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INTRODUCTION

A growing proportion of the global population is facing displacement from their home, either staying in the Internally Displaced Persons (IDP) sites or crossing international borders mostly staying in refugee camps. Hereafter we use the inclusive term Forcibly Displaced People (FDP) settlement sites both for IDPs and refugee settlements. Dwelling information is crucial to monitor camp and temporary settlement PLUS authors are funded by Christian Doppler Research Association and Doctors without Borders-Section Austria. expansion, estimate residing populations, and provide respective humanitarian emergency responses and long-term socioeconomic planning. For the last decade, the proliferation of high-resolution Earth Observation (EO) imaging has enabled closer monitoring of FDP sites [START_REF] Lang | Earth observation tools and services to increase the effectiveness of humanitarian assistance[END_REF]. Key elements for efficient information retrieval workflows are speed and automation.

In this aspect, advances in computer vision, especially deep learning, have paved new opportunities for automatic information retrieval about various aspects of FPD settlements. For example, [START_REF] Benz | Understanding a rapidly expanding refugee camp using convolutional neural networks and[END_REF] quantified the spatial expansion and internal densification of FDP settlements from time series highresolution satellite images. More specifically, [START_REF] Lu | Deep learning for effective refugee tent extraction near syria-jordan border[END_REF][START_REF] Quinn | Humanitarian applications of machine learning with remote-sensing data: Review and case study in refugee settlement mapping[END_REF] used instance and semantic segmentation models for dwelling extraction. Similarly, [START_REF] Tiede | Mask r-cnn-based building extraction from vhr satellite data in operational humanitarian ac-tion: An example related to covid-19 response in khartoum, sudan[END_REF] used an instance segmentation model for rapid mapping in complex urban settings in response to a pandemic alert, which has helped humanitarian emergency response operations.

Although deep learning models have proven performance for the detection and segmentation of objects from remote sensing images, the traditional supervised deep learning approaches require an extensive amount of training and validation data, which is often impractical during emergency response because of two reasons, (1) short response time required for humanitarian service delivery, (2) frequent spatial monitoring and extensive geographic coverage is required. This constrains the operational utility of deep learning models in EO-based operational humanitarian response. As a solution, label-efficient strategies like transfer learning [START_REF] Quinn | Humanitarian applications of machine learning with remote-sensing data: Review and case study in refugee settlement mapping[END_REF] and domain adaptation approaches could be employed which both assume the presence of some amount of annotated data for fine-tuning of pretrained models or a sufficient amount of source labeled data for joint training. Beyond the assumption of data availability, sometimes it also fails to transfer relevant representations to undertake intended detection and object counting tasks under different data distributionsand indeed, the scene and object characteristics vary a lot.

Recently, generative models, especially Variational Autoencoders [START_REF] Kingma | Auto-encoding variational bayes[END_REF] (VAE), have shown significant performance in image reconstruction and anomaly detection. They have been successfully applied in wild animal detection from aerial images [START_REF] Gangloff | Variational autoencoder with gaussian random field prior: application to unsupervised animal detection in aerial images[END_REF], ship detection [START_REF] Ferreira | Ship detection in sar images using convolutional variational autoencoders[END_REF], anomaly localization and segmentation of medical images [START_REF] Baur | Autoencoders for unsupervised anomaly segmentation in brain mr images: a comparative study[END_REF], and defect identification [START_REF] Liu | Towards visually explaining variational autoencoders[END_REF] tasks. Based on the work of [START_REF] Gangloff | Variational autoencoder with gaussian random field prior: application to unsupervised animal detection in aerial images[END_REF], we propose an unsupervised dwelling object localization and counting by combining a VAE [START_REF] Kingma | Auto-encoding variational bayes[END_REF] and anomaly detection approaches [START_REF] Gangloff | Variational autoencoder with gaussian random field prior: application to unsupervised animal detection in aerial images[END_REF][START_REF] Baur | Autoencoders for unsupervised anomaly segmentation in brain mr images: a comparative study[END_REF][START_REF] Ruff | A unifying review of deep and shallow anomaly detection[END_REF]. To the best of our knowledge, this is the first study to address building detection in general and dwelling counting in particular as an unsupervised anomaly detection approach using EO data.

METHODS

Datasets and processing

This study uses very high-resolution satellite imagery taken from six different FDP settlements [START_REF] Lang | Multi-feature sample database for enhancing deep learning tasks in operational humanitarian applications[END_REF]((See Table 1). The preparation of the training and testing datasets follows the conceptual definition of anomalous and normal images in unsupervised anomaly detection [START_REF] Ruff | A unifying review of deep and shallow anomaly detection[END_REF]. Accordingly, we first define normal images as patches expected to have high probability of soil and various land cover types other than dwellings. This set of image patches are taken from image areas outside of the FDP settlement premises. Conversely, we define anomalous images as containing dwelling objects: these are thus image chips within FDP settlement premises. For anomalous images, the annotations for evaluation of the model performance are obtained from an in-house [START_REF] Lang | Multi-feature sample database for enhancing deep learning tasks in operational humanitarian applications[END_REF] database, generated as long-term engagement in EO-based humanitarian emergency response tasks. Both anomalous and normal images were converted to small image chips of size 256 × 256 pixels.

VAE for dwelling object localization and counting

As indicated in Fig. 1 a VAE model is trained on normal images for image reconstruction. At testing time we expect the dwellings to be missing from the reconstructed anomalous images, which thus enables to properly locate and undertake further segmentation. To this end, a normal image is fed into the encoder network which acts as the feature extraction module. Variational sampling is done in the compressed latent space and fed into a decoder module where an image is reconstructed back. As indicated in Eq. 1, given the anomalous input x the encoder produces compressed latent code q ϕ (z|x). The latent code is fed into the decoder and reconstructed x which is p θ (z|x). The model is optimized by maximizing Evidence Lower Bound (ELBO) [START_REF] Kingma | Auto-encoding variational bayes[END_REF],

L(θ, ϕ; x) = E z∼q ϕ (z|x) [log p θ (x|z)] -KL(q ϕ (z|x)||p θ (z)),
(1) where the first term can be interpreted as a reconstruction loss between the input x and reconstructed x and the second term is a Kullback-Leibler divergence. Classically, p θ (z) is chosen as a standardized Gaussian. Further details can be found in [START_REF] Kingma | Auto-encoding variational bayes[END_REF][START_REF] Gangloff | Variational autoencoder with gaussian random field prior: application to unsupervised animal detection in aerial images[END_REF]. Once the VAE training has converged, prediction is done on anomalous image patches containing dwellings taken within the premises of FDP settlements. Anomaly scores are then computed using image structural similarity index [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] which is computed as:

SSIM (x, x) = SSIM (r i , p i ), = (2µ r µ p + C 1 )(2σ pr + C 2 ) (µ 2 p + µ 2 r + C 1 )(σ 2 r + σ 2 r + C 2 ) (2) 
where µ and σ 2 indicate the mean and the variance of reconstructed r and predicted p images, respectively, at pixel location i in a certain window, whose size is a model hyperparameter (see Table 1). C 1 and C 2 are constants set to 0.01 and 0.03 respectively [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. These anomaly score maps are normalized to values between 0 and 1. Then, based on the anomaly scores, dwelling objects are segmented using a combination of binary and non-parametric Otsu's thresholding [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] and morphological opening operator [START_REF] Preim | Visual computing for medicine: theory, algorithms, and applications[END_REF]. Based on our intuition use of coarser image could constrain proper reconstruction of very bright dwellings, we also obtained the best results by downscaling input images to coarser resolution with a scale factor of 8. The anomaly score is then generated with the original image (see Table 1). Finally, the performance of the proposed anomaly detection approach is evaluated on the unsupervised tasks of locating and counting the dwelling objects. The unsupervised dwelling segmentation task is evaluated by pixelwise area under the Receiver Operating Characteristic curve (AUC) [START_REF] Bradley | The use of the area under the roc curve in the evaluation of machine learning algorithms[END_REF] while unsupervised dwelling counting is evaluated using Mean Absolute Error (MAE) between the model output count and the reference dwelling counts. Our approach is also compared with a state-of-the-art anomaly detection approach based on a VAE with an anomaly attention mechanism [START_REF] Liu | Towards visually explaining variational autoencoders[END_REF]. Implementation code is provided at https: //github.com/HGangloff/getch-geohum Fig. 1: Implementation workflow.

RESULTS AND DISCUSSION

The analysis of the results indicates that even though there is variation between different FDP settlements and seasons, the combined use of the VAE with an unsupervised anomaly detection approach shows promising results for locating and counting of dwellings(Table 1 and Fig. 2). The best dwelling location score is observed in Nguenygiel followed by Nduta and Minawao datasets with AUC values of 0.97 and 0.91 respectively. These areas exhibit relatively less complex dwelling structures: they are well-spaced and contrast with the background. On the other hand, the lowest scores are achieved in Kutupalong and Dagahaley datasets with AUC values of 0.64 and 0.77 respectively. Dwellings that are not well detected in those FDP areas are very similar to the vegetation and bare land. Therefore, the decoder treats dwellings as normal elements and thus yields weak anomaly scores.

Based on the MAE values predicted dwelling counts deviate from reference counts with MAE values ranging from 8 to 72 dwellings, depending on dwelling complexity per dataset, the SSIM window size and the downscaling at input. Anomaly scores created with smaller neighborhood window (Eq. 2) has enabled relatively better delineation of individual dwellings (Fig. 3) and better dwelling location scores (Table 1). The less favorable cases for the counting task are observed in settlements dominated by very complex dwelling structures characterized by either contiguous and dense dwellings (e.g. Kutupalong), small, or extremely lowcontrast-to-background features. Note that such a dataset represents a tough task even for manual delineation. Moreover, some dwellings are easily reconstructed by the VAE, thus they do not appear as anomalies and are missed by our approach. All in all, the absence of detection or the detection of contiguous dwellings as only one resulted in underestimation of dwelling counts. Our VAE model has achieved better results than re-implementation of [START_REF] Liu | Towards visually explaining variational autoencoders[END_REF] (see Table 1), especially in locating dwellings. The anomaly attention maps we obtained were not explicitly strong on dwelling but on the entire neighbourhood of dwellings. For complex Dagahaley and Kutupalong datasets, it failed to yield meaningful results.

CONCLUSIONS

In this research, we have demonstrated the potential of VAE for unsupervised dwelling location and counting from different FDP sites. VAE can properly localize and count dwellings properly in settlements with less spatial and spectral complexity. Despite promising results, there is a spatio-temporal variation of the results which leaves room for improvement of the proposed approach.Specifically: (1) the inherent complexity of dwelling features in terms of density and contrast with the background, (2) the VAE model which can sometimes easily reconstruct bright dwellings which resulted in poor anomaly score to localize and further detect dwellings (3) the dependence on the window size of the SSIM anomaly maps. For comprehensive object location and counting, further work will focus on latent space conditioning with selfsupervision to get a strong anomaly score, or combination of different anomaly generation approaches. In a nutshell, for operational humanitarian emergency response, our new approach could help generate critical information in real-time and in highly dynamic situations. 
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Table 1 :

 1 Results for dwelling localization and counting

	Dataset	VAE [10] SSIM * 5	SSIM * 11	SSIM * d
	Dagahaley-	-	0.73	0.77	0.76
	2017	-	27	26	20
	Kuletirkidi-	0.62	0.90	0.92	0.93
	2017	30	35	36	26
	Kuletirkidi-	0.62	0.88	0.90	0.91
	2018	28	37	34	23
	Kutupalon-	-	0.69	0.64	0.69
	2017	-	72	72	67
	Minawao-	0.44	0.92	0.91	0.95
	2016	13	16	15	8
	Minawao-	0.54	0.96	0.95	0.96
	2017	42	37	37	34
	Nguenygiel-	0.56	0.98	0.97	0.98
	2017	24	23	25	22
	Nduta-	0.43	0.91	0.91	0.93
	2016	23	17	16	12
	Zamzam-	0.52	0.78	0.81	0.82
	2022	46	40	40	52

* 5 & 11 are SSIM window sizes, d donwscaling; 1 st and 2 nd rows for locating (AUC) and count (MAE) values respectively.