

L. Einig^{1,2}, <u>P. Palud^{3,4}</u>, J. Chanussot², J. Pety¹, F. Le Petit⁴, E. Bron⁴ and the ORION-B consortium⁵

¹Institut de Radioastronomie Millimétrique ²GIPSA-Lab, Université Grenoble Alpes ³CRIStAL, Université de Lille ⁴LERMA, Observatoire de Paris

⁵ https://www.iram.fr/~pety/ORION-B/

1/ Interstellar medium models

Numerical simulations are used to model complex astrophysics phenomena. Most realistic models can take into account a wide range of multiphysics aspects.
 Computing time and memory resources requirements can be very demanding, limiting their usability.

3/ Training set cleaning and architecture design

→ Our approach: improve on network training procedure (point 1) and on its architecture design (points 2, 3, 4).

1. Anomalies identification: we perform a three-stage procedure.

- ◆ Often replaced by reduced models, approximating the original behavior with lower complexity.
- \rightarrow Usually interpolation methods.

We present a reduction of the Meudon PDR code [1] based on an artificial neural network (ANN).
Numerical model of photodissociation regions (PDRs) (e.g., the Horsehead Nebula, illuminated by Alnitak).

• From a **few parameters**, the model calculates the intensity of **numerous emission lines** for various species.

 \mathbf{x} : 4 physical parameters

 \mathbf{y} : 5 409 output intensities

- We train a network with a **Cauchy loss** (robust to outliers).
- ◆ Training points with highest errors: reviewed on the basis of **physics knowledge**.
- ◆ Another training with a **masked squared error**: abnormal points are ignored.

 $\mathcal{L}_m(\mathbf{f}, (\mathbf{x}, y, m)) = m \cdot (f(\mathbf{x}) - y)^2 \quad \text{with} \ m \in \{0, 1\}$

2. **Polynomial expansion of inputs:** helps the network create non-linearities from few inputs. Calculated at runtime to ensure the model differentiability.

- 3. Dense architecture: exploits inputs and intermediate results to predict outputs.
- \rightarrow We use an architecture inspired by the convolutive network DenseNet [3].

+ Process a combination of inputs in about **six hours**.

2/ Challenges

□ Most works on ANNs consider many independent inputs and few outputs while the opposite is true here.

□ The PDR code can produce **anomalies** (\neq outliers). → We want to train a model that does not learn them.

For Bayesian inference [2], the network must be
Differentiable (at least to order 2) from end to end.
As regularized as possible to avoid significant errors on successive derivatives (*e.g.*, due to oscillations).

Comparison of ANNs with interpolations in terms of:
Speed: Evaluation time for a batch of 1000 entries.

Example of fully connected ANN vs. densely connected ANN

4. **PCA to size hidden layers:** we exploit the linear redundancy between outputs to adequately size the penultimate layer and significantly reduce the number of parameters.

4/ Regression results

Performance of interpolation methods and of proposed neural networks

Method		Error factor		Memory	Speed
		Mean	99% pc.	(MB)	(ms)
Interp.	Near. neigh.	1310%	1130%	1650	62
	Linear	15.7%	230%	1650	1.5e3
	Cubic spline	11.2%	220%	1650	-
	RBF linear	10.2%	96.8%	1650	1.1e4
ANN	S	7.3%	64.8%	118	12
	S+P	6.2%	49.7%	118	13
	S+P+A	5.5%	42.3%	118	13
r	S+P+A+D	4.5%	$\mathbf{33.1\%}$	125	11
	S: sizing of the last hidden layer using PCA				
P: polynomial transform of inputs					

Memory: Number of parameters to describe the model.
Accuracy: Average and 99% percentile error factor.

$$EF(\hat{y}, y) = 10^{|\log_{10} \hat{y} - \log_{10} y|} - 1 = \max\left(\frac{\hat{y}}{y}, \frac{y}{\hat{y}}\right) - 1$$

A: anomalies removal on the training set D: dense architecture

10^5 10^6 10^7 10^8 10^9 P_{th} (K.cm⁻³)

5/ Conclusion

ANNs outperform interpolation methods on every metrics.
Detection of anomalies and robust learning.
Efficient computation of successive derivatives.
Paves the way to efficient inferences on large multi-line maps.

6/ **References**

[1] Le Petit et al., A model for atomic and molecular interstellar gas: The Meudon PDR code, 2006
[2] Palud et al., Estimating physical parameters in the ISM from hyperspectral observations, in prep.
[3] Huang et al., Densely connected convolutional networks, 2017