
HAL Id: hal-04253865
https://hal.science/hal-04253865

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Improving Performance Through Object Lifetime
Profiling: the DataFrame Case

Sebastian Jordan Montaño, Nahuel Palumbo, Guillermo Polito, Stéphane
Ducasse, Pablo Tesone

To cite this version:
Sebastian Jordan Montaño, Nahuel Palumbo, Guillermo Polito, Stéphane Ducasse, Pablo Tesone.
Improving Performance Through Object Lifetime Profiling: the DataFrame Case. IWST 2023 - Inter-
national Workshop on Smalltalk Technologies, Aug 2023, Lyon, France. �hal-04253865�

https://hal.science/hal-04253865
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Improving Performance Through Object Lifetime
Profiling: the DataFrame Case
Sebastian Jordan Montaño

1
, Nahuel Palumbo

1
, Guillermo Polito

1
,

Stéphane Ducasse
1

and Pablo Tesone
1

1Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, Park Plaza, Parc scientifique de la Haute-Borne, 40 Av.
Halley Bât A, 59650 Villeneuve-d’Ascq, France

Abstract
Being capable of profiling the object lifetimes of an application gives information that can be used to

optimize the GC performance and improve overall execution time. One can pre-tenure objects based

on profiler information, tune the GC parameters, or take decisions about pre-allocating bigger mem-

ory segments. However, accessing object lifetimes is difficult because it requires monitoring any ob-

ject GC reclamation. We developed an open-source lifetime profiler. Our current implementation does

not require Virtual Machine modification. It is based on ephemerons and method proxies. We profiled

DataFrame and we observed a significant number of objects that lived a long time. We used this informa-

tion to tune the garbage collector parameters and we got up to 6.8 times of performance improvements.

Keywords
memory profiler, garbage collector, object lifetimes, optimization

1. Introduction

Modern programming languages offer automatic memory management through garbage collec-

tors (GC) [1]. This takes the responsibility of allocating objects and freeing the allocated memory

from of the developer. Pharo has a two-generation GC with a scavenging algorithm for the new

generation and a stop-the-world mark-and-compact algorithm for the old generation [2, 3]. The

Pharo GC periodically traverses the memory to detect the objects that are not reachable (an

object is not reachable when it is no longer accessible nor usable). After the memory traversal,

the GC frees the unreachable objects’ memory.

There are some applications in which a significant part of the execution time is spent in

garbage collections. The default GC parameters are rarely ideal for any given application [4].

Consequently, there is considerable potential for optimizing such applications to mitigate

garbage collection overhead. Profiling the object lifetimes gives information that can be used

to optimize GC performance and improve the overall execution time. One can pre-tenure

objects based on profiler information [5], tune the GC parameters [6, 7, 4], or take decisions

of pre-allocating bigger memory segments. We define an object’s lifetime as the difference

IWST 2023: International Workshop on Smalltalk Technologies, August 29-31, 2023, Lyon, France
" sebastian.jordan@inria.fr (S. Jordan Montaño); nahuel.palumbo@inria.fr (N. Palumbo);

guillermo.polito@inria.fr (G. Polito); stephane.ducasse@inria.fr (S. Ducasse); pablo.tesone@inria.fr
(P. Tesone)

~ https://github.com/jordanmontt/ (S. Jordan Montaño)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:sebastian.jordan@inria.fr
mailto:nahuel.palumbo@inria.fr
mailto:guillermo.polito@inria.fr
mailto:stephane.ducasse@inria.fr
mailto:pablo.tesone@inria.fr
https://github.com/jordanmontt/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


between its allocation time and its finalization time 𝑜𝑏𝑗𝑒𝑐𝑡′𝑠 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = 𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒−
𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒. An object’s finalization time is when the GC decides to collect it.

Understanding object lifetimes requires precise profiling information on the allocations and

deallocations (when an object is reclaimed by the GC). Object allocations can be precisely

identified by instrumenting all allocation sites (e.g., send the message basicNew). However,

in generational GCs is not possible to precisely know when an object becomes unreachable.

It will be detected when the GC traverses the memory. A long time may have passed when

an object becomes unreachable and when it is reclaimed. Understanding object deallocation

requires instrumenting automatic reclamation algorithms such as GCs. Furthermore, final-

ization mechanisms such as ephemerons [8] introduce a high memory overhead that reduces

performance [9].

We developed an Object Lifetimes Profiler as a plugin of Illimani
1
. Illimani is a memory

profiler for Pharo[10] and it runs on an unmodified Pharo virtual machine. It is available under

an open-source MIT license. Our profiler tracks the object lifetimes of a given application via

instrumentation by controlling the execution whenever an object is allocated. MethodProxies
2

is a library that decorates and controls the method execution by executing user-defined behavior

before or after a method’s execution. We used this library to do the instrumentation.

We evaluated our solution by observing how object lifetimes relate to performance improve-

ments when tuning the GC. We choose as a case study the loading of a 500 MB dataset into a

DataFrame [11]. We have selected DataFrame3
library for our study because it is often used in

memory-intensive applications such as machine learning, data mining, and data analysis [12].

The profiler gave us object lifetimes.

We observed that our case study has 25% of long-lived objects that represent 40% of the

allocated memory (Figures 4, 5). Applications that have many objects that live a fairly long time

suffer from performance issues [13]. Increasing the GC heap size has a significant impact on GC

performance [7, 4]. With this information, we decided to tune the GC parameters to see if we can

get performance improvements [14, 13, 6]. We chose 5 non-default GC parameter configurations

that increase the heap size and we then benchmarked the loading of the DataFrame with these

configurations. We obtained improvements of up to 6.8 times compared to the default GC

parameters when the number of full garbage collections is reduced.

Paper’s contributions. This paper makes the following contributions:

• It presents the challenges of lifetime profiling opening the door for future profiler im-

provements.

• It introduces a lifetime profiler capable of tracking the object lifetimes for a given applica-

tion with the unmodified Pharo VM.

Paper’s outline. Section 2 explains the automatic memory management in Pharo and the

challenges of computing the object lifetimes; Section 3 explains our solution; Section 4 explains

the validation of our solution profiling a memory-intensive application; Section 5 presents the

discussion; Section 6 presents related work; and Section 7 finishes with the conclusion and the

future work.

1

https://github.com/jordanmontt/illimani-memory-profiler

2

https://github.com/pharo-contributions/MethodProxies

3

https://github.com/PolyMathOrg/DataFrame



2. Automatic memory management in Pharo

Pharo has a two-generation garbage collector with a young and an old generation. The newly

allocated objects are allocated in the new generation, also called new space. The old space is

where the objects, after surviving a certain number of GC cycles are promoted. This promoting

process is called tenuring.

Generational GCs are designed to leverage an empirical property of objects: young objects

are more prone to die while older ones tend to persist in memory [13]. These GCs are configured

to exploit this empirical property.

The new space uses a scavenging algorithm while the old space uses a stop-the-world mark-

and-compact algorithm [2, 3]. An incremental garbage collection executes the scavenging

algorithm while a full garbage collection executes both a scavenging and the stop-the-world

mark-and-compact algorithm. Running a full garbage collection is slower than an incremen-

tal one by orders of magnitude [14]. For this reason, the scavengers are executed orders of

magnitude more often.

Each time that a full garbage collection is executed, the GC traverses the objects that are

in the old space to detect the ones that are not reachable to then reclaim them. An object is

not reachable when it stops being accessible and usable by the application. Afterwards, the

GC frees the memory of all the non-reachable objects. Ephemerons [8] are a new finalization

mechanism that is implemented in the Pharo Virtual Machine version 10
4
. They allow one to

perform a user-defined action when an object is about to be reclaimed by the GC.

In Pharo, almost all computations are done by sending a message [15]. This is the case for

allocating an object too. In Pharo 11, 4 methods are responsible for allocating objects: Behav-
ior»basicNew , Behavior»basicNew: , Number»@ , and Array class»new: . These methods are

special methods that are executed natively.

Understanding object lifetimes requires precise profiling information about the allocations

and the garbage collections. Object allocations can be precisely identified by instrumenting the

allocation sites (e.g., the allocator methods). However, as Pharo has a two-generation GC is not

possible to precisely know when an object becomes unreachable (stops being accessible). A

long time may pass until the object became unreachable and when the GC decided to finalize

it. Detecting when an object is being reclaimed by the automatic memory manager requires

instrumenting the GC. The available finalization mechanisms in Pharo, such as ephemerons [8],

introduce a high memory overhead that reduces performance [9].

3. Profiling object lifetimes

We instrumented the 4 allocator methods (Behavior»basicNew , Behavior»basicNew: , Num-
ber»@ , and Array class»new: ) to intercept whenever they are invoked using MethodProxies.

MethodProxies allow one to decorate and control the execution of a method. With the instru-

mentation, we are able to capture the exact allocation time. Within the instrumentation, we

also installed an ephemeron for each of the allocated objects that will set its finalization time

when the object will be reclaimed by the GC. We also store the object’s size in memory.

4

https://github.com/pharo-project/pharo-vm



Instrumentation

basicNew

invokes

Instrumentation

allocates object

Object: Array
#123

Ephemeron
#111

Model

allocationTime: n
finalizationTime: -

Registry
references

finalize
r

key

Array class
returns the allocated 

object

returns it to
 the sender

invokes

1

2
3

4

5

Figure 1: The allocation of an object at a time n

Ephemeron
#111

Object: Array
#123

Model

allocationTime: n
finalizationTime: m

m
ou

rn

finalize

Ep
he

m
er

on
 is

 
co

ns
um

ed

1 2

3

key

Finalization Queue

Object #123 is 
garbage collected 4

Figure 2: The finalization of an object at a time m

Figure 1 describes an object’s allocation execution. First, a sender requests an object al-

location. For example Array class is requesting an object allocation invoking the method

Behavior»basicNew . After the allocation is produced, the instrumentation captures the execu-

tion before the object is returned to the sender. Inside the instrumentation, an object’s model is

created that will hold the object’s allocation and finalization time and its size in memory. The

object’s allocation time is set and an ephemeron is instantiated.

When the object is being garbage collected the ephemeron will set its finalization time in the

object’s model. Figure 2 shows an object’s finalization. First, the GC detects that an ephemeron

can be finalized because it is unreachable. The GC will put the ephemeron into a finalization

queue. Then, the GC will consume the ephemerons from the finalization queue one by one.

The message mourn will be sent to the ephemeron as part of the finalization process. The

ephemeron will send the message finalize to its finalizer, which is the object’s model. This

finalizer will set the object’s finalization time. Finally, the GC frees the memory of the object.

An object’s finalization time is not exact, it rather depends on when the GC detects that the

object is unreachable. As discussed in Section 2, an object is detected as unreachable when the

GC traverses the memory in both, the new and the old space.

4. Improving DataFrame performance through lifetime
profiling

This section describes the effectiveness of our solution. We answer the following research

question:

• Does our lifetime profiler provide information that can lead to improvements in GC perfor-
mance?



Application’s Lifetime Profile

P

Application to Profile

3. Chose GC tuned 
parameters based on 
object lifetimes and 

benchmark information

5. Did the performance improved?

GC tuned 
parameters

2. Benchmark it with the
default GC parameters

4. Benchmark the application
again with the tuned GC parameters

1. Profile the application

Default GC parameters
benchmark

Tuned GC parameters
benchmark

Figure 3: Validation methodology

We respond to this question positively. We evaluated our profiler by profiling the execution

of loading a 500 MB CSV file into a DataFrame. We choose DataFrame as our target application

because it is a memory-intensive application that supports loading big files to do data engineering

and machine learning [12].

4.1. Methodology

We applied the following methodology for validating our profiler: We profile the execution of a

given application and we then benchmark it to know how much time was spent on garbage

collections. Then, we choose non-default GC parameters taking into consideration the object

lifetimes and the GC spent time. If the profiler reports a significant quantity of long-lived

objects, we choose non-default GC parameters that increase the memory heap and reduce the

number of full garbage collections. With these custom GC parameters, we benchmark again

our target application. We finally validate our profiler comparing the performance with the

tuned GC parameters against the default ones. Figure 3 explains this process.



-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0 B

9 B

116 B

1 KB

13 KB

145 KB

1 MB

16 MB

180 MB

1 GB

Lifetime in seconds

M
em

or
y 

(lo
g 

sc
al

e)

60%

Figure 4: Object lifetimes profile by memory for a 500MB dataset

4.2. Lifetime profiling results

The profiler gives a density chart of the object lifetimes. We grouped the object lifetimes by

intervals of one second. All objects whose lifetime duration has the same second will be in the

same bucket. In Figure 4, we calculated the density as a function of the actual memory size

occupied by the objects. We can observe that around 40% of memory stayed referenced for a

long time.

In Figure 5 we calculated the density but in function by the number of objects instead of the

occupied memory. Crossing this information with Figure 4 we get that 25% of the objects that

represent 40% of the GC memory stay referenced for a long time.

4.3. Benchmarking DataFrame

We benchmarked the loading of a DataFrame but this time without the instrumentation. We

used the default GC parameters when running these benchmarks. To improve the reproducibility

of benchmarking, we used the best developer techniques for the benchmarks [16]: we cut the

internet connexion and stopped all non-vital applications. We run each of the benchmarks

n-times and then we reported the average execution time with the standard deviation. We

used benchy5
as the infrastructure for running the benchmarks. Benchy is an open-source

application that serves as configurable infrastructure to run customizable benchmarks in Pharo.

We benchmarked the loading of 3 CSV files of different sizes: 500 MB, 1.6 GB, and 3.1 GB.

We present the results of the benchmarks for the 3 different CSV files in Table 1.

5

https://github.com/tesonep/benchy



-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

35

217

1,311

7,900

47,557

286,265

1,723,096

10,371,664

Lifetime in seconds

N
um

be
r o

f o
bj

ec
ts

 (l
og

 sc
al

e)

75%

Figure 5: Object lifetimes profile for a 500MB dataset by number of objects

Table 1
Benchmark when loading a DataFrame with the default GC parameters

Dataset # of scavengers # of full GCs GC time Total time GC time in %
500 MB 266 18 11 sec 1 min 11 sec 15%
1.6 GB 304 36 1 min 4 min 8 sec 22%
3.1 GB 1143 309 1 h 3 min 13 sec 1 h 11 min 5 sec 89%

The benchmarks that are presented in Table 1 show that there is a significant part of the

execution time spent doing garbage collections, going from 15% to 89%, with the default GC

parameters.

4.4. Tuning garbage collector parameters

Generational GCs suffer from poor performance when dealing with memory-intensive ap-

plications that generate numerous intermediate objects, which live a fairly long time under

the default GC parameters [17, 13]. Our profiler showed that DataFrame is an application

that produces long-lived objects. DataFrame has 25% of the objects that represent 40% of the

allocated memory that live for a fairly long time (Figures 4, 5). Increasing the GC heap size

has a significant impact on GC performance [7, 4]. One can reduce GC time by tuning the GC

parameters [6]. The benchmarks exhibited optimization opportunities by reducing the garbage

collection time.

Generational GCs are not optimized for applications with a substantial number of long-lived

objects. Instead, they are specifically configured for applications where objects tend to die

young [13]. We discussed with Pharo experts about Pharo’s GC implementation details. With

this internal knowledge of Pharo’s GC implementation and the DataFrame internals, we chose



the 5 custom GC parameters. We chose by hand these 5 custom GC parameters that we knew

will increase the heap size and reduce the number of garbage collections.

The Pharo GC has 4 available customizable parameters. In Pharo, the heap size can be seen as

the sum of the new and the old space. One can control the heap size by tuning these customizable

GC parameters.

• Eden size represents 5/7 of the new space and it is where the objects are allocated; the

other 2/7 of space is used for copying objects.

• Growth headroom is the minimum amount of space the GC will request to the operating

system to allocate

• Shrink threshold is the amount of free space that the GC will manage before giving it

back to the OS.

• GC ratio is a percentage that triggers a full garbage collection when the heap will grow

that percentage.

Then as explained in Figure 3, we benchmarked the loading of the DataFrame with the 3

different CSV files with these 5 GC parameter configurations to see if we reduce the garbage

collection time. We obtained improvements of up to 6.8 times compared to the default GC

parameters.

Table 2 describes the 5 non-default GC parameters that we chose.

Table 2
GC tuning parameter configurations

Configuration Eden size Growth headroom Shrink threshold GC ratio
Default 15MB 16MB 32MB 33%

Configuration 1 64MB 64MB 128MB 250%
Configuration 2 150MB 128MB 128MB 250%
Configuration 3 300MB 128MB 128MB 500%
Configuration 4 300MB 256MB 256MB 1000%
Configuration 5 300MB 512MB 512MB 1000%

In the following tables, we present the results that we obtained re-running the 3 benchmarks

with the 5 configurations. For the 500 MB CSV, we got from the benchmark in Table 1 that

15% of the time is spent on garbage collecting. In Table 3 we observe that we increased the

performance up to 1.2 times.

In Table 4 we observe that we increased the performance up to 1.2 times for loading the 1.6

GB CSV file into the DataFrame. For this CSV file, we got 22% execution passed doing garbage

collections. The performance improvements are the same as the precedent benchmark.

In Table 5 we observe that we increased the performance up to 6.8 times with configuration 5.

This enhancement can be attributed to the fact that, for this 3.1 GB, 89% of the execution time is

spent doing garbage collections. Configuration 5 has a larger memory footprint compared to

the default parameters. Comparing Configuration 5 with the default GC configuration, when

the GC requires more memory it allocates segments of 512 MB instead of 32 MB and the new

space starts with 512 MB instead of 15 MB.



Table 3
Changing the parameters for the 500 MB DataFrame

GC Configuration GC spent time Total execution time Improved performance
Default 11.18 sec 70.78 sec 1×

Configuration 1 4.08 sec 63.72 sec 1.1×
Configuration 2 2.91 sec 64.10 sec 1.1×
Configuration 3 2.07 sec 61.01 sec 1.1×
Configuration 4 2.21 sec 60.78 sec 1.2×
Configuration 5 2.17 sec 60.58 sec 1.2×

Table 4
Changing the parameters for the 1.6 GB DataFrame

GC Configuration GC spent time Total execution time Improved performance
Default 60.31 sec 4 min 8 sec 1×

Configuration 1 42.48 sec 3 min 54 sec 1.1×
Configuration 2 17.97 sec 3 min 30 sec 1.2×
Configuration 3 14.99 sec 3 min 23 sec 1.2×
Configuration 4 11.69 sec 3 min 19 sec 1.2×
Configuration 5 12.93 sec 3 min 20 sec 1.2×

Table 5
Changing the parameters for the 3.1 GB DataFrame

GC Configuration GC spent time Total execution time Improved performance
Default 58 min 18 sec 1 h 6 min 18 sec 1×

Configuration 1 9 min 41 sec 17 min 46 sec 3.7×
Configuration 2 4 min 57 sec 12 min 54 sec 5.1×
Configuration 3 5 min 8 sec 13 min 2 sec 5.1×
Configuration 4 2 min 42 sec 10 min 37 sec 6.2×
Configuration 5 1 min 47 sec 9 min 42 sec 6.8×

5. Discussion

We describe some challenges of object lifetimes profile that we faced during the writing of this

paper:

GC custom parameters. We chose the GC parameters arbitrarily based on expert knowledge

of Pharo’s GC implementation and the object lifetimes of our target application. The parameters

were chosen with the objective of increasing the heap size and reducing the number of garbage

collections.

Cost of the instrumentation. Our implementation relies on instrumentation. We measured

the impact of it and we got an overhead of at least 50 times According to our measurements,

the ephemerons have the biggest impact on the overhead. For this reason, we were not able to

profile loading a bigger CSV file. Nevertheless, the lifetime profile that we got was useful for

taking GC optimization decisions for the 3 different CSV files that we benchmarked.

GC Stress. For tracking the object lifetimes we allocate an object’s model that stores the

allocation and finalization time of the object as long as the size in memory. We also allocate an



ephemeron to finalize the object when it will be collected. This introduces stress to the GC as

we are multiplying the allocations by three.

Ephemeron’s Queue. When the GC detects that an ephemeron is a candidate for collection,

it puts it into a finalization queue. Once in the queue, it creates a strong reference to its key

object, the one that is being garbage collected. If one of the objects in the queue is the root of a

sub-graph of unreachable objects, this strong reference will avoid the whole object sub-graph

from being collected and it will only collect the root. This can delay the collection of some

objects, increasing their lifetime.

Nepotism. Nepotism [13] happens when tenured garbage makes its referenced objects,

which are also garbage, to be tenured too. This happens when an object that is about to die

gets tenured. As the object is now in the old space, until a full GC is triggered, the GC will not

detect that the object became unreachable, it will treat it as reachable until the next run of the

full garbage collection. If this tenured garbage references other objects, those objects become

candidates for being tenured and can eventually get tenured too. This affects negatively the GC

performance since it passes time copying and updating references of garbage. This problem is

not specific to our profiler nor to the instrumentation but to the generational GCs themselves.

6. Related work

Automatic GC parameter tuning. Lengauer et al. [6] proposed a technique to automatically

tune the GC parameters for the Java programming language. They used an optimization

algorithm that adjust the parameters with the objective function being the aggregated garbage

collection time. The authors ran their experiments on the Java 8 Hotspot
TM

VM. The difference

with our work is that they optimized the GC performance automatically in a black-box manner

while we used the object lifetimes information given by our profiler to take decisions about the

appropriate GC parameters.

Adaptative tenuring policies. Ungar et al. [13] instrumented a Smalltalk VM to track the

object lifetimes. They use this information to change the tenuring policies to reduce the amount

of tenuring garbage. Their objective was to optimize the GC performance. Their work differs

from ours in the sense that they used to object lifetimes information to change the tenuring

policies while we used it to tune the GC parameters.

GC infrastructure evaluation. Kaleba et al. [17] benchmarked the GC of the Cog VM for

one memory-intensive application. The difference with our work is that we used the object

lifetimes profile to choose the custom GC parameters for our application. We then benchmarked

our application with these different GC configurations and compared their performance. Kaleba

et at. ran their benchmarks with different GC algorithms and modified only one GC parameter:

the Eden size. They chose the Eden size value with their application’s knowledge without any

profile information.

Profiled-based pretenuring Blackburn [5] et al. used profile information to make decisions

for pre-tenuring objects. In their approach, they took objects allocation information such as the

object lifetimes to pre-tenure objects for increasing performance. Our approach is different in

the sense that we use the object lifetimes to tune the GC parameters.

Hybrid finalization mechanism. Valloud [9] implemented a new finalization mechanism



for the HPS Smalltalk VM. Valloud explains that there were performance issues with the two

available finalization mechanisms: Weak Arrays and Ephemerons. Weak arrays are described

as inefficient and ephemerons introduce a large memory overhead. The author developed a

new finalization mechanism that combines both approaches for improving performance. We

observed the same large memory overhead caused by the ephemerons in our use case.

7. Conclusion and future work

We developed a lifetime profiler that tracks the lifetime of objects that were allocated during

the execution of an application. It tracks the object lifetimes of a given application via instru-

mentation by controlling the execution whenever an object is allocated. We profiled the object

lifetimes of a DataFrame when loading a big CSV file. We evaluated our solution by observing

how object lifetimes relate to performance improvements when tuning the GC. We obtained

a profile that exhibited that there were 25% of objects that represent 40% of the memory that

lived for a fairly long time.

We discussed with Pharo experts about the implementation details of Pharo’s GC. With the

knowledge of how Pharo’s GC is implemented and the fact that DataFrame produces a fairly

large number of long-lived objects, we chose 5 GC parameter configurations that increase the

heap size. We then benchmarked the loading of 3 big CSV files into a DataFrame with these 5

custom parameters and we observed a performance increase up to 6.8 times compared with the

default GC parameters.

As future work, we plan to profile the object lifetimes at the virtual machine level to reduce

the overhead that the instrumentation introduces. To mitigate the GC stress we want to explore

the idea of sampling the object allocations and compare the sampling precision with taking all

the allocations. We also aim to explore automated techniques for detecting an optimal set of GC

parameters to enhance an application’s performance. Finally, we also want to explore taking

pre-tenuring decisions using the object lifetimes profile information.

8. Acknowledgments

We express our gratitude to the anonymous reviewers for providing valuable comments on the

draft of this paper.

References

[1] R. Jones, A. Hosking, E. Moss, The garbage collection handbook: the art of automatic

memory management, CRC Press, 2016.

[2] G. Polito, P. Tesone, J. Privat, N. Palumbo, S. Ducasse, Heap fuzzing: Automatic garbage

collection testing with expert-guided random events, in: International Conference on

Software Testing, 2023.

[3] E. Miranda, C. Béra, E. G. Boix, D. Ingalls, Two decades of Smalltalk VM development: live

VM development through simulation tools, in: Proceedings of International Workshop on



Virtual Machines and Intermediate Languages (VMIL’18), ACM, 2018, pp. 57–66. doi:10.
1145/3281287.3281295.

[4] T. Brecht, E. Arjomandi, C. Li, H. Pham, Controlling garbage collection and heap growth

to reduce the execution time of java applications, ACM Sigplan Notices 36 (2001) 353–366.

[5] S. M. Blackburn, M. Hertz, K. S. Mckinley, J. E. B. Moss, T. Yang, Profile-based pretenuring,

ACM Transactions on Programming Languages and Systems (TOPLAS) 29 (2007) 2–es.

[6] P. Lengauer, H. Mössenböck, The taming of the shrew: Increasing performance by auto-

matic parameter tuning for java garbage collectors, in: Proceedings of the 5th ACM/SPEC

international conference on Performance engineering, 2014, pp. 111–122.

[7] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, J. E. B. Moss, Automatic heap sizing: Taking

real memory into account, in: Proceedings of the 4th international symposium on Memory

management, 2004, pp. 61–72.

[8] B. Hayes, Ephemerons: A new finalization mechanism, in: International Conference on

Object-Oriented Programming Systems Languages and Applications (OOPSLA’97), 1997.

doi:10.1145/263700.263733.

[9] A. Valloud, Linked weak reference arrays: A hybrid approach to efficient bulk finalization,

in: Proceedings of the International Workshop on Smalltalk Technologies, 2015, pp. 1–6.

[10] S. Ducasse, G. Rakic, S. Kaplar, Q. D. O. written by A. Black, S. Ducasse, O. Nierstrasz,

D. P. with D. Cassou, M. Denker, Pharo 9 by Example, Book on Demand – Keepers of the

lighthouse, 2022. URL: http://books.pharo.org.

[11] O. Zaytsev, N. Papoulias, S. Stinckwich, Towards exploratory data analysis for pharo, in:

Proceedings of the 12th edition of the International Workshop on Smalltalk Technologies,

2017, pp. 1–6.

[12] O. Zaitsev, S. Jordan Montaño, S. Ducasse, How fast is ai in pharo?

benchmarking linear regression, in: IWST 2022-International Workshop on Smalltalk

Technologies, 2022.

[13] D. Ungar, F. Jackson, An adaptive tenuring policy for generation scavengers, ACM

Transactions on Programming Languages and Systems (TOPLAS) 14 (1992) 1–27.

[14] D. Ungar, F. Jackson, Tenuring policies for generation-based storage reclamation, in:

Proceedings OOPSLA ’88, volume 23, 1988, pp. 1–17.

[15] A. Bergel, Counting messages as a proxy for average execution time in pharo,

in: Proceedings of the 25th European Conference on Object-Oriented Programming

(ECOOP’11), LNCS, Springer-Verlag, 2011, pp. 533–557. URL: http://bergel.eu/download/
papers/Berg11c-compteur.pdf.

[16] A. Georges, D. Buytaert, L. Eeckhout, Statistically rigorous java performance evaluation, in:

Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Program-

ming Systems, Languages and Applications, OOPSLA ’07, Association for Computing Ma-

chinery, New York, NY, USA, 2007, pp. 57–76. URL: https://doi.org/10.1145/1297027.1297033.

doi:10.1145/1297027.1297033.

[17] S. Kaleba, C. Béra, E. Miranda, Garbage collection evaluation infrastructure for the cog vm,

in: Implementation, Compilation, Optimization of Object-Oriented Languages, Programs

and Systems Workshop, ICOOOLPS’18, 2018.

http://dx.doi.org/10.1145/3281287.3281295
http://dx.doi.org/10.1145/3281287.3281295
http://dx.doi.org/10.1145/263700.263733
http://books.pharo.org
http://bergel.eu/download/papers/Berg11c-compteur.pdf
http://bergel.eu/download/papers/Berg11c-compteur.pdf
https://doi.org/10.1145/1297027.1297033
http://dx.doi.org/10.1145/1297027.1297033

	1 Introduction
	2 Automatic memory management in Pharo 
	3 Profiling object lifetimes 
	4 Improving DataFrame performance through lifetime profiling 
	4.1 Methodology
	4.2 Lifetime profiling results
	4.3 Benchmarking DataFrame
	4.4 Tuning garbage collector parameters

	5 Discussion
	6 Related work 
	7 Conclusion and future work
	8 Acknowledgments

