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Burling graphs revisited, part I:

New characterizations

Pegah Pournajafi∗ and Nicolas Trotignon∗

September 8, 2023

Abstract

The Burling sequence is a sequence of triangle-free graphs of
increasing chromatic number. Each of them is isomorphic to the
intersection graph of a set of axis-parallel boxes in R3. These
graphs were also proved to have other geometrical representations:
intersection graphs of line segments in the plane, and intersection
graphs of frames, where a frame is the boundary of an axis-aligned
rectangle in the plane.

We call Burling graph every graph that is an induced subgraph of
some graph in the Burling sequence. We give five new equivalent ways
to define Burling graphs. Three of them are geometrical, one is of a
more graph-theoretical flavor, and one, that we call abstract Burling
graphs, is more axiomatic.

Keywords: Burling graphs, intersection graphs of geometric objects

1 Introduction

Graphs in this paper have neither loops nor multiple edges. In this introduction
they are non-oriented, but oriented graphs will be considered in the rest of the
paper. A class of graphs is hereditary if it is closed under taking induced subgraphs.
A triangle in a graph is a set of three pairwise adjacent vertices, and a graph is
triangle-free if it contains no triangle. The intersection graph of sets S1, . . . , Sn is
defined as follows: the vertices are the sets, and for i ̸= j, Si is connected to Sj by
an edge if and only if Si ∩ Sj ̸= ∅.
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Burling graphs

In 1965, Burling [2] proved that triangle-free intersection graphs of axis-aligned
boxes in R3 have unbounded chromatic number. The work of Burling uses purely
geometric terminology. However, one may rephrase it into a more modern graph
theoretic setting and define in a combinatorial way a sequence of triangle-free graphs
with increasing chromatic number, and prove that each of them is isomorphic to
the intersection graph of a set of axis-parallel boxes in R3. The definition of this
sequence is recalled in Section 4, and we call it the Burling sequence.

It was later proved that every graph in the Burling sequence is isomorphic to
the intersection graph of various geometrical objects. In a work of Pawlik, Kozik,
Krawczyk, Lason, Micek, Trotter and Walczak [7], the objects under consideration
are line segments in the plane. The intersection graphs of line segments in the plane
are called line segment graphs. In fact, the Burling sequence was rediscovered in [7],
and the way it is presented in recent works is inspired by this paper.

In works of Pawlik, Kozik, Krawczyk, Lason, Micek, Trotter and Walczak [6],
Krawczyk, Pawlik and Walczak [5], and later Chalopin, Esperet, Li and Ossona
de Mendez [3], the objects under consideration are frames, where a frame is the
boundary of an axis-aligned rectangle in the plane. In fact, a stronger result is
given in [5]: it is proved that every graph of the Burling sequence is a restricted
frame graph, meaning that the frames satisfy several constraints that we recall in
Section 6.

The Burling sequence also attracted attention lately because it is a good source
of examples of graphs of high chromatic number in some hereditary classes of graphs
that are not defined geometrically, but by excluding several patterns as induced
subgraphs. Most notably, it is proved in [7] that they provide a counter-example
to a well-studied conjecture of Scott, see [11] for a survey.

Since graphs of the Burling sequence appear in the context of hereditary classes
of graphs, it is natural to define Burling graphs as graphs that are induced subgraphs
of some graph in the Burling sequence. Observe that Burling graphs trivially form
a hereditary class (in fact, the smallest hereditary class that contains the Burling
sequence). The goal of this work is a better understanding of Burling graphs.

New geometrical characterizations

In this first part, we give three new characterizations of Burling graphs: as
intersection graphs of frames, as intersection graphs of line segments in the plane
and as intersection graphs of boxes of the 3-dimensional space. The new feature of
our characterizations is that they provide the following equivalences. We put some
restrictions on the geometrical objects, to obtain what we call strict frame graphs,
strict line segment graphs and strict box graphs. The precise definitions are given
in Section 6. We then prove that a graph G is a Burling graph if and only if it is
a strict frame graph (resp. a strict line segment graph, a strict box graph).

Observe that in [7] (resp. [3, 6, 7]), it is proved that every Burling graph is
a strict line segment graph (resp. a strict frame graph). The proofs there are
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implicit because the authors of these works do not mention our new restrictions,
but it is straightforward to check that their way to embed Burling graphs in the
plane satisfies them. Note that as pointed out by an anonymous referee, strict
frame graphs are implicitly defined in [5] as intersection graphs of clean directed
families of frames avoiding some configurations. Our contribution is the definition
of the new restrictions on the geometrical objects and the converse statements:
every strict frame graph and every strict line segment graph is a Burling graph.
Examples of line segment graphs that are not Burling graphs are already given
in [3]. We go further by providing examples of restricted frame graphs that are not
Burling graphs, showing that our new restrictions are necessary, see Figures 13, 14
and 15. Note that proving that the examples are not Burling graphs is non-trivial
and postponed to the second part of this work [9].

Combinatorial characterizations

The definition of Burling graphs as induced subgraphs of graphs in the Burling
sequence is not very easy to handle, at least for us. So, to prove the equivalence
between Burling graphs and our geometrical constructions, we have to introduce
two other new equivalent definitions of Burling graphs. The first one, called derived
graphs, is purely combinatorial: we see how every Burling graph can be derived
from some tree structure using several simple rules (and we prove that only Burling
graphs are obtained). Derived graphs are defined in Section 3 and their equivalence
with Burling graphs is proved in Section 4. In fact, derived graphs have a natural
orientation that is very useful to consider, so they are defined as oriented graphs.
Then, in Section 5 we prove that derived graphs can be defined as graphs obtained
from a set with two relations satisfying a small number of axioms, again with simple
rules. We call these abstract Burling graphs.

The advantage of this approach is that derived graphs seem to be specific and
well structured, while abstract Burling graphs seem to be general (though they are
equivalent). As a consequence, derived graphs turn out to be useful to study the
structure of Burling graphs, and this will be mostly done in the second part of
this work [9]. On the other hand, since abstract Burling graphs are “general”, it
is easy to check that geometrical objects satisfy the axioms in their definition. So
the proof that every graph arising from one of our geometrical characterizations is
an abstract Burling graph, and therefore a Burling graph, is not too long. This
is done in Section 6. Moreover, abstract Burling graphs might be of use to prove
other geometrical or combinatorial characterizations of Burling graphs.

Sum up

To sum up, we have now six different ways to define Burling graphs: as induced
subgraphs of graphs in the classical Burling sequence, as derived graphs, as abstract
Burling graphs, as strict frame graphs, as strict line segment graphs and as strict
box graphs. In Figure 1, we sum up where the different steps of the proofs of the
equivalence between all classes can be found.
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Strict line segment graphs
Section 6

Burling graphs
Section 4

Derived graphs
Section 3

Abstract
Burling graphs

Section 5

Strict frame graphs
Section 6

Strict box graphs
Section 6

Theorem
6.12

[4]
(S
ee

Le
mma 6.1

1.)

Theorem 4.9

[3] (See Lemma 6.5.)

Theorem 5.7

Th
eor

em
6.6

Theorem 6.15

Figure 1: The six equivalent classes of graphs in this article. Each arrow
shows an inclusion and the label of the arrow shows where the proof may
be found.

The second [9] and third [10] parts of this work are about the structure of
Burling graphs and are motivated by the chromatic number in hereditary classes
of graphs. For instance, we prove a decomposition theorem for oriented Burling
graphs and study under what conditions simple operations such as gluing along a
clique, subdividing an edge or contracting an edge preserve being a Burling graph.
We prove that no subdivision of K5 is a Burling graph. Moreover, we classify as
Burling or not Burling many series-parallel graphs.

We also prove that no wheel is a Burling graph, where a wheel is a graph made
of a chordless cycle and a vertex with at least three neighbors in the cycle. This last
result was already known by Scott and Seymour (personal communication, 2017).
Very recently, Davies rediscovered this independently and published a proof [4].
Some of the results of Part 2 and Part 3 appeared in the master thesis of the first
author, see [8].
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2 Notation

There is a difficulty regarding notations in this paper. The graphs we are
interested in will be defined from trees. More specifically, a tree T is considered
and a graph G is derived from it, following some rules defined in the next section.
We have V (G) = V (T ) but E(G) and E(T ) are different (disjoint, in fact). Also,
even if we are originally motivated by non-oriented graphs, it turns out that G has
a natural orientation, and considering this orientation is essential in many of our
proofs.

So, in many situations, we have to deal simultaneously with the tree, the
oriented graph derived from it and the underlying graph of this oriented graph. A
last difficulty is that since we are interested in hereditary classes, we allow removing
vertices from G. However, we have to keep all vertices of T to study G because of
the so-called shadow vertices: the vertices of T that are not in G, which nevertheless
capture essential structural properties of G. All this will become clearer in the next
section. For now, it explains why we need to be very careful about the notation
that is mostly classical, see [1].

Notation for trees

A tree is a graph T such that for every pair of vertices u, v ∈ V (T ), there exists
a unique path from u to v. A rooted tree is a pair (T, r) such that T is a tree and
r ∈ V (T ). The vertex r is called the root of (T, r). Often, the rooted tree (T, r) is
abusively referred to as T , in particular when r is clear from the context.

In a rooted tree, each vertex v except the root has a unique parent which is the
neighbor of v in the unique path from the root to v. We denote the parent of v
by p(v). If u is the parent of v, then v is a child of u. A leaf of a rooted tree is a
vertex that has no children. Note that every tree has at least one leaf. We denote
by L(T ) the set of all leaves of T .

A branch in a rooted tree is a path v1v2 . . . vk such that for each
i ∈ {1, . . . , k − 1}, the vertex vi is the parent of vi+1. This branch starts at v1
and finishes at vk. A branch that starts at the root and finishes at a leaf is a
principal branch. Note that every rooted tree has at least one principal branch.

If T is a rooted tree, the descendants of a vertex v are all the vertices that are
on a branch starting at v. The ancestors of v are the vertices on the unique path
from v to the root of T . Notice that a vertex is a descendant and an ancestor of
itself. Any descendant of a vertex v, other than itself, is called a proper descendant
of v.

It is classical to orient the edges of a rooted tree (from the root, or sometimes to
the root), but to avoid any confusion with the oriented graph derived from a tree,
we will not use any of these orientations here. Also, we will no more use words such
as neighbors, adjacent, path, etc. for trees. Only parent, child, branch, descendant
and ancestor will be used.
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Notation for graphs and oriented graphs

By graph, we mean a non-oriented graph with no loops and no multiple edges.
By oriented graph, we mean a graph whose edges (called arcs) are all oriented, and
no arc is oriented in both directions. When G is a graph or an oriented graph, we
denote by V (G) its vertex set. We denote by E(G) the set of edges of a graph G
and by A(G) the set of arcs of an oriented graph G. When u and v are vertices, we
use the same notation uv to denote an edge and an arc. However, observe that the
arc uv is different from the arc vu, while the edge uv is equal to the edge vu.

For an oriented graph G, its underlying graph is the graph H such that
V (H) = V (G) and for all u, v ∈ V (H), uv ∈ E(H) if and only if uv ∈ A(G)
or vu ∈ A(G). We then also say that G is an orientation of H. When there is no
risk of confusion, we often use the same letter to denote an oriented graph and its
underlying graph.

In the context of oriented graphs, we use the words in-neighbor, out-neighbor,
in-degree, out-degree, sink and source with their classical meaning. Terms from
the non-oriented realm, such as degree, neighbor, isolated vertex or connected
component, when applied to an oriented graph, implicitly apply to its underlying
graph.

Notation for binary relations

Let S be a set, and let R be a binary relation on S. We write xR y for
(x, y) ∈ R, and x�R y for (x, y) /∈ R. For an element s ∈ S, we denote by [sR]
the set {t ∈ S : sR t}.

The relation R is asymmetric if for all x, y ∈ S, xR y implies y�Rx, and it is
transitive if for all x, y, z ∈ S, xR y and y R z implies xR z. The relation R is a
strict partial order if it is asymmetric and transitive.

A directed cycle in R is a set of elements x1, x2, . . . , xn, with n ∈ N, such that
x1 Rx2, x2 Rx3, . . . , xn Rx1. Note that when we deal with relations, we allow
cycles on one or two elements. So, strict partial orders do not have directed cycles.
In fact, a relation R has no directed cycles if and only if its transitive closure is a
strict partial order.

An element s ∈ S is said to be a minimal element with respect to R if there
exists no element t ∈ S \ {s} such that tR s. Notice that if a relation R on a finite
set S has no directed cycle, then S necessarily has a minimal element with respect
to R.

3 Derived graphs

In this section, we introduce the class of derived graphs and study some of their
basic properties. A Burling tree is a 4-tuple (T, r, ℓ, c) in which:

(i) T is a rooted tree and r is its root,
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Figure 2: Complete bipartite graphs seen as derived graphs

(ii) ℓ is a function associating to each vertex v of T which is not a leaf, one child
of v which is called the last-born of v,

(iii) c is a function defined on the vertices of T . If v is a non-last-born vertex
in T other than the root, then c associates to v the vertex-set of a (possibly
empty) branch in T starting at the last-born of p(v). If v is a last-born or
the root of T , then we define c(v) = ∅. We call c the choose function of T .

By abuse of notation, we often use T to denote the 4-tuple.
The oriented graph G fully derived from the Burling tree T is the oriented

graph whose vertex-set is V (T ) and uv ∈ A(G) if and only if v is a vertex in c(u).
A non-oriented graph G is fully derived from T if it is the underlying graph of the
oriented graph fully derived from T .

A graph (resp. oriented graph) G is derived from a Burling tree T if it is an
induced subgraph of a graph (resp. oriented graph) fully derived from T . The
oriented or non-oriented graph G is called a derived graph if there exists a Burling
tree T such that G is derived from T .

Observe that if the root of T is in V (G), then it is an isolated vertex of G.
Observe that a last-born vertex of T that is in G is a sink of G.

Let us give some examples. In all figures in this paper, the tree T is represented
with black edges while the arcs of G are represented in red. The last-born of a vertex
of T is presented as its rightmost child. Moreover, shadow vertices, the vertices of
T that are not in G, are represented in white.

On the first graph represented in Figure 2, c(x) = c(y) = {z, w}. It shows that
at least one orientation of C4 is a derived graph, so that C4 is a derived graph. The
second graph shows that K3,3 is a derived graph, and it is easy to generalize this
construction to Kn,m for all integers n,m ≥ 1. In both graphs, the vertex r of T is
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v

Figure 3: Cycle of length 6 seen as a derived graph

not a vertex of G. Figure 3 is a presentation of C6 as a derived graph. Notice that,
in this presentation, v is a shadow vertex.

Notice that if a graph G is derived from T , the branches of T , restricted to the
vertices of G, are stable sets of G. In particular, no edge of T is an edge of G.

Let G be an oriented graph derived from a Burling tree T . A vertex v in G is
a top-left vertex if its distance in T to the root of T is minimum among all vertices
of G, and one of the followings holds:

(i) v is not a last-born,

(ii) v is a last-born and every vertex of G whose distance in T to the root is
minimum is also a last-born.

There might be more than one top-left vertex in a graph. For example, in the
first graph of Figure 2, both vertices x and y are top-left vertices.

Lemma 3.1. Every non-empty oriented graph G derived from a Burling tree
(T, r, ℓ, c) contains at least one top-left vertex and every such vertex is a source
of G. Moreover, the neighborhood of a top-left vertex is a stable set.

Proof. By the definition of top-left vertex, it exists in G. Let v be a top-left vertex of
G. Suppose for the sake of contradiction that uv ∈ A(G) for some vertex u ∈ V (G).
Thus v is a vertex in c(u). Denote by d(x) the distance in T of a vertex x to r. The
fact that v ∈ c(u) means that v is a descendant of a brother of u, and therefore
d(v) ≥ d(u). Since v is a vertex that minimizes the distance to the root, we must
have d(v) = d(u), and in particular p(v) = p(u). Notice that u and v cannot both
be last-born. On the other hand, v is a last-born because u cannot be connected
to one of its non-last-born brothers. This contradicts the definition of a top-left
vertex. So N(v) = N+(v). It follows that N(v) is included in a branch of T , and
is therefore a stable set.
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Figure 4: Sliding b into uv

Lemma 3.2. An oriented derived graph has no directed cycles and its underlying
graph has no triangles.

Proof. Adding a source whose neighborhood is a stable set to an oriented graph
with no directed cycle and no triangle does not create a triangle or a directed cycle.
Since every induced subgraph of a derived graph is a derived graph, the statement
follows from Lemma 3.1 by a trivial induction.

Suppose that (T, r, ℓ, c) is a Burling tree, u is a non-leaf vertex of T and v is
its last-born. Suppose that b is a non-last-born child of u. Consider the tree T ′

obtained from T by removing the edges uv and ub, and adding a vertex w adjacent
to u, v and b. Define ℓ′(u) = w, ℓ′(w) = v and ℓ′(z) = ℓ(z) for all non-leaf vertices
z of T \ {u}. Define c′(z) = c(z) ∪ {w} for every vertex z ∈ V (T ) \ {b} such that
v ∈ c(z) or b ∈ c(z), define c′(w) = ∅, and define c′(z) = c(z) otherwise. See
Figure 4.

Definition 3.3. The Burling tree (T ′, r′, ℓ′, c′) defined above is said to be obtained
from (T, r, ℓ, c) by sliding b into uv (note that the definition requires that v is a
last-born).

Lemma 3.4. If (T ′, r′, ℓ′, c′) is obtained from (T, r, ℓ, c) by sliding a vertex into
an edge, then any oriented graph derived from (T, r, ℓ, c) can be derived from
(T ′, r′, ℓ′, c′).

Proof. Let G be derived from T . The statement follows directly from the fact that
the function c is the restriction of c′ to V (G).

The next lemma shows that all derived graphs can be derived from Burling trees
with specific properties. This will reduce the technical difficulty of some proofs.

Lemma 3.5. Every oriented derived graph G can be derived from a Burling tree
(T, r, ℓ, c) such that:
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(i) r is not in V (G),

(ii) every non-leaf vertex in T has exactly two children,

(iii) no last-born of T is in V (G).

Proof. We apply a series of transformations on (T, r, ℓ, c) until the conclusion is
satisfied.

First transformation: If r ∈ V (G), build a tree T ′ by adding to T a new vertex
r′ adjacent to r. Define ℓ′(r′) = r and ℓ′(v) = ℓ(v) for all vertices v of T . Moreover
set c′(r′) = ∅, and do not change the choose function on the rest of the vertices.
Notice that r is an isolated vertex in G, thus G can be derived from (T ′, r′, ℓ′, c′).

Second transformation: Suppose that u is a non-leaf vertex of T which has only
one child. Build a tree T ′ by adding a new child v to u and define c′(v) = ∅. Notice
that v is a leaf, so it does not have a last-born in T ′. The graph G is also derived
from T ′. Apply this process until that every non-leaf vertex in G has at least two
children.

Third transformation: Suppose that u is a vertex in T with at least three
children, let v be the last-born of u and a, b be two distinct children of u other than
v. We define a Burling tree T ′ by sliding b into the edge uv, and observe that the
degree of u in T ′ is smaller than in T . And by Lemma 3.4, G can be derived from
T ′. We apply the transformation until all vertices have at most two children.

Notice that during this process we decrease the number of children of u, the
new vertex w has two children, and we do not increase the number of children of
any other vertex. Hence the process terminates if we apply the transformation until
conclusion (ii) of the lemma is satisfied.

Moreover, notice that in applying the third transformation on a vertex u, we do
not decrease the number of children of any vertex other than u, and once again the
new vertex that we create has two children. Thus, after the third transformation,
we do not undo the effect of the second transformation.

Notice that after the second and the third transformations, Property (i) of the
lemma remains satisfied.

Fourth transformation: If v is a last-born of T that is in V (G), then let u be
the parent of v. Observe that c(v) = ∅. We build a tree T ′ by removing the
edge uv, adding a new vertex w adjacent to u and v, and a new vertex x adjacent
to w. Define ℓ′(u) = w, ℓ′(w) = x and ℓ′(y) = ℓ(y) for all non-leaf vertices y of
T \ u. Define c′(y) = c(y) ∪ {w} for every vertex y ∈ V (T ) such that v ∈ c(y) and
c′(y) = c(y) otherwise. We see that G can be derived from (T ′, r′, ℓ′, c′), and v is
not a last-born in T ′, so we have reduced the number of last-borns of the Burling
tree in V (G). Apply this transformation until there is no last-born of the Burling
tree in V (G). See Figure 5.

Finally, notice that this transformation does not cancel the effect of the previous
ones. This completes the proof of the lemma.

10



u

v

u

v

w

x

Figure 5: Turning v into a non-last-born

4 Equality of Burling graphs and derived graphs

In this section, we recall the classical definition of the Burling sequence and
prove that derived graphs and Burling graphs form the same class.

Burling graphs

There are different equivalent approaches to define Burling graphs. See [2] for
the first definition by Burling, or [7] for a second definition. The definition that we
use here is the one from [3] (see Appendix B of [3]).

Definition 4.1. Let (G,S) be a pair where G is a graph and S is a set of stables sets
of G. We define a function next-b associating to a pair (G,S) another pair (G′,S ′)
as follows:

(i) Take a copy of G.

(ii) For each stable set S ∈ S, take a new copy of G and denote it by GS . Note
that the same set of stable sets as S exists in GS . Denote it by SS.

(iii) For each S ∈ S and Q ∈ SS, add a new vertex vS,Q adjacent to all vertices
in Q.

(iv) Denote by G′ the obtained graph

(v) Consider every stable set of the form S ∪Q and S ∪{vS,Q} where S ∈ S and
Q ∈ SS. Call S ′ the set of all these stable sets.

The pair (G′,S ′) is defined to be next-b(G,S).

Starting with (G1, S1) where G1 = K1 and S1 = {V (G1)} and applying
the function next-b iteratively, we define a sequence (Gk)k≥1 in which
(Gk+1,Sk+1) = next-b(Gk,Sk). This sequence is called the Burling sequence.
In Figure 6, the first three graphs in this sequence are represented. The edges of
the graphs are represented in red and the stable sets are represented by dashed
curves.
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Figure 6: The first three graphs in the Burling sequence

Notice that a copy of the first graph G1, which is a single vertex, is present in
all the graphs of the sequence, and it is an isolated vertex of them.

The class of Burling graphs is the class consisting of all graphs in the Burling
sequence and their induced subgraphs.

Burling proved that the graphs of the Burling sequence have unbounded
chromatic number. (See Theorem 1 of [7].) For the sake of completeness, we
include the sketch of the proof here. Here, a coloring of a graph is a function that
assigns to each vertex a color, in such a way that adjacent vertices receive different
colors. By induction, we prove the following statement:

In every coloring of the vertices of Gk, one of the stable sets in the family Sk

receives at least k colors.
This is obvious for k = 1. Suppose the statement holds for some fixed k.

Consider a coloring of Gk+1. By the induction hypothesis, in the first copy of Gk in
Gk+1, there exists a stable set S ∈ Sk which receives at least k colors. Again, by the
induction hypothesis, in GS , the copy of Gk associated to S, there exists a stable
set Q ∈ SS receiving k colors. Now either the k colors of S are the same as the k
colors of Q, in which case vS,Q has a new color, and therefore S ∪ {vS,Q} ∈ Sk+1

receives k + 1 different colors, or the colors in S and Q are different, in which case
S ∪Q ∈ Sk+1 receives k + 1 different colors. This completes the proof.

Tree sequence

Recall that a principal branch of a Burling tree (T, r, ℓ, c) is any branch starting
in its root r and ending in one of its leaves. The principal set of (T, r, ℓ, c) is the
set of all vertex-sets of the principal branches of T . We denote the principal set of
T by P(T ). Notice that there is a one-to-one correspondence between P(T ) and
L(T ), the set of leaves of T .

If a graph G is derived from a Burling tree T , then the restriction of each
principal branch of T to the vertices of G, forms a stable set in G. In particular,
P(T ), restricted to V (G), is a set of stable sets of G.
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In this section, we define a sequence (Tk)k≥1 of Burling trees and we prove
that the sequence (Tk,Pk)k≥1 of Burling trees and their principle sets is in
correspondence to the sequence (Gk,Sk)k≥1 of Burling graphs. More precisely, we
will show that the k-th Burling graph Gk is isomorphic to the graph fully derived
from Tk, and Sk is the same as Pk = P(Tk).

To define the mentioned sequence, we first define a function next-t on Burling
trees.

Definition 4.2. Let (T, r, ℓ, c) be a Burling tree, and let S denote its principal set.
We build a Burling structure (T ′, r′, ℓ′, c′) with principal set S ′ as follows:

(i) Take a copy of (T, r, ℓ, c).

(ii) For each principal branch P ∈ S ending in the leaf l, pend a leaf lP to l, and
define ℓ(l) = lP . Then put a copy (T, r, ℓ, c)P on lP , identifying its root with
lP . Denote the principal set of (T, r, ℓ, c)P by SP .

(iii) For each copy (T, r, ℓ, c)P , corresponding to a leaf l ∈ P , for each Q ∈ SP ,
add a new leaf lP,Q to l.

(iv) to obtain c′, first extend the function c naturally to the copies of (T, r, ℓ, c),
and then also define c′(lP,Q) = Q for P ∈ S and Q ∈ SP .

(v) Notice that the result is a Burling tree (T ′, r′, ℓ′, c′).

(vi) Observe that the principal branches of T ′ are of the form P ∪Q or P ∪{lP,Q}
for P ∈ S and Q ∈ SP . Thus S ′ = {P ∪Q,P ∪ {lP,Q} : P ∈ S, Q ∈ SP }.

We denote (T ′, r′, ℓ′, c′) by next-t(T, r, ℓ, c). By abuse of notation, we may
write T ′ = next-t(T ).

Starting from T1, the one vertex Burling tree, and applying the next-t function
iteratively, we reach a sequence (Tk, rk, ℓk, ck)k≥1 of Burling trees that we call the
tree sequence.

In the rest of this section whenever we use the notation (Gk,Sk), we mean the
k-th graph in the Burling sequence and its set of stable sets. Similarly, when we
write (Tk, rk, ℓk, ck), or by abuse of notation Tk, we mean the k-th Burling tree in
the tree sequence.

The next two lemmas are about some properties of the sequence (Tk)k≥1.

Lemma 4.3. Let v be a vertex in Tk. If v is not a leaf, then it has at least two
children in Tk.

Proof. We prove the lemma by induction on k. For k = 1, there is nothing to prove.
Suppose that the statements are true for Tk where k ≥ 1.

Let v be a vertex in Tk+1 = next-t(Tk) which is not a leaf. The vertex v
appears in one of the copies of Tk, and because it is not a leaf, either it is a non-leaf
vertex of a copy of Tk, and thus it has at least 2 children by the induction hypothesis,
or it is a leaf of the main copy of Tk in Tk+1. But notice that as a leaf of the main
copy of Tk, in Step (ii) of Definition 4.2, it receives a child, and in Step (iii) it
receives at least one more child. So v has at least 2 children in Tk+1.
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Lemma 4.4. If v is a non-last-born vertex in Tk which is not the root, then
ck(v) ̸= ∅. In particular, the last-born brother of v is in ck(v).

Proof. We prove the lemma by induction on k. For k = 1, there is nothing to prove.
Suppose that the statements are true for Tk where k ≥ 1, and suppose that v is a
non-last-born vertex in Tk+1 other than its root. There are two possibilities:

First, v is a non-last-born vertex in one of the copies of Tk (either the main
copy, or a copy corresponding to a principal branch). In this case, the result follows
from the induction hypothesis.

Second, v is a vertex of the form lP,Q as in Step (iii) of Definition 4.2. Then in
Step (iv) we define ck+1(v) to be Q which is not empty.

Equality of Burling graphs and derived graphs

We are now ready to prove the equality of Burling graphs and derived graphs.

Lemma 4.5. For every k ≥ 1, Gk is fully derived from Tk, and Sk is Pk = P(Tk).

Proof. We prove the lemma by induction on k. If k = 1, the statement holds.
Suppose that Gk is fully derived from Tk and Sk is equal to Pk.

To build Tk+1, to every leaf l of Tk, we add a new leaf and we pend a copy of
Tk to this new leaf. Since every leaf in Tk identifies exactly one of the principal
branches, or by the induction hypothesis, one stable set in Sk, this step is equivalent
to step (ii) in Definition 4.1. Then for each copy (Tk)P of Tk, we add |Pk| = |Sk|
new leaves to the leaf corresponding of the principal branch P . For a new vertex
lP,Q corresponding to the branch Q ∈ P(Tk)P , we define the choose-function to
be Q ∈ (Tk)P which assures that in the graph fully derived from T , this vertex is
complete to Q. Thus these new vertices lP,Q are the vertices vP,Q that we add in
step (iii) of Definition 4.1, and Gk+1 is the graph fully derived from Tk+1.

Finally, we notice that the vertex sets of the principal branches of Tk+1

are exactly sets of the form P ∪ Q and P ∪ {lP,Q} for P ∈ Pk = Sk and
Q ∈ (Pk)P = (Sk)P . Thus Sk+1 = Pk+1.

Figure 7 shows some orientations of the first three graphs of the Burling
sequence as fully derived graphs.

Now we define the notion of extension for Burling trees, which is, as we will see
formally in Lemma 4.7, closely related to the notion of induced subgraph in fully
derived graphs.

Definition 4.6. Let (T, r, ℓ, c) and (T ′, r′, ℓ′, c′) be two Burling trees. We say that
T ′ is an extension of T if there exists an injection φ from V (T ) to V (T ′) with the
following properties:

(i) φ(r) = r′,

(ii) φ preserves ancestors, i.e. if u is an ancestor of v in T , then φ(u) is an
ancestor of φ(v) in T ′,

14



Figure 7: The first three graphs of the Burling sequence seen as fully derived
graphs

(iii) φ preserves the last-born vertices, i.e. if v ∈ V (T ) is a last-born in T , then
φ(v) is a last-born in T ′.

(iv) φ preserves the choose-path function on T , i.e. for every vertex v ∈ T ,
φ(c(v)) = c′(φ(v)) ∩ φ(V (T )).

Lemma 4.7. Let G and G′ be two oriented graphs fully derived from T and T ′

respectively. If T ′ is an extension of T , then G is an induced subgraph of G.

Proof. Let φ be the injection from V (T ) to V (T ′). Since G and G′ are fully derived
from T and T ′, V (G) = V (T ) and V (G′) = V (T ′). Thus φ can be seen as an
injection from V (G) to V (G′). By property (iv) in Definition 4.6, v ∈ c(u) if and
only if φ(v) ∈ c′(φ(u)). In other words, uv ∈ A(G) if and only if φ(u)φ(v) ∈ A(G′).
Thus G is an induced subgraph of G′.

Next lemma shows that the tree sequence (Tk)k≥1 contains all the Burling trees
in the extension sense.

Lemma 4.8. If (T, r, ℓ, c) is a Burling tree such that every non-leaf vertex has
exactly two children, then there is an integer i ≥ 1 such that Ti is an extension
of T .

Proof. We prove the lemma by induction on the number of vertices of T .
For the induction step, the smallest possible T is a tree on three vertices: the

root r, the last-born of the root v, and the other child of the root u. If c(u) = {v},
then T2 is an extension of T . If c(u) = ∅, then T3 is an extension of T as shown in
Figure 8.

Suppose that the lemma is true for every Burling tree on at most n vertices.
Suppose that T on n > 1 vertices is given.

Consider the set of all the vertices of T which have the maximum distance to r.
Because every non-leaf vertex in T has two children, there is a non-last-born vertex
x in this set. Notice that x has no children. Denote by p the parent of x and by y
the last-born of p. Notice that y also has the maximum distance to the root, and
thus both x and y are leaves of T .
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Figure 8: When c(u) = ∅, T3 (right) is an extension of T (left)

Consider the tree (T ′, r, ℓ′, c′), obtained from T by removing the two leaves x
and y, and restricting the functions ℓ and c. By induction hypothesis, there exist
k such that Tk is an extension of T . Let φ be the injection from V (T ) to V (Tk).
In the rest of the proof, we will define φ on x and y in order to extend φ to V (T ),
in a way that all the four properties of Definition 4.6 remain satisfied.

Now there are two possible cases.
Case 1: y ∈ c(x).
If φ(p) is not a leaf of Tk, then define φ(x) to be a non-last-born child of

φ(p), which exists by lemma 4.3, and define φ(y) to be the last-born of φ(p).
By Lemma 4.4, φ(y) is in ck(φ(x)). Notice that this extension of ϕ has all
the properties of Definition 4.6. Properties (i) to (iii) are easy to verify, and
for Property (iv), notice that no descendant of φ(y) is in the image of φ, thus
φ(c(x)) = φ({y}) = {ℓk(p)} = ck(φ(y)) ∩ im(φ).

If φ(p) is a leaf of Tk, then consider Tk+1. In building Tk+1, every leaf of the first
copy of Tk, including φ(p), will receive a last-born and at least one non-last-born
child. Define again φ(x) to be a non-last-born child of φ(p) and φ(y) to be the
last-born of φ(p). See Figure 9. Notice that again φ has all the required properties.
So Tk+1 is an extension of T .

Case 2: y /∈ c(x).
If φ(p) is not a leaf of Tk, by 4.3 it has at least two children. Choose two paths

starting at two different children of φ(p) and ending at two different leafs l and ℓ′

of Tk. In Tk+1, consider l and ℓ′ in the first copy of Tk. Define φ(x) to be some
non-last-born of l in Tk+1 and φ(y) to be the last-born of ℓ′ in Tk+1. See Figure 10,
left. Notice that l ̸= ℓ′, thus φ(y) /∈ φ(x). The new function φ has all the required
properties. Hence Tk+1 is an extension of T .

If φ(p) is a leaf of Tk, then consider Tk+1. In Tk+1, the vertex φ(p) in the
main copy of Tk has a last-born l and at least one non-last-born. Choose any
non-last-born child of φ(p) and denote it by n. Notice that n is a leaf of Tk+1. Thus
in Tk+2, this vertex will have a some children, including at least one non-last-born,
that we denote by l′. Notice that l /∈ ck+2(l′). Define φ(x) = l′ and φ(y) = l. See
Figure 10, right. It is easy to check that φ has all the properties of Definition 4.6,
so Tk+2 is an extension of T .
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Figure 9: Case 1 of the proof of Lemma 4.8
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l = ϕ(y)
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n
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Figure 10: Case 2 of the proof of Lemma 4.8
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Now we can prove the main theorem of the section.

Theorem 4.9. The class of derived graphs is the same as the class of Burling
graphs.

Proof. Suppose that H is a Burling graph. So H is an induced subgraph of some
Gk which is a fully derived graph by Lemma 4.5. Thus H is a derived graph.

Now suppose that H is derived from a tree T . By Lemma 3.5, we may assume
that every non-leaf vertex in T has exactly two children. Notice that H is an
induced subgraph of G, the graph fully derived from T . By Lemma 4.8, there
exists k such that Tk is an extension of T . Moreover, by Lemma 4.5, Gk is the
graph fully derived from Tk. Thus by Lemma 4.7, G is an induced subgraph of Gk,
and thus it is a Burling graph. Therefore, so is H.

Theorem 4.9 enables us to interchangeably use the words Burling graphs or
derived graphs for referring to this class. The advantage of derived graphs to the
classical definition of Burling graphs is that thanks to the tree structure, we can
study the behavior of the stable sets much better. The Burling tree captures in
an easier way both the structure of the stable sets, and the adjacency of vertices
in Burling graphs. Moreover, as we will show in the second part of this work, the
orientation gives us more information about the properties of this class of graphs.

5 Abstract Burling graphs

In this section, we prove that Burling graphs can be defined as abstract Burling
graph, that are graphs arising from two relations defined on a set and satisfying a
small number of axioms.

Definition 5.1. A Burling set is a triple (S,≺,↷) where S is a non-empty finite
set, ≺ is a strict partial order on S, ↷ is a binary relation on S that does not have
directed cycles, and such that the following axioms hold:

(i) if x≺ y and x≺ z, then either y≺ z or z≺ y,

(ii) if x↷ y and x↷ z, then either y≺ z or z≺ y,

(iii) if x↷ y and x≺ z, then y≺ z,

(iv) if x↷ y and y≺ z, then either x↷ z or x≺ z.

Let us give an example of a Burling set. Let (T, r, ℓ, c) be a Burling tree, and
set V = V (T ). For x, y ∈ V , we define x≺ y if and only if x is a proper descendant
of y in T and x↷ y if and only if y ∈ c(x). Note that x↷ y if and only if there is
an arc from x to y in the oriented graph fully derived from (T, r, ℓ, c).

We show that (V,≺,↷) forms a Burling set. First notice that the proper
descendant relation on a rooted tree forms a strict partial order. Second, remember
that by Lemma 3.2, the relation ↷ has no directed cycles. Now we check the four
axioms of Definition 5.1. Let x, y, and z be three elements of V :
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Axiom (i): Suppose that x≺ y and x≺ z. So both y and z are ancestors of x
in T , so they are on the same branch and hence comparable with respect to ≺.

Axiom (ii): Suppose that x↷ y and x↷ z. So y, z ∈ c(x). Thus by definition,
they are on the same branch and are comparable with respect to ≺.

Axiom (iii): Suppose that x↷ y and x≺ z. So y ∈ c(x) and thus y is a
descendant of p(x). On the other hand, z is an ancestor of x, so it is an ancestor
of y too, and it is different from y. Hence y≺ z.

Axiom (iv): Suppose that x↷ y and y≺ z. Let l be the last-born of p(x). So y
is a descendant of l, and z is an ancestor of y. Either z is a descendant of l too, in
which case x↷ z or z is a proper ancestor of l, in which case it is a proper ancestor
of x too, i.e. x≺ z.

Lemma 5.2. Let S be a Burling set, and let x, y ∈ S. At most one of the following
holds: x↷ y, y↷x, x≺ y, or y≺x. In particular, ↷∩≺ = ∅.

Proof. Notice that if any of the four relations hold, then x ̸= y, because ≺ is a
strict partial order and ↷ has no directed cycle of length 1.

First suppose that x↷ y. Because ↷ has no directed cycles, we cannot have
y↷x. Moreover, if x≺ y, then by Axiom (iii) of Definition 5.1 we must have y≺ y
which is a contradiction. If y≺x, then by Axiom (iv), we have either x↷x or
x≺x, in both cases, it is a contradiction.

It just remains to check that x≺ y and y≺x cannot happen simultaneously,
which is clear by the definition of strict partial orders.

Lemma 5.3. Let R = ↷∪≺. The relation R has no directed cycle. In particular,
R has some minimal element which is therefore minimal for both ↷ and ≺.

Proof. Suppose for the sake of contradiction that there is a cycle in R, and let
x1, x2, . . . , xn be a minimal cycle.

By definition, n ̸= 1, and by Lemma 5.2, n ̸= 2.
Now suppose that n ≥ 4. Notice that none of ↷ and ≺ has a directed cycle, thus

there exists 1 ≤ i ≤ n, such that xi ↷xi+1 and xi+1 ≺xi+2 (summations modulo
n). Hence by Axiom (iv), we must have either xi ↷xi+2 or xi ≺xi+2. In any case,
xi Rxi+2, which is in contradiction to the minimality of the chosen directed cycle.

Finally, suppose that n = 3. Up to symmetry, we have x1 ↷x2 and x2 ≺x3,
and therefore by Axiom (iv), x1 Rx3. But because this is a cycle, we must have
x3 Rx1. This is in contradiction to Lemma 5.2.

So R has no directed cycle. So there exists a minimal element in R which is,
by definition, a minimal element for both ↷ and ≺.

We recall that in a given Burling set S, and for an element s in S,
[s↷] = {t ∈ S : s↷ t}, and [s≺] = {t ∈ S : s≺ t}.

Lemma 5.4. Let s be an element of a Burling set S. Then there exists an ordering
of the elements of [s↷] such as u1, u2, · · ·uk and an ordering of the elements of [s≺]
such as v1, v2, . . . vl such that u1 ≺u2 ≺ . . .≺uk ≺ v1 ≺ v2 ≺ . . .≺ vl.
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Proof. By Axiom (ii) of Burling sets, all the elements of [s↷] form a chain
u1 ≺u2 ≺ . . .≺uk. Moreover, by Axiom (i), all the elements of [s≺] also form a
chain v1 ≺ v2 ≺ . . .≺ vl. Finally, uk ≺ v1 follows from Axiom (iii) since s↷uk and
s≺ v1.

Let (S,≺,↷) be a Burling set. We define the oriented graph G derived from
(S,≺,↷) as the oriented graph on vertex-set S such that for x, y ∈ S, xy ∈ A(G) if
and only if x↷ y. We denote G by Γ(S), and we say that G is an abstract Burling
graph.

Notice that if S is a Burling set and G = Γ(S), then for every induced subgraph
G′ of G, S′ = V (G′) as a subset of S is itself a Burling set with inherited relations
≺ and ↷, and moreover G′ = Γ(S′).

Equality of abstract Burling graphs and Burling graphs

Lemma 5.5. Every oriented derived graph is an abstract Burling graph.

Proof. We checked after Definition 5.1 that if T is a Burling tree, then V = V (T )
forms a Burling set, and from there, it follows easily that the graph fully derived
from T is exactly Γ(V ). Thus every fully derived Burling graph is an abstract
Burling graph. Moreover, since abstract Burling graphs form a hereditary class,
every derived graph is an abstract Burling graph.

Lemma 5.6. Let G be an oriented graph. If G = Γ(S) for some Burling set S,
then G is an oriented derived graph.

Proof. We prove the following statement by induction on the number of elements
of S.

Statement 1. There exists a Burling tree (T, r, ℓ, c) such that S ⊆ V (T ), and for
every two distinct elements x and y in S:

(i) x≺ y if and only if x is a descendant of y in T ,

(ii) x↷ y if and only if y ∈ c(x) in T .

If |S| = 1, then the result obviously holds. Suppose that the statement holds
for every Burling set on at most k−1 elements, and let S be a Burling set on k ≥ 2
elements.

Let v ∈ S be a minimal element of ↷∪≺ which exists by Lemma 5.3. Set
S′ = S \ {v}. By the induction hypothesis, there exists a Burling tree (T ′, r′, ℓ′, c′)
such that S′ ⊆ V (T ′) and the two properties of the statement hold.

Now let [v↷] = {u1, u2, . . . , um} and [v≺] = {w1, w2, . . . , wn} (both
possibly empty). By Lemma 5.4, suppose without loss of generality that
u1 ≺u2 ≺ . . .≺um ≺w1 ≺w2 ≺ . . .≺wn. Thus by the induction hypothesis, they
appear on a same branch of T ′. So from the root to the leaf, they appear in this
order: wn, · · ·w1, un, . . . , u1. Now we consider two cases:
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Case 1: [v≺] = ∅. In this case, add a parent r to r′ and define ℓ(r) = r′. Then
add v as a child of r. If [v↷] = ∅, then define c(v) = ∅. Otherwise, let P be the
set of vertices on the path between r′ and u1, including both of them, and define
c(v) = P . Call this new Burling tree T .

Case 2: [v≺] ̸= ∅. In this case, if w1 is a leaf, and hence [v↷] = ∅, then add
v as a last-born child of w1 and define c(v) = ∅. If w1 is not a leaf, then add v as
a non-last-born child of w1. If [v↷] = ∅, define c(v) = ∅. Otherwise, let P be the
set of vertices on the path between ℓ(w1) and u1, and define c(v) = P . Call the
obtained Burling tree T .

In both cases, we obviously have S ⊆ V (T ), so it remains to prove the two
properties of the statement. For any two distinct elements of S which are both
different from v, the result follows from the induction hypothesis. So consider v
and an element u of S different from v. Notice that by minimality of v with respect
to both relations, we have neither u↷ v nor u≺ v in S, and by the construction of
T , in both cases, v is not in c(u), and it has no descendant, so in particular, u is
not a descendant of v. Moreover, by construction of T in both cases, if v≺u in S,
then v is a descendant of u in T , and if v↷u in S, then u ∈ c(v) in T .

Now suppose that x is an element of S, and in T , x is an ancestor of v, and
thus we are necessarily in case 2. We prove that v≺x. If x = w1, then the result is
immediate. Otherwise, x is an ancestor of w1. Thus by the induction hypothesis,
w1 ≺x. On the other hand, v≺w. Since ≺ is a strict partial order, v≺x.

Finally, suppose that x is an element of S and in T , x ∈ c(v). We show that
v↷x in S. From x ∈ c(v), we know that x is a vertex among the vertices of the
path from the last-born of w1 to u1. If x = u1, then the result is immediate. If
not, we have v↷u1 and u1 ≺x. So by Axiom (i) of Definition 5.1, either v↷x or
v≺x. But the latter is not possible because otherwise from v≺x and the fact that
v ̸= x, we know that x is either w1 or it is an ancestor of w1 in T . But this is not
possible, because x ∈ c(v).

To complete the proof we notice that G is exactly the subgraph of the graph
derived from T , induced by the vertices of S.

Theorem 5.7. The class of abstract Burling graphs is equal to the class of derived
graphs, and therefore to the class of Burling graphs.

Proof. The proof follows directly from Lemmas 5.5 and 5.6.

We remark here that even though the classes of graphs derived from Burling
sets and the graphs derived from Burling trees are the same, there is no immediate
one-to-one correspondence between Burling sets and Burling graphs. Burling sets
do not need notions equivalent to root and last-born. This is what makes them a
general object to work with. On the other hand, derived graphs, having all these
specific notions, provide strong tools to deduce structural results, as we will see in
the second part of this work.
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Figure 11: Functions s and s viewed as topological orderings. Every arc is
from a number to a smaller number.

Topological orderings

We here make several remarks about topological orderings of the vertices in
Burling graphs, and BFS and DFS algorithms on them. We do not really need
these easy observations (and therefore omit their straightforward formal proofs),
but we believe that they help to understand the next section.

It was observed in Lemma 3.2 that oriented derived graphs have no directed
cycles. And in Lemma 5.3, we go further and observe that the union of the relations
≺ and ↷ has no directed cycles (which is easy to see directly on an oriented graph
derived from a tree). This means that when an oriented graph G is derived from
a tree T , if one orients every edge of T from the root to the bottom, then the
oriented graph G∗ on V (T ) = V (G) with the union of arcs from T and from G has
no directed cycle.

This implies that there should exist a topological ordering of G∗. And indeed,
there is a natural way to find one: with BFS applied to T (starting at the root,
and with priority given to non-last-borns). If we denote by s(v) the opposite of the
number given by BFS to each vertex, we have the following: if u≺ v or u↷ v, then
s(u) < s(v). See Figure 11.

Now, in G∗, change the orientation of every arc of G (but keep the arcs of T
from root to leaves). Again, it is easy to check that there is no directed cycle,
so there should exist a topological ordering again. This time, an ordering may be
obtained with DFS (starting at the root and with priority given to the last-born).
If denote by s(v) the opposite of the number given by DFS to each vertex, we have
the following: if v≺u or u↷ v, then s(u) < s(v). An example is represented in
Figure 11.

We sum up the main properties of s and s, as defined in this paragraph, in the
next lemma. As we will see in the next section, in geometrical interpretations of
Burling graphs, there are natural geometrical counterparts of the functions s and
s, with each time a similar lemma.

Lemma 5.8. If A≺B, then s(A) < s(B) and s(A) < s(B). If A↷B, then
s(A) < s(B) and s(A) > s(B).
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6 Burling graphs as intersection graphs

In this section, we define three classes of graphs: strict frame graphs, strict line
segment graphs, and strict box graphs. We show that they are all equal to the class
of Burling graphs.

Strict frame graphs

A frame in R2 is the boundary of an axis-aligned rectangle. Intersection graphs
of frames are called frame graphs. Frame graphs clearly form a hereditary class of
graphs. The class of restricted frame graphs, defined in [3] (Definition 2.2.), is a
subclass of frame graphs. They are the frame graphs with some extra restrictions.

Definition 6.1. A set of frames in the plane is restricted if it has the following
restrictions:

(i) there are no three frames, which are mutually intersecting (in other words,
the intersection graph of the frames is triangle-free),

(ii) corners of a frame do not coincide with any point of another frame,

(iii) the left side of any frame does not intersect any other frame,

(iv) if the right side of a frame intersects a second frame, this right side intersects
both the top and bottom of this second frame,

(v) if two frames have non-empty intersection, then no frame is (entirely)
contained in the intersection of the regions bounded by the two frames. If
frames A and B intersect as in Figure 12, we say that frame A enters
frame B.

The only possibility for two frames to intersect with these restrictions is shown
in Figure 12. In such case, we say that the frame A enters the frame B.

A
B

Figure 12: Intersection of two frames in restricted frame graphs

A restricted frame graph is the intersection graph of a restricted set of frames
in the plane. An oriented restricted frame graph is a frame graph such that every
edge AB is oriented from A to B when frame A enters frame B.
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Figure 13: A graph obtained from K5 by subdividing some edges and its presentation
as a restricted frame graph
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Figure 14: A necklace and its presentation as a restricted frame graph
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Figure 15: A wheel and its presentation as a restricted frame graph. It is easy to see
that subdividing the dashed edges yields to restricted frame graphs (see also Appendix A
of [3]).
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Figure 16: Left: the forbidden structure in strict frame graph, right: the allowed
structure

See Figures 13, 14 and 15 for some examples of restricted frame graphs. It is
worth noting that in the second part of this work, we prove that non of these graphs
are Burling graphs.

Now we introduce the class of strict frame graphs, a subclass of restricted frame
graphs, and show that it is equal to the class of Burling graphs.

Definition 6.2. A restricted set of frames in the plane is strict if for any two
frames A and B such that A is entirely inside B, when a frame C intersects both,
C enters both A and B. See Figure 16.

A strict frame graph is the intersection graph of a strict set of frames in the
plane. An oriented strict frame graph is a strict frame graph, oriented as an oriented
restricted frame graph.

Let F be a non-empty finite strict set of frames in the plane. Define A≺B if
and only if A is entirely inside B. Define A↷C if and only if A enters C. We denote
by A ◦ the area that frame A encloses. Two frames are comparable if A ◦ ∩B ◦ ̸= ∅
and incomparable otherwise. Note that in a strict set of frames, two frames are
comparable if and only if one of them enters the other or is inside the other.

We denote by s(A) the vertical length of a frame A and by s(A) the maximum
real number x such that x is the x-coordinate of a point of A.

Lemma 6.3. If A≺B, then s(A) < s(B) and s(A) < s(B). If A↷B, then
s(A) < s(B) and s(A) > s(B).

Proof. Obvious from the definitions.

Lemma 6.4. For every non-empty finite and strict set of frames F , the triple
(F,≺,↷) forms a Burling set.

Proof. First, ≺ is obviously transitive and asymmetric, so it is a strict partial order.
Moreover, by Lemma 6.3, the relation ↷ cannot have any directed cycle. Now we
prove that the four axioms hold. Now we prove that the four axioms of Burling
sets hold.

Axiom (i): If A≺B and A≺C, C ◦ and B ◦ both contain A and thus their
intersection is not empty, so B and C are comparable. Now we cannot have B↷C
or C↷B, because it contradicts item (v) of Definition 6.1. Thus either B≺C or
C ≺B.
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Axiom (ii): If A↷B and A↷C, then again B ◦ ∩C ◦ ̸= ∅, so B and C are
comparable. But because F is triangle-free, we cannot have B↷C or C↷B. So
either B≺C or C ≺B.

Axiom (iii): if A↷B and A≺C, then by Lemma 6.3, s(B) < s(A) < s(C).
Since there are points of A ◦ which are in both B ◦ and C ◦, B and C are comparable.
Since s(B) < s(C), by Lemma 6.3, we cannot have B↷C or C ≺B. Moreover,
C↷B contradicts the restriction of Definition 6.2. Thus B≺C.

Axiom (iv): If A↷B and B≺C, then by Lemma 6.3, s(A) < s(B) < s(C).
There are points of A ◦ which are inside C ◦. So A and C are comparable. Since
s(A) < s(C), by Lemma 6.3, we cannot have C↷A or C ≺A. So, A↷C or
A≺C.

Lemma 6.5. Every Burling graph is a strict frame graph.

Proof. If G is a derived graph, then by theorem 4.9 it is an induced subgraph of
a graph Gk in the Burling sequence. It is easy to check that in the geometrical
representation of the Burling sequence in [6] one never creates the forbidden
structure of Definition 6.2. One can see the construction of the graphs in the Burling
sequence as restricted frame graphs in [6, 3], and check that in their construction,
the forbidden constraint of Definition 6.2 does not happen. Moreover, we notice
restriction of frames to an induced subgraph, does not create any of the forbidden
constraints.

Theorem 6.6. The class of strict frame graphs is equal to the class of Burling
graphs.

Proof. By Lemma 6.4, every frame graph, is the underlying graph of an abstract
Burling graph, and therefore by Theorems 5.7, a Burling graphs. This, along with
Lemma 6.5, completes the proof.

Strict line segment graphs

Let l be a non-vertical line segment in R2. We can characterize l by y = ax+ b
for x ∈ [α, β]. The number a is the slope of l. We say that l has positive slope if a
is a finite positive number (in which case l is neither horizontal nor vertical). We
denote the interval [α, β] by X-span(l), and the interval [aα+b, aβ+b] by Y-span(l).
Finally, for l with positive slope, we define the territory of l to be the unbounded
polyhedron defined by y ≥ ax + b and y ∈ Y-span(l). We denote the territory of l
by T (l). See Figure 17.

Definition 6.7. Let L be a finite set of line segments in R2. We call L a strict
set of line segments if the following hold:

(i) all the segments in L have positive slopes,

(ii) no end-point of any line segment lies on another line segment,
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lT (l)

Figure 17: The gray area is the territory of segment l.

(iii) there exist no three pairwise intersecting line segments in L (in other words,
the intersection graph of L is triangle-free),

(iv) for any two non-intersecting line segments l and m, if there exists a point p of
m such that p ∈ T (l), then m is entirely in T (l) and Y-span(m) ⊊ Y-span(l),

(v) if l and k are two intersecting segments, then there are no segments entirely
inside T (l) ∩ T (k),

(vi) If k and l are two intersecting segments such that the slope of k is less than the
slope of l, then Y-span(k) ⊊ Y-span(l) and X-span(l) ⊊ X-span(k) such that
the maximum of X-span(l) is strictly less than the maximum of X-span(k).
See Figure 18,

l

k

Figure 18: two intersecting segments

(vii) for any two non-intersecting line segments l and m such that one is in the
territory of the other, if a line segment k intersects both of them, then the
slope of k is strictly less than both the slope of l and the slop of m, as
illustrated in Figure 19.

Let L be a strict finite set of line segments in the plane. Define l≺ k if and only
if l is in the territory of k, and define l↷ k if and only if l and k have non-empty
intersection and the slope of l is less than the slope of k.

Note that by Constraint (ii) of Definition 6.7, intersecting line segments must
have distinct slopes.

Lemma 6.8. If for two non-intersecting line segments l and m we have
T (l) ∩ T (m) ̸= ∅, then T (l) ⊆ T (m) or T (m) ⊆ T (l).
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Figure 19: Left: forbidden and right: allowed structure in constraint (vii).

Proof. Since T (l) ∩ T (m) ̸= ∅, Y-span(l) ∩ Y-span(m) ̸= ∅. Thus necessarily one
of them has some points inside the territory of the other, and thus by Constraint
(iv), is entirely inside the territory of the other.

We denote by s(l) the length of the interval Y-span(l) and by s(l) the maximum
real number x such that x is the x-coordinate of a point of l, i.e. the maximum of
X-span(l).

Lemma 6.9. If l≺ k, then s(l) < s(k) and s(l) < s(k). If l↷ k, then s(l) < s(k)
and s(l) > s(k).

Proof. If l≺ k, then s(l) < s(k) and s(l) < s(k) because l is in the territory of k.
The inequalities are strict because of Constraint (iv) of Definition 6.7.

If l↷ k, then s(l) < s(k) and s(l) > s(k) because of Constraint (vi) of
Definition 6.7.

Lemma 6.10. (L,≺,↷) forms a Burling set.

Proof. First, ≺ is obviously transitive and asymmetric, so it is a strict partial order.
Moreover, by Lemma 6.9, the relation ↷ cannot have any directed cycle. Now we
prove that the four axioms of Burling sets hold.

Axiom (i): If k≺ l and k≺m, then because of Constraint (v) of Definition 6.7,
l and m do not intersect. Moreover, because k is inside the territory of both l and
m, then by Lemma 6.8, one of them is inside the territory of the other.

Axiom (ii): If k↷ l and k↷m, then by Constraint (iii), m and l do not
intersect. Moreover, notice that by Constraint (vi), the leftmost point of k (the
lower endpoint of k) is inside the territory of both l and m. Thus by Lemma 6.8,
one of them is inside the territory of the other.

Axiom (iii): If k↷ l and k≺m, then by Lemma 6.9, s(l) < s(k) < s(m). So,
if l and m intersect, then by Lemma 6.9 again, m↷ l. So, k, l and m contradict
Constraint (vii). Hence, l and m do not intersect. So, the segment k and thus
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the intersection of k and l is in the territory of m, so by property (iv), l is in the
territory of m, i.e. l≺m.

Axiom (iv): If k↷ l and l≺m, then two cases are possible. Case 1: k and m
do not intersect. Let p = (x, y) denote the intersection point of k and l. Because p
is inside the territory of m, by Constraint (iv), k≺m. Case 2: k and m intersect.
Then, by Lemma 6.9, s(k) < s(l) < s(m). So k↷m.

A strict line segment graph is the intersection graph of a strict set of line
segments in the plane.

Lemma 6.11. Every Burling graph is a strict line segment graph.

Proof. In [7], graphs of the Burling sequence as presented as line segment graphs.
One can check easily that in this construction, all the constraints of Definition 6.7
hold. Now, because every Burling graph is an induced subgraph of a graph in
the Burling sequence, and because removing line segments from a strict set of line
segments leaves a strict set of line segments, the proof is complete.

Theorem 6.12. The class of strict line segment graphs is equal to the class of
Burling graphs.

Proof. By Lemma 6.10, every line segment graph, is the underlying graph of an
abstract Burling graph, and therefore by Theorems 5.7, a Burling graph. This,
along with Lemma 6.11, completes the proof.

Strict box graphs

Let S be a strict set of frames in the R2. Suppose that to each frame A ∈ S is
associated a non-empty interval IA of R. The set of intervals is compatible with S
if for all pairs A,B ∈ S we have:

• if A enters B, then IB ⊊ IA and
• if A is inside B then IA ∩ IB = ∅.

Note that if A and B are incomparable, then there is no condition on IA and
IB (in particular, their intersection can be empty or not).

Lemma 6.13. For every finite strict set S of frames in the plane, there exists a
set of intervals compatible with S.

Proof. By lemma 6.4, the intersection graph of S is an abstract Burling graph.
Hence by Lemma 5.6, G can be derived from a Burling tree. So, by Lemma 3.5,
G is isomorphic to a graph H derived from a Burling tree (T, r, ℓ, c) such that r is
not in V (H), every non-leaf vertex in T has exactly two children, and no last-born
of T is in V (G). So, every frame A of S corresponds to a vertex vA ̸= r of H that
is not a last-born. Moreover, A is inside B if and only if vA is a descendant of vB
in T and A enters B if and only if vB ∈ c(vA).

Hence, it is enough to prove that we may associate to every vertex v of H an
interval Iz in such a way that for all vertices u, v of H:
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Figure 20: Intervals associated to the non-last-borns of a Burling tree.

• if u ∈ c(v), then Iu ⊊ Iv and
• if u is a proper descendant of v then Iu ∩ Iv = ∅.

We now define the intervals. We first perform a DFS search of T , starting at
the root and giving priority to the last-borns. This defines an integer f(v) for each
vertex v of T satisfying f(r) = 1, and for every non-leaf vertex v with last-born
child u and non-last-born child w, f(u) = f(v) + 1 and

f(w) = max{f(x) : x is a descendant of u} + 1.

See Figure 20.
Let w be a vertex of H. So, w is a vertex of T that is neither r nor a last-born.

It follows that u has a parent v that has a last-born child u. We associate to w the
interval [f(u), f(w)] (note that f(u) < f(w) since we apply DFS with priority to
the last-borns).

Suppose that w is a proper descendant of w′, and their intervals are [f(u), f(w)]
and [f(u′), f(w′)] with notation as above. In fact, both u and w are descendant of
w′, so by the properties of DFS, f(u) > f(w′). This implies that [f(u), f(w)] and
[f(u′), f(w′)] are disjoint.

Suppose that w′ ∈ c(w), and their intervals are [f(u), f(w)] and [f(u′), f(w′)]
with notation as above. Note that u′ and w′ are both descendants of u. So
f(u) < f(u′) < f(w′). And since w′ is a descendant of u, f(w′) < f(w). Hence
[f(u′), f(w′)] ⊊ [f(u), f(w)].

When an interval I is associated to a frame A of R2, there is a natural way
to define an axis-align box of R3: {(x, y, z) : (x, y) ∈ A ◦, z ∈ I}. This is the box
associated to A and I.

A set of axis-aligned boxes of R3 is strict if it can be obtained from a strict set
S of frames by considering of set of intervals compatible with S, and by taking for
each frame A and each interval IA the box associated to A and IA.

Lemma 6.14. Suppose that a strict set S′ of boxes is obtained from a strict set of
frames S. Let A,B ∈ S be frames, and A′, B′ be the respective boxes associated to
them. Then A ∩ B ̸= ∅ if and only if A′ ∩ B′ ̸= ∅. In particular, the intersection
graph of S is isomorphic to the intersection graph of S′.
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Proof. If A enters B, then A′ ∩ B′ ̸= ∅ because both the frames and the
interval associated to them have a non-empty intersection. If A is inside B, then
A′ ∩ B′ = ∅ because the intervals associated to A and B are disjoint. If A and B
are incomparable, then A′ ∩B′ = ∅ because A ◦ ∩B ◦ = ∅.

A strict box graph is the intersection graph of a strict set of boxes of R3.

Theorem 6.15. The class of strict box graphs is equal to the class of Burling
graphs.

Proof. Suppose that G is a Burling graph. Then, by Theorem 6.6, G is the
intersection graph of a strict set S of frames. By Lemma 6.13, a set of intervals
compatible with S exists. Hence, by Lemma 6.14, G is isomorphic to a strict box
graph.

Suppose conversely that G is a strict box graph. Then, by definition, it arises
from a strict set of frames and a set of interval compatible with it. Hence, by
Lemma 6.14, G is isomorphic to a strict frame graph. So by Theorem 6.6, G is a
Burling graph.
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