detection [8], anomaly localization and segmen-
tation of medical images [9], and defect identification [10]
tasks. Based on the work of [7], we propose an unsuper-
vised dwelling object localization and counting by combining
a VAE [6] and anomaly detection approaches [7, 9, 11]. To
the best of our knowledge, this is the first study to address
building detection in general and dwelling counting in par-
ticular as an unsupervised anomaly detection approach using
EO data.

2. METHODS

2.1. Datasets and processing

This study uses very high-resolution satellite imagery taken
from six different FDP settlements [12]((See Table 1). The
preparation of the training and testing datasets follows the
conceptual definition of anomalous and normal images in un-
supervised anomaly detection [13]. Accordingly, we first
define normal images as patches expected to have high
probability of soil and various land cover types other than
dwellings. This set of image patches are taken from image
areas outside of the FDP settlement premises. Conversely,
we define anomalous images as containing dwelling objects:
these are thus image chips within FDP settlement premises.
For anomalous images, the annotations for evaluation of
the model performance are obtained from an in-house [12]
database, generated as long-term engagement in EO-based
humanitarian emergency response tasks. Both anomalous
and normal images were converted to small image chips of
size 256× 256 pixels.

2.2. VAE for dwelling object localization and counting

As indicated in Fig. 1 a VAE model is trained on normal im-
ages for image reconstruction. At testing time we expect the
dwellings to be missing from the reconstructed anomalous
images, which thus enables to properly locate and undertake
further segmentation. To this end, a normal image is fed into
the encoder network which acts as the feature extraction mod-
ule. Variational sampling is done in the compressed latent
space and fed into a decoder module where an image is re-
constructed back. As indicated in Eq. 1, given the anomalous
input x the encoder produces compressed latent code qϕ(z|x).
The latent code is fed into the decoder and reconstructed x̂
which is pθ(z|x). The model is optimized by maximizing Ev-
idence Lower Bound (ELBO) [6],
L(θ, ϕ;x) = Ez∼qϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)||pθ(z)),

(1)
where the first term can be interpreted as a reconstruction loss
between the input x and reconstructed x̂ and the second term
is a Kullback–Leibler divergence. Classically, pθ(z) is chosen
as a standardized Gaussian. Further details can be found in

[6, 7]. Once the VAE training has converged, prediction is
done on anomalous image patches containing dwellings taken
within the premises of FDP settlements. Anomaly scores are
then computed using image structural similarity index [14]
which is computed as:

SSIM(x, x̂) = SSIM(ri, pi),

=
(2µrµp + C1)(2σpr + C2)

(µ2
p + µ2

r + C1)(σ2
r + σ2

r + C2)

(2)

where µ and σ2 indicate the mean and the variance of re-
constructed r and predicted p images, respectively, at pixel
location i in a certain window, whose size is a model hy-
perparameter (see Table 1). C1 and C2 are constants set
to 0.01 and 0.03 respectively [14]. These anomaly score
maps are normalized to values between 0 and 1. Then,
based on the anomaly scores, dwelling objects are seg-
mented using a combination of binary and non-parametric
Otsu’s thresholding [15] and morphological opening opera-
tor [16]. Based on our intuition use of coarser image could
constrain proper reconstruction of very bright dwellings, we
also obtained the best results by downscaling input images
to coarser resolution with a scale factor of 8. The anomaly
score is then generated with the original image (see Ta-
ble 1). Finally, the performance of the proposed anomaly
detection approach is evaluated on the unsupervised tasks
of locating and counting the dwelling objects. The unsu-
pervised dwelling segmentation task is evaluated by pixel-
wise area under the Receiver Operating Characteristic curve
(AUC) [17] while unsupervised dwelling counting is evalu-
ated using Mean Absolute Error (MAE) between the model
output count and the reference dwelling counts. Our approach
is also compared with a state-of-the-art anomaly detection
approach based on a VAE with an anomaly attention mech-
anism [10]. Implementation code is provided at https:
//github.com/HGangloff/getch-geohum

Fig. 1: Implementation workflow.

3. RESULTS AND DISCUSSION

The analysis of the results indicates that even though there
is variation between different FDP settlements and seasons,
the combined use of the VAE with an unsupervised anomaly
detection approach shows promising results for locating and
counting of dwellings(Table 1 and Fig. 2). The best dwelling
location score is observed in Nguenygiel followed by Nduta
and Minawao datasets with AUC values of 0.97 and 0.91
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respectively. These areas exhibit relatively less complex
dwelling structures: they are well-spaced and contrast with
the background. On the other hand, the lowest scores are
achieved in Kutupalong and Dagahaley datasets with AUC
values of 0.64 and 0.77 respectively. Dwellings that are not
well detected in those FDP areas are very similar to the vege-
tation and bare land. Therefore, the decoder treats dwellings
as normal elements and thus yields weak anomaly scores.
Based on the MAE values predicted dwelling counts devi-
ate from reference counts with MAE values ranging from
8 to 72 dwellings, depending on dwelling complexity per
dataset, the SSIM window size and the downscaling at in-
put. Anomaly scores created with smaller neighborhood
window (Eq. 2) has enabled relatively better delineation of
individual dwellings (Fig. 3) and better dwelling location
scores (Table 1). The less favorable cases for the counting
task are observed in settlements dominated by very complex
dwelling structures characterized by either contiguous and
dense dwellings (e.g. Kutupalong), small, or extremely low-
contrast-to-background features. Note that such a dataset
represents a tough task even for manual delineation. More-
over, some dwellings are easily reconstructed by the VAE,
thus they do not appear as anomalies and are missed by our
approach. All in all, the absence of detection or the detection
of contiguous dwellings as only one resulted in underesti-
mation of dwelling counts. Our VAE model has achieved
better results than re-implementation of [10] (see Table 1),
especially in locating dwellings. The anomaly attention maps
we obtained were not explicitly strong on dwelling but on the
entire neighbourhood of dwellings. For complex Dagahaley
and Kutupalong datasets, it failed to yield meaningful results.

4. CONCLUSIONS

In this research, we have demonstrated the potential of VAE
for unsupervised dwelling location and counting from differ-
ent FDP sites. VAE can properly localize and count dwellings
properly in settlements with less spatial and spectral com-
plexity. Despite promising results, there is a spatio-temporal
variation of the results which leaves room for improvement
of the proposed approach.Specifically: (1) the inherent com-
plexity of dwelling features in terms of density and contrast
with the background, (2) the VAE model which can some-
times easily reconstruct bright dwellings which resulted in
poor anomaly score to localize and further detect dwellings
(3) the dependence on the window size of the SSIM anomaly
maps. For comprehensive object location and counting, fur-
ther work will focus on latent space conditioning with self-
supervision to get a strong anomaly score, or combination of
different anomaly generation approaches. In a nutshell, for
operational humanitarian emergency response, our new ap-
proach could help generate critical information in real-time
and in highly dynamic situations.

Fig. 2: Results from randomly selected image patches
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Table 1: Results for dwelling localization and counting
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