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Abstract

An experimental comparison of two or more optimization algorithms
requires the same computational resources to be assigned to each algo-
rithm. When a maximum runtime is set as the stopping criterion, all
algorithms need to be executed in the same machine if they are to use
the same resources. Unfortunately, the implementation code of the algo-
rithms is not always available, which means that running the algorithms
to be compared in the same machine is not always possible. And even if
they are available, some optimization algorithms might be costly to run,
such as training large neural-networks in the cloud.

In this paper, we consider the following problem: how do we compare
the performance of a new optimization algorithm B with a known algo-
rithm A in the literature if we only have the results (the objective values)
and the runtime in each instance of algorithm A? Particularly, we present
a methodology that enables a statistical analysis of the performance of
algorithms executed in different machines. The proposed methodology
has two parts. First, we propose a model that, given the runtime of an
algorithm in a machine, estimates the runtime of the same algorithm in
another machine. This model can be adjusted so that the probability
of estimating a runtime longer than what it should be is arbitrarily low.
Second, we introduce an adaptation of the one-sided sign test that uses a
modified p-value and takes into account that probability. Such adaptation
avoids increasing the probability of type I error associated with executing
algorithms A and B in different machines.
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1 Introduction

Finding an appropriate reference point for evaluating the performance of an
optimization algorithm is not trivial. The key question is: when can we say that
the performance of an optimization algorithm is good? The answer depends
on how we define good performance. A possible solution is to compare the
performance of several algorithms in the same problem. This comparison can
show that some algorithms perform better than others on average. Precisely,
this is what a comparative study among different algorithms tries to accomplish:
analyze the relative performance of a set of algorithms.

However, a different use of computational resources can lead to observing false
differences between the performance of the algorithms. Appendix A presents
an illustrative example. We say that two algorithms use the same amount of
computational resources when they both take the same time to complete in the
same machine. Usually, this is achieved by executing both algorithms on the
same machine and setting a common maximum runtime as stopping criterion.

Over the last few decades, the computational capabilities of computers have
significantly increased [15]. This means that code executed a decade ago is
expected to run faster on current hardware. Additionally, in some fields of
optimization such as natural language processing, good performing models like
the GTP-3 [4] are currently being trained with a lot of computation power.
Unfortunately, training these types of models is often economically unviable for
most researchers [17]. Furthermore, as stated by Hutson [13], many works do
not include the code to reproduce the experiments. These and other issues limit
the reproducibility of the comparison of algorithms, as it is not always possible
to execute all the algorithms being compared in the same machine.

One way to overcome this limitation is to adjust the runtime of one of the algo-
rithms being compared such that the algorithm executed on the slower machine
is compensated with extra computation time. Let us now look at a practical
example. Let us imagine that a researcher reads a paper in which algorithm A is
executed in machine M1, taking time t1. Now, the researcher wants to compare
a new algorithm, B, with A, but has no access to algorithm A nor to machine
M1. Instead, the researcher only has access to machine M2 and algorithm B.
In this case, he/she can execute algorithm B in machine M2 for time t2. The
runtime t2 needs to be set in such a way that both algorithms are given the same
computational resources. To achieve this, t2 needs to be equal to the equivalent
runtime: the time it takes to replicate in machine M2 the exact optimization
process that was carried out in machine M1 (with algorithm A).

The exact equivalent runtime t2 can be obtained if the exact optimization pro-
cess that was carried out in machine M1 is replicated in machine M2. This
implies executing algorithm A in machine M2, which defeats the purpose of us-
ing an equivalent runtime. Fortunately, an estimation of the equivalent runtime
t̂2 can be used instead. The estimation is carried out taking into account the
computational capabilities of machines M1 and M2, denoted as s1 and s2 in the
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A summary of the notation of the paper

Name Notation Explanation

Optimization algorithm A A
The optimization algorithm that is not executed in
the comparison. Instead, already published results
of this algorithm are used in the comparison.

Optimization algorithm B B
The optimization algorithm that is executed to
obtain the results to be compared.

Machine M1 M1
The machine in which algorithm A was executed.
We have no access to this machine.

Machine M2 M2
The machine in which algorithm B is executed to
obtain the results used in the comparison.

The score of machine M1 s1
A measure proportional to the computational
capability of machine M1.

The score of machine M2 s2
A measure proportional to the computational
capability of machine M2.

The runtime of A in
machine M1

t1

The stopping criterion (in terms of maximum
runtime) that was used in the execution of
algorithm A in machine M1.

The equivalent runtime
of A in machine M2

t2

The time it takes to replicate in machine M2 the
exact optimization process (with algorithm A)
that took time t1 in machine M1.

The estimated equivalent
runtime of algorithm A
in machine M2

t̂2

An estimation of the equivalent runtime t2.
This value is used as the stopping criterion of
algorithm B, which is executed in machine M2.

Table 1: A summary of the notation and terms considered in this paper.

rest of the paper. Table 1 offers a brief overview of the terms used in the paper.

Related work:

Dominguez et al. [8] proposed adjusting the runtimes of the algorithms by as-
signing a shorter CPU runtime to the algorithms executed in machines with
faster CPUs, thus making the execution of algorithms in different machines
comparable. To estimate the CPU capabilities of each machine, they proposed
using the dhrystone2 score [19].

The methodology introduced by Dominguez et al. is limited in three ways.
Firstly, there is neither theoretical nor experimental justification for the predic-
tion model of the equivalent runtime. Secondly, their prediction model is fixed
and cannot be adjusted control the probability of type I error. And thirdly,
their methodology does not take into account the probability of predicting an
equivalent runtime longer or shorter than the true equivalent runtime, and thus,
may introduce undesired biases to the comparison of the performance of algo-
rithms. Without a corrected statistical model, it is not possible to take into
account this probability and control the probability of type I error.

An increase in the probability of type I error when deciding if algorithm B is
better than A can be problematic. In the context of performance comparison
of optimization algorithms (with null-hypothesis statistical tests), a type I error
is defined as finding a statistically significant difference in the performance of
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the algorithms, when in reality, there is none. Making a type II error, on
the other hand, means not finding a statistically significant difference in the
performance of the algorithms, when in reality, the performances are different.
In this context, making a type II error is preferred to a type I error: falsely
concluding a nonexistent difference in the performance of the algorithms is worse
than not finding a statistically significant difference in the performance of the
algorithms.

In fact, failing to reject the null hypothesis does not imply evidence in favor of
the null hypothesis. Instead, it only shows a lack of evidence against it. In the
context of algorithm benchmarking, failing to reject the null hypothesis does
not mean that the performance of the algorithms is the same. When the null
hypothesis is not rejected, the correct conclusion is that there is not enough
evidence to show a statistically significant difference between the performance
of the algorithms. Therefore, a type II error just means that additional exper-
imentation is needed to verify an existing difference in the performance of the
algorithms, which is not an erroneous conclusion in itself.

Proposed methodology: In this paper, inspired by the work of Dominguez
et al. [8], we propose a methodology to statistically assess the difference in the
performance of optimization algorithms executed in different machines. Specif-
ically, the proposed methodology can be used to show that an algorithm B
performs statistically significantly better than another algorithm A, without
executing A and, instead, using the available results of A in terms of the objec-
tive function value and the runtime in each instance. To that end, we propose
a conservative methodology in which the probability of giving algorithm B an
unfairly longer time is kept in check by i) proposing a two-parameter estima-
tion1 of the equivalent runtime with an arbitrarily low probability of estimating
an unfairly longer runtime and ii) by modifying the one-sided sign test [7] so
that it takes this probability into account.

Alongside this paper we present a tutorial on how to apply the proposed method-
ology. This tutorial and the code of all the experimentation is available in our
GitHub repository2. Besides, we also give two examples of how the methodology
is applied in this paper. It is noteworthy that applying the proposed methodol-
ogy to compare algorithms in different machines does not involve executing any
additional code.

The rest of the paper is organized as follows: The next section describes and
motivates a two-parameter model proposed to estimate the equivalent time.
Section 3 presents the modifications made to the sign test to overcome the lim-
itations introduced by the execution of the algorithms in different machines.
Afterward, in Section 4 we introduce two examples in which we apply the pro-

1The estimation proposed in this paper is intentionally conservative and tends to estimate
shorter than equivalent runtimes. With this we are able to keep the probability of type I
error in check, while increasing the probability of type II error. In the context of algorithm
benchmarking, a type I error is worse than a type II error.

2Repository available in https://github.com/EtorArza/RTDHW.
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posed methodology. Finally, Section 6 concludes the paper and proposes some
research lines for future investigation.

2 The estimation model of the equivalent run-
time

Given i) an optimization algorithm, ii) a machine, iii) a problem instance, iv)
a stopping criterion and v) a random seed number, executing the optimiza-
tion algorithm will produce a specific sequence of computational instructions.
This sequence is completely determined by these five parameters. We call this
sequence of instructions that is reproducible in any machine the optimization
process. By recording the optimization process carried out with these parame-
ters, we can later reproduce the exact optimization process in another machine.
Notice that reproducing the optimization process will take a different time in
each machine, even though the final result is the same (because the executed se-
quence of instructions is the same). We say that the times required to replicate
the same optimization process in different machines are equivalent.

Definition 1. (Optimization process)
Let M be a machine, A an optimization algorithm, i a problem instance, t1
a stopping criterion, and r a positive integer (the seed for the random number
generator). We define the optimization process ρ(M,A, i, t1, r) as the sequence of
computational instructions carried out when optimizing instance i with algorithm
A and seed r in machine M1 with stopping criterion t1.

The aim is to compare algorithm A executed in machine M1, with algorithm B,
executed in machine M2. A fair comparison can be carried out by estimating
the time it takes to replicate ρ(M1, A, i, t1, r) in machine M2 and using the
estimated value as the stopping criterion for algorithm B in machine M2. We
will sometimes denote the optimization process ρ(M1, A, i, t1, r) as ρ for the sake
of brevity.

Definition 2. (Runtime of an optimization process)
Let M be a machine and ρ an optimization process. We define the runtime of
ρ in M , denoted as t(M,ρ), as the time it takes to carry out the optimization
process ρ in machine M .

Considering the above definitions, it follows that, t(M1, ρ) = t1.

Definition 3. (Equivalent runtime)
Let M1,M2 be two machines, ρ an optimization process and t(M1, ρ) and t(M2, ρ)
the times required to run ρ in M1 and M2 respectively. Then, we say that
t(M2, ρ) is the equivalent runtime of t(M1, ρ) for machine M2.
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From here on, we will denote t(M2, ρ), the equivalent runtime of t1 = t(M1, ρ) in
machine M2, as t2. Given t1 (the runtime of optimization process ρ in a machine
M1), in the following, we will propose a model to estimate t2 (the equivalent
runtime in another machine M2).

Assumption 1. (Constant ratio of the runtime of two optimization processes)
Let ρ, ρ′ be two optimization processes. Then, we assume that:

t(M2, ρ)

t(M2, ρ′)
≈ t(M1, ρ)

t(M1, ρ′)

for any two machines M1 and M2.

We assume that the ratio of the runtime of two different optimization processes
is constant with respect to the machine in which it is measured. In Appendix B,
we justify why this assumption is reasonable. This assumption is critical to the
estimation model that will later be proposed. By using this assumption in
the model, a prediction error is introduced. Therefore, we will later propose a
correction to the model to control this prediction error.

Based on this assumption, we propose a model to estimate the equivalent run-
time of an optimization process in a machine, given its runtime in another
machine, as well as the scores (relative to the computational capabilities) of
both machines. Notice that in Assumption 1, we use a reference optimization
process ρ′ to estimate the equivalent runtime of the optimization process ρ.
Any optimization process ρ′ can be used as a reference. In the following, we
will define an optimization process ρ′ whose runtime we will be able to estimate
with the scores s1 and s2 of the machines. This will allow the estimation of the
equivalent runtime t2 without executing any reference optimization processes,
as shown in Figure 1.

Let us now define the optimization process ρ′, whose runtime can be estimated.
Recall that an optimization process is just a sequence of computational instruc-
tions that can be reproduced in any machine. Aiming to obtain a more diverse
sequence of computational instructions, we define the optimization process ρ′ as
the computational instructions generated by consecutively executing four differ-
ent optimization algorithms in 16 problem instances. Each of the 64 executions
involves solving a permutation problem with an optimization algorithm, with
a stopping criterion of a maximum of 2 · 106 evaluations (see Appendix C for
details on the optimization problems and algorithms used).

The runtime of the optimization process ρ′ in a machine can be estimated with
its machine score. In this paper, we measure the score of a machine (its computa-
tional capability) in terms of its PassMark single-thread CPU score 3, although
adapting the proposed methodology to other benchmarks is also possible. The

3The PassMark CPU score is one of the most popular CPU benchmark scores, with over
3500 CPUs listed on their website. In this paper, we use the single-thread score of this
benchmark. A higher value of the score is associated with a better relative performance
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Diagram of the estimation of the equivalent runtime

Figure 1: Estimated equivalent runtime of ρ in machine M2 (the response vari-
able t̂(M2, ρ)). The estimation is carried out with three predictor variables: the
machine scores s1 and s2 and t(M1, ρ).

advantage of using the PassMark score is that the PassMark website has a large
collection of CPUs with their scores. In Figure 2, we show the machine score
and runtime of ρ′ for each of the 8 machines considered in this paper (the list of
machines is available in Appendix C). We see that the relationship between the
runtime of ρ′ and the machine score is linear. Every point in Figure 2 represents
a different machine.

Based on the figure shown, we infer that i) linear regression is suitable to model
the runtime of ρ′ with respect to the machine score, and ii) the machine score has
a good correlation with the runtime of ρ′. Note that using a linear estimation of
ρ′ has some limitations in its applicability that will be addressed in Section 5.
With this in mind, we define the estimation of the runtime in a machine:

Definition 4. (Prediction of the runtime of ρ′ in a machine)
Let Mj be a machine and sj its machine score. Then, the runtime of ρ′ in Mj

is modeled as
t(Mj , ρ

′) ≈ −0.62280sj + 2008

where sj is the score of machine Mj.

of the CPU. The PassMark scores change over time, as new CPUs and consumer demand
for computation evolves. The scores considered in this paper can be looked up in the file
cpu_scores.md in our GitHub repo.
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PassMark single-thread score and the runtime ρ′
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Figure 2: The runtime of ρ′, the optimization process used as a reference to
define the regression model. Every point represents a different CPU, each with
a different machine score and runtime of ρ′ in this machine.
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Considering together Assumption 1 and Definition 4, the equivalent runtime can
be estimated as:

t2 ≈ t̂2 = t1 ·
−0.62280s2 + 2008

−0.62280s1 + 2008
= t1 ·

3223.49− s2
3223.49− s1

(1)

where s1 and s2 are the PassMark single-thread scores of the CPUs on machines
M1,M2, respectively. Due to the approximation errors in Assumption 1 and
Definition 4, the estimated equivalent runtime t̂2 = t̂(M2, ρ) will often differ
from the true equivalent runtime value t2 = t(M2, ρ). This means that when
using the estimated equivalent runtime as the stopping criterion for algorithm
B, sometimes, the runtime will be longer or shorter than the runtime used by
algorithm A.

2.1 Controlling the probability of predicting a runtime
longer than the true equivalent runtime

To statistically assess the uncertainty associated to the comparison of the perfor-
mance of algorithms A and B, in this methodology, we propose using a one-sided
statistical test. Under this test, the alternative hypothesis states that the per-
formance of algorithm B is better than the performance of algorithm A. As a
result, a type I error (erroneously finding a statistically significant difference in
the performance of A and B) can only be made when algorithm B performs
better than A.

When a shorter runtime is estimated, algorithm B has an “unfairly” shorter
stopping criterion for the optimization. This implies that the measured perfor-
mance of B will be worse than or equal to the performance that would have
been measured if the actual equivalent runtime were used. Consequently, tak-
ing into account the one-sided nature of the test, estimating a lower than actual
runtime will not increase the probability of type I error (estimating a lower than
actual runtime can never help algorithm B perform better than algorithm A).
It might, however, increase the probability of type II error.

As mentioned in the Introduction, making a type II error is better than making
a type I error when comparing algorithm performance. This is because, in
this context, it is better to miss evidence that can adequately discriminate
between two algorithms than to observe a false difference. For example, let us
assume that someone publishes algorithm A with a certain performance. Now
let us assume that a researcher proposes an algorithm B that is a variation of
algorithm A. If a type II error is made, then B is actually better than A, but the
researcher is not able to find enough evidence to support this, which is not in
itself an erroneous conclusion. However, in a type I error, algorithm B is actually
worse or equal to A but the researcher incorrectly identified algorithm B as the
better algorithm, and this can be more detrimental to scientific progress.

To avoid drawing erroneous conclusions, we present a modification to Equa-
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tion (1) so that the probability of estimating a longer time than the actual
equivalent runtime stays under a percentage chosen by the user. We reformu-
late the unbiased estimator shown in Equation (1) to reduce the probability of
estimating a runtime longer than the true equivalent runtime. The new biased
estimator is defined by multiplying the unbiased estimator with a correction
parameter γ ∈ (0, 1]:

Definition 5. (Estimation of the equivalent runtime in machine M2)
Let ρ be an optimization process, M1,M2 two machines and t1 the runtime

of ρ in machine M1. We compute t̂2, the estimate equivalent runtime of ρ for
machine M2 as:

t2 = t(M2, ρ) ≈ t̂2 = t1 ·
3223.49− s2
3223.49− s1

· γ

By adjusting γ, the probability of estimating a longer runtime than the equiva-
lent runtime, P[t̂2 > t2], can be reduced. However, adjusting γ implies that on
average, a shorter runtime is predicted. With γ = 1.0, the original, unbiased
estimator is obtained. A lower value of γ is associated to a lower probability of
estimating a runtime longer than the true runtime. Specifically, the parameter
γ is equal to E[ t̂2t2 ]: how much shorter the estimated equivalent runtime is than
the true equivalent runtime on average. For example, when γ = 0.5, then the
equivalent runtime used will be half of the equivalent runtime predicted by the
unbiased estimator.

We estimated the relationship between γ and P[t̂2 > t2] and we show the result
in Figure 3. We computed this probability empirically in a cross-validation
setting. The exact procedure carried out to generate this figure is available
in the file show_linear.py in our GitHub repository. In the following, we give
additional details on the process carried out to compute the relationship between
γ and P[t̂2 > t2] shown in the figure.

The pseudocode of the following process is shown in Algorithm 1. Given a value
of γ, we start by iterating over all the optimization processes and every possible
pair of CPUs (Lines 3-5) and we leave them out of the training data (Lines 6-7).
Then, we fit the linear regression in Definition 4 and Equation (1), but only with
the CPUs and optimization processes in the training data (Line 8). The runtime
of the left out optimization process in the machine with cpu1 is t1 (Line 11).
Now, we predict the equivalent runtime of the optimization process left out in
the machine with cpu2 with the formula t̂2 ← t1 · α−s2

α−s1
· γ, where α was fitted

with the training data (Line 12). Finally, we measure the proportion of times
in which the predicted equivalent runtime for the machine with cpu2, t̂2, was
longer than the runtime of the optimization process in that machine, t2.

Instead of considering the parameter γ, we can also think of the parameter
pγ = P[t̂2 > t2]. pγ is the probability of estimating a longer than equivalent
runtime associated to γ. It is probably more useful for the user to think of
pγ , because this is what is directly related to the increase of probability of
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Algorithm 1: Compute the probability of estimating a runtime longer
than the true equivalent runtime given γ in a cross-validation setting

Input:
cpu_list: The list of all the CPUs used to fit the linear regression.
process_list: The list of all the optimization processes.
γ: The correction coefficient.
Output:
P[t̂2 > t2]: The probability of estimating a runtime longer than the true equivalent
runtime for the given γ.

1 total ← 0
2 longer_runtime_predicted ← 0
3 forall test_process in process_list do
4 forall cpu1 in cpu_list do
5 forall cpu2 in cpu_list \ {cpu1} do
6 train_cpus ← cpu_list \ {cpu1, cpu2}
7 train_processes ← process_list \ {test_process}
8 fit the linear regression in Definition 4 and Equation (1) with the cpu

scores of train_cpus and the runtimes of the optimization processes in
train_processes when executed in train_cpus.

9 s1 ← cpu score of cpu1
10 s2 ← cpu score of cpu2
11 t1 ← runtime of test_process in the machine with cpu1
12 t̂2 ← t1 · α−s2

α−s1
· γ, where α was adjusted in Line 8.

13 total ← total +1

14 if t̂2 > t2 then
15 longer_runtime_predicted ← longer_runtime_predicted +1

16 return
longer_runtime_predicted

total

making a type I error in algorithm comparison: a lower pγ has an associated
lower probability of predicting an unfairly longer equivalent runtime. To obtain
an unbiased prediction of the equivalent runtime, it is enough to consider the
parameter pγ = 0.5.

To make the computation of the equivalent runtime convenient for the user, we
created a stand-alone (no dependencies) python script equivalent_runtime.py
available in our GitHub repository. This script predicts the equivalent runtime
with the formula in Definition 5, but considering the parameter pγ instead of γ.
To achieve this, the γ associated to pγ is calculated first. Given pγ the desired
probability of estimating a runtime longer than the true equivalent runtime,
s1, s2 the PassMark single-thread score of machines M1,M2 respectively and t1
the runtime in machine M1, we can use this script to estimate the equivalent
runtime. For example if pγ = 0.1, s1 = 1540, s2 = 1643 and t1 = 15.0, then we
can get t̂2 with

python equivalent_runtime.py 0.1 1540 1643 15.0
>> 11.461295

Even though the proposed model has an arbitrarily low probability of estimating
a longer than actual equivalent runtime, this probability is not zero. In Section 3,
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Estimated runtime and the correction parameter γ
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Figure 3: The probability of estimating a runtime longer than the true equivalent
runtime with respect to γ.

we will propose a modification of the sign test that takes into account this
probability and avoids an increase in the probability type I error.

2.2 Validation

We have introduced a methodology to predict the equivalent runtime for single-
thread optimization processes—a sequence of computer instructions that can
be replicated in different machines—based on the PassMark single-thread score.
In the following, we experimentally validate that the proposed methodology
works as intended. To this end, we try to answer the following two questions:
i) Is using the equivalent runtime better than using the same runtime in two
machines? And ii) does predicting the equivalent runtime for other machines
and optimization processes work as intended?

2.2.1 i) Predicting the equivalent runtime vs. using the same run-
time

In this paper, we proposed predicting the equivalent runtime with the PassMark
score. In the following, we show that it is better than just using the same
runtime in two machines. To do so, we compare the prediction error, measured
as the ratio with respect to the true equivalent runtime, when using the centered
estimator in Equation (1) of the equivalent runtime (t̂2 = t1 · 3223.49−s2

3223.49−s1
) vs.
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Figure 4: A comparison in estimation error of the predicted equivalent run-
time (Equivalent runtime) and simply using the same runtime in both machines
(Same runtime) with respect to the true equivalent runtime. The estimation
error is measured as the log deviation ratio of the prediction of the equivalent
runtime with respect to the true equivalent runtime. A value closer to 0 indi-
cates a lower prediction error.

when estimating it as the same runtime as in the other machine (t̂2 = t1).

We estimate the prediction error with these two methods for the 64 optimization
processes and 8 machines considered in the calibration of the linear regression
(see Appendix C for details). Once we have measured the ratio between the
estimated runtime and the true equivalent runtime, we apply the loss function
f(x) = abs(Log2(x)), obtaining the log deviation ratio. With this loss function, a
prediction that was three times the true equivalent runtime is assigned the same
loss as a prediction that was a third of the true equivalent runtime. In addition,
the log deviation ratio is easier to interpret: for example, a log deviation ratio
of 0 means that the prediction was perfectly accurate, and a log deviation ratio
of 1 denotes that the prediction was double or half the true value etc.

In Figure 4 we show the empirical distribution function of the log deviation
ratio for equivalent runtime and same runtime. The results clearly point out
that equivalent runtime, predicting the equivalent runtime with the centered
estimator in Equation (1), consistently produces a lower (better) error when
compared to using the same runtime in two machines same runtime.
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2.2.2 ii) Validation in other optimization processes and CPUs

Each time we predict the equivalent runtime with the centered estimator in
Equation (1), we expect the prediction to be either higher or lower than the true
equivalent runtime. Controlling this prediction error is one of the key challenges
of the proposed methodology, and allows the user to predict an equivalent run-
time with a desired probability of being higher than the true equivalent runtime.
However, since we fitted this estimator with a set of optimization problems and
CPUs (described in detail in Appendix C), we need to validate the prediction
with a different set of CPUs and optimization processes.

Validation CPUs and optimization processes

The four optimization processes for the validation experiment are enumerated
below. These four optimization processes are very different from the optimiza-
tion processes used to fit the estimator.

1. Find the first 106 prime numbers.

2. Finding magic squares [20].

3. Solving the knapsack problem [9].

4. Solving the N queens problem [10].

The CPUs of the machines considered in the validation experiment are listed
below:
CPU model name PassMark score
Intel(R) Xeon(R) CPU @ 2.20GHz 1383
Intel(R) Core(TM)2 Duo CPU P9600 @ 2.53GHz 1075
Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz 1779
Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz 1840
Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz 1511

Now, we compare the log deviation ratio of the centered estimator (Equation (1))
both for the optimization processes and CPUs used to fit the estimator, and
these new validation optimization processes and CPUs. The empirical distribu-
tion function of the log deviation ratio is shown in Figure 5. The error obtained
with the CPUs and optimization processes used to fit the estimator (from now
on Train) is a lot smoother than with the validation CPUs and optimization
processes (from now on Validation). However, this is to be expected because
Train contains a larger amount of both optimization processes and CPUs. In
addition, notice that for most of the x-axis, the error of Validation is lower
(better) than the error of Train. This can also be explained by the variance
of the error Validation being larger due to the smaller amount of CPUs and
optimization processes.

In any case, both errors are very similar and close to each other, and this
implies that the proposed methodology is indeed applicable to different CPUs
and optimization processes.
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Figure 5: A comparison in estimation error of the equivalent runtime with the
centered estimator. The estimation error for the optimization processes and
CPUs used to fit the estimator (Train), and these new validation optimization
processes and CPUs (Validation) are compared. The estimation error is mea-
sured as the log deviation ratio of the prediction of the equivalent runtime with
respect to the true equivalent runtime. A value closer to 0 indicates a lower
prediction error.
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3 Modifying the one-sided sign test

In the previous sections, we proposed an estimator of the equivalent runtime of
an algorithm in a machine. Specifically, we proposed a biased estimator with
an arbitrary probability of estimating a runtime longer than the true equivalent
runtime. By using this estimator, we can adjust the expected percentage of
samples of the performance of algorithm B computed with a runtime longer than
the true equivalent runtime. When a runtime longer than the true equivalent
time is estimated, the probability of making a type I error is higher than if the
comparison were carried out in the same machine. Therefore, in this section,
we propose a correction of the one-sided statistical test that takes into account
the probability of estimating a longer than the true equivalent time and its
subsequent increase in the probability type I error.

Given algorithms A,B, a one-sided hypothesis test in algorithm performance
comparison is as follows4:

H0: The performance of algorithm B is worse than or equal to A.
H1: The performance of algorithm B is better than A.

We believe that the sign test [7] is a suitable hypothesis in the context of this
paper and, in general, for comparing the performance of optimization algorithms
(see Appendix D for details). We limit the statistical test to the one-sided sign
test, with the alternative hypothesis being that the algorithm whose equivalent
runtime was estimated has a higher performance. In the following, we propose
a correction for the sign test that does not increase the probability of type I
error.

3.1 One-sided sign test

The sign test [7] is a special case of the binomial test, for p = 0.5. In the
context of algorithm performance comparison, the sign test statistically assesses
if the paired performance of two algorithms is the same or not. Performing this
statistical test involves first executing the optimization algorithms A and B
in the same machine, with the same stopping criterion, in a set of n problem
instances (i ∈ {1, ..., n}), obtaining the scores ai and bi for each algorithm-
instance pair.

These scores depend on which random seed was chosen (this seed represents
all the nondeterministic parts of the algorithms, such as solution initialization).
Thus, the performance of an algorithm in an instance can also be seen as a
random variable that is completely determined, given a certain seed. We denote

4It is noteworthy that failing to reject H0 does not imply statistical evidence that H0 is
true, instead it suggests a lack of evidence against H0. Therefore, in this case, it would not
be correct to conclude that “the algorithms compared perform the same with a statistical
significance of 1− α”.
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the random variables that represent the performance of algorithms A and B in
an instance i as Ai and Bi, respectively.

The statistical test allows us to draw conclusions about the algorithms on a
larger set of problem instances based on the observed results in the set of n
instances. The sign test is based on these three assumptions [7]:

• Each of the sample pairs Ai, Bi are mutually independent of the rest of
the pairs.

• Any observable pair ai, bi can be compared, that is, we can say that ai < bi,
bi < ai or ai = bi.

• The pairs are internally consistent, or if P[Ai > Bi] > P[Ai < Bi] for one
pair, then the same is true for all pairs.

In the context of algorithm comparison, the most problematic assumption is the
first one. The reason is that in real-life benchmarks, some problem instances may
share similarities, which means that there is no complete independence among all
sample pairs Ai, Bi. The Mann-Whitney and the Wilcoxon signed rank test also
contain this first assumption [7]. However, in practice, this limitation is usually
ignored. This is why, in general, it is a good idea to use a set of benchmark
problems with many kinds of different instances. As future work, the proposed
methodology could be adapted to be applicable to multiple benchmark sets,
where the instances in each benchmark have similar properties.

From now on, without loss of generality5, we assume that the algorithms deal
with a minimization problem, (i.e., ai is better than bi ⇐⇒ ai < bi). We
define #{Ai < Bi} as a random variable that counts the number of cases6 that
Ai < Bi in n instances. Then, the following hypothesis test corresponds to the
one-sided sign test [7]:

H0 : P[Ai < Bi] ≥ P[Ai > Bi]
H1 : P[Ai < Bi] < P[Ai > Bi]

Under H0, the null distribution of #{Ai < Bi} is Bin(n, 0.5), where Bin(n, 0.5)
is the binomial distribution of size n and rate of success 0.5 [7]. The p-value for
this hypothesis test is

p(k) = P[#{Ai < Bi} ≤ k | H0] = P[Bin(n, 0.5) ≤ k] (2)

where k is substituted by the statistic of the sign test: the number of cases that
ai < bi in all i ∈ {1, ..., n} samples, denoted as #{ai < bi}. By definition [18],

5A maximization problem can be converted into a minimization problem by multiplying
the objective function with −1.

6Without loss of generality, we can assume that ai ̸= bi, because samples in which ai = bi
are removed when performing the sign test [7].

17



the p-value can be interpreted as the probability of obtaining a more extreme
(lower) statistic than the observed, assuming H0 is true. If we reject the null
hypothesis when p(#{ai < bi}) ≤ α, then the probability of type I error is less
than or equal to α.

3.2 The corrected p-value

In practice, the statistic #{ai < bi} cannot be computed because the true equiv-
alent runtime t2 is unobservable. The equivalent runtime is approximated with
t̂2 (see Definition 5). As a result, each bi is substituted with its corresponding
b̂i, which is computed by using t̂2 instead of t2 as the stopping criterion. This
means that the statistic #{ai < bi} is replaced by #{ai < b̂i}, which counts
the number of times that ai < b̂i (without loss of generality, minimization is
assumed) is observed. Therefore, we need to define the function to obtain the
p-value associated to the statistic #{ai < b̂i}:

p̂(k) = P[#{Ai < B̂i} ≤ k | H0] (3)

where the p-value is obtained by substituting k with the observed statistic
#{ai < b̂i}. The p-value is the probability of obtaining a statistic that is
lower than or equal to the observed when H0 is true.

Notice that if we reject the null hypothesis when p̂(#{ai < b̂i}) ≤ α, then the
probability of type I error is less than or equal to α. However, for this to hold,
we need to assume that b̂i < bi: a longer optimization time produces a lower or
equal objective value (in a minimization setting). In general, we assume that a
longer optimization time can only produce a lower or equal objective value.

Let pγ be the desired upper bound of the probability of predicting a runtime
longer than the true equivalent runtime for each instance i. Then, in more than
1− pγ of cases, bi is obtained with a longer runtime than b̂i, and, therefore, the
probability of b̂i ≥ bi is greater than 1 − pγ . When a small pγ is chosen, we
expect that #{ai < b̂i} is higher than or equal to #{ai < bi}, but it will not
always be so. To overcome this limitation, we need to define a corrected p-value
p̂c, an upper bound of the actual p-value associated with statistic #{ai < b̂i},
that takes into account the probability pγ = t̂2 > t2. Specifically, we define this
upper bound as

p̂c(k) =

n∑
v=0

(1− P[Bin(n, pγ) < max(0, v − k)])P[Bin(n, 0.5) = v] (4)

such that

p̂c(k) > P[#{Ai < B̂i} ≤ k | H0] = p̂(k) (5)
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Figure 6: This figure shows the p-value and the corrected p-value p̂c for the sign
test with a sample size of n = 30 and pγ = 0.01. Under the null hypothesis H0,
the p-value represents the probability of #{ai < bi} ≤ k, while the corrected
p-value represents an upper bound of the probability of #{ai < b̂i} ≤ k. Under
the null hypothesis, #{ai < bi} follows a binomial distribution of size n and
probability of success 0.5.

is satisfied (we prove this inequality in Appendix E), where H0 implies that
statistic #{Ai < Bi} follows the null distribution Bin(n, 0.5) [7]. Figure 6 shows
p and p̂c side by side. Notice that p̂c is slightly higher, because it needs to ac-
count for the probability that t̂2 > t2. The corrected p-value p̂c is interesting be-
cause rejecting H0 when p̂c(#{ai < b̂i}) < α has also an associated probability
of type I error lower than α. The reason is that p̂c(#{ai < b̂i}) > p̂(#{ai < b̂i}),
and therefore, p̂c(#{ai < b̂i}) < α⇒ p̂(#{ai < b̂i}) < α.

To generate the corrected p-values conveniently, we created a standalone (only
dependencies in the standard library) python script corrected_p_value.py avail-
able in our GitHub repository. This script uses an efficient and precise imple-
mentation of Equation (4). To calculate the corrected p-value, we need the
probability of predicting a runtime longer than the true equivalent runtime pγ ,
the sample size n, and the number of observations k in which algorithm A out-
performs algorithm B. For example if pγ = 0.1, n = 20, and k = 3, then we can
get p̂c(3) with

python corrected_p_value.py 0.1 20 3
>> 0.043596000

19

https://github.com/EtorArza/RTDHW/blob/master/corrected_p_value.py
https://github.com/EtorArza/RTDHW


4 Applying the methodology

In this section, we illustrate how to apply the proposed methodology with two
examples. The proposed methodology is very simple to use and does not re-
quire any additional software. Further details and material are available in our
GitHub repository.

4.1 Example I

In this example, we will compare a simple random initialization local search
procedure with a memetic search algorithm by Benlic et al. [2] for the QAP.
Benlic et al. run the code sequentially, without any parallel or multithreaded
execution. Using the proposed methodology, we will statistically assess the
difference in the performance between these two algorithms, without having to
execute the code of the memetic algorithm. In this case, the memetic search
algorithm is algorithm A, because this is the algorithm of which we already
have the results, and the local search algorithm is algorithm B, because this
is the algorithm whose runtime is going to be estimated. For this experiment,
we choose a probability of predicting a longer than true equivalent runtime of
pγ = 0.01.

Step 1: Obtaining the data

To apply the proposed methodology, we need to find certain information about
the execution of the memetic algorithm. The required data includes the list
of instances to be used in the experimental comparison, the average objective
value obtained by the memetic search algorithm, and the runtime of the memetic
search algorithm in each of the instances. The information extracted from the
article by Benlic et al. [2] is listed in the first three columns of Table 2. Also, we
need to find the CPU model of the machine in which the memetic search was
run (machine M1), which is "Intel Xeon E5440 2.83GHz" as specified in their
article. Finally, the machine score of this CPU, measured as PassMark single-
thread score, is s1 = 1219 (as seen on the file cpu_scores.md in the GitHub
repo).

Step 2: Estimating the equivalent runtime

With the data already gathered, the next step is to estimate the equivalent
runtime of each instance for the machine in which the local search algorithm
will be executed (machine M2). Estimating the runtime requires the score s2
of this machine to be known. The CPU model of M2 is "Intel Celeron N4100",
with a PassMark single-thread score of s2 = 1012. With this information, we
are ready to estimate the equivalent runtime t̂2 for each instance in machine
M2. We run the script

python equivalent_runtime.py 0.01 1219 1012 t1
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Data obtained from the
paper by Benlic et al. [2]

Data corresponding to the
execution of B in machine M2

instance runtime in objective estimated equivalent objective
seconds, t1 value, ai runtime, t̂2 value, b̂i

tai40a 486 3141222 313.68 3207604
tai50a 2520 4945266 1626.50 5042830
tai60a 4050 7216339 2614.02 7393900
tai80a 3948 13556691 2548.18 13840668
tai100a 2646 21137728 1707.82 21611122
tai50b 72 458821517 46.47 459986202
tai60b 312 608215054 201.37 609946393
tai80b 1878 818415043 1212.13 824799510
tai100b 816 1185996137 526.67 1195646366
tai150b 4686 499195981 3024.52 505187740
sko100a 1338 115534 863.59 153082
sko100b 390 152002 251.72 155218
sko100c 720 147862 464.71 149076
sko100d 1254 149584 809.37 150568
sko100e 714 149150 460.84 150638
sko100f 1380 149036 890.70 150006

Table 2: This table shows all the data in the first example. The first three
columns correspond to the QAP instances in which the memetic search algo-
rithm by Benlic et al. [2] was tested, the runtime of the memetic search algorithm
in each instance, and the best objective value they obtained in each execution,
averaged in 10 executions per instance. The information in these three columns
was directly obtained from the paper by Benlic et al., without any additional
executions. The next two columns show the estimated equivalent runtimes and
the average objective value scores that the local search algorithm obtained with
this runtime as the stopping criterion. The local search algorithm was executed
in machine M2.
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where t1 is substituted with the runtime of the memetic search algorithm in
each instance, listed in Table 2.

Step 3: Running the experiments

Now, we execute the local search algorithm in the instances listed in Table 2,
using the estimated runtimes t̂2 as the stopping criterion. This execution is
carried out in machine M2, and the best objective function values b̂i are listed
in Table 2. Following the procedure by Benlic et al., these best objective values
are averaged over 10 executions.

Step 4: Obtaining the corrected p-value

Once all the results have been computed, the next step is to compute the statistic
#{ai < b̂i}, which counts the number of times that ai < b̂i. In this case, ai < b̂i
happens 15 times, and therefore, k = #{ai < b̂i} = 15. Now we can compute
the corrected p-value of the one sided sign test. To do so, we use the script
corrected_p_value.py with the chosen pγ = 0.01, n = 15 and k = 15.

python corrected_p_value.py 0.1 15 15
>> 1.0000000

Step 5: Conclusion

Since the observed corrected p-value is not lower than the chosen α = 0.05, we
cannot reject H0. In this case, the conclusion is that with the amount of data
that we have and the chosen target probability of type I error of α = 0.05, we
can not say that the local search algorithm has a statistically significantly better
performance than the memetic search algorithm7.

It is important to note that, if we had considered the original runtimes t1 as the
stopping criterion for algorithm B in machine M2 (longer than the estimated
equivalent runtime t̂2), the local search would have had an unfairly longer run-
time. In other words, the comparison would have been biased toward the local
search.

4.2 Example II

In this second example, we will compare the same simple random initialization
local search procedure with an estimation of distribution algorithm (EDA) for
the QAP [1]. The estimation of distribution algorithm (EDA) was executed
sequentially, without parallel or multithreaded execution. In this case, the EDA
is algorithm A, because this is the algorithm of which we already have the results,
and the local search algorithm is algorithm B, because this is the algorithm
whose runtime is estimated. For this experiment, we choose a probability of
predicting a longer than true equivalent runtime of pγ = 0.01.

7It would not be correct to conclude that the two algorithms perform (statistically signif-
icantly) the same, or that the memetic search performs statistically significantly better than
the local search.
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Data obtained from the
paper by Arza et al. [1]

Data corresponding to the
execution of B in machine M2

instance runtime in objective estimated equivalent objective
seconds, t1 value, ai runtime, t̂2 value, b̂i

bur26a 1.45 5432374 1.80 5426670
bur26b 1.45 3824798 1.80 3817852
bur26c 1.43 5427185 1.77 5426795
bur26d 1.44 3821474 1.78 3821239
nug17 0.44 1735 0.54 1734
nug18 0.51 1936 0.63 1936
nug20 0.68 2573 0.84 2570
nug21 0.77 2444 0.95 2444
tai10a 0.12 135028 0.14 135028
tai10b 0.12 1183760 0.14 1183760
tai12a 0.18 224730 0.22 224416
tai12b 0.19 39464925 0.23 39464925
tai15a 0.31 388910 0.38 388214
tai15b 0.31 51768918 0.38 51765268
tai20a 0.69 709409 0.85 703482
tai20b 0.68 122538448 0.84 122455319
tai40a 5.41 3194672 6.72 3227894
tai40b 5.41 644054927 6.72 637470334
tai60a 19.23 7367162 23.88 7461354
tai60b 19.21 611215466 23.86 611833935
tai80a 50.09 13792379 62.22 13942804
tai80b 50.1 836702973 62.23 830729983

Table 3: This table shows all the data in the second example. The first three
columns correspond to the QAP instances in which the EDA algorithm by Arza
et al. [1] was tested, the runtime of the EDA in each instance, and the best
objective value they obtained in each execution, averaged in 10 executions per
instance. The information in these three columns was directly obtained from
this paper, without any additional executions. The next two columns show the
estimated equivalent runtimes and the average objective value scores that the
local search algorithm obtained with this runtime as the stopping criterion. The
local search algorithm was executed in machine M2.

Step 1: Obtaining the data

To apply the proposed methodology, we need to find certain information about
the execution of the EDA. The required data includes the list of instances to
be used in the comparison, the average objective value obtained by the EDA,
and the runtime used in each instance. The information extracted from the
paper [1] is listed in Table 3. In addition, we need to find the CPU model of
the machine in which the EDA search was run (machine M1), which is "AMD
Ryzen 7 1800X", as specified in the paper. Finally, the machine score of this
CPU, measured as PassMark single-thread score is s1 = 2182, as seen on the
cpu_scores.md file.
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Step 2: Estimating the equivalent runtime

With the data already gathered, the next step is to estimate the equivalent
runtime of each instance for the machine in which the local search algorithm
will be executed (machine M2). The CPU model of M2 is "Intel Celeron N4100"
(the same as in the previous example), with a PassMark single-thread score of
s2 = 1012. To estimate the runtime for each instance, we run

python equivalent_runtime.py 0.01 2182 1012 t1

where t1 is substituted with the runtime of the EDA algorithm in each instance,
listed in Table 3.

Step 3: Running the experiments

Now, we execute the local search algorithm in the instances listed in Table 3,
using the estimated runtimes t̂2 as the stopping criterion. This execution is
carried out on machine M2, and the best objective function values b̂i are listed
in Table 3. Following the procedure by Arza et al., these best objective values
are averaged over 20 executions.

Step 4: Obtaining the corrected p-value

After the executions, the statistic k = #{ai < b̂i} is computed, which counts
the number of times that ai < b̂i. In this case, ai < b̂i happens 4 times, and
therefore, #{ai < b̂i} = 4. Now we compute the corrected p-value with with
the chosen pγ = 0.01, n = 17 and k = 4.

python corrected_p_value.py 0.01 17 4
>> 0.033192784

Step 5: Conclusion

The observed corrected p-value is lower than the chosen α = 0.05, and therefore
we reject H0. The conclusion is that with a probability of type I error of α =
0.05, the performance of the local search procedure is statistically significantly
better than the performance of the EDA.

In this case, machine M1 is more powerful (in terms of computational capabil-
ities) than machine M2. If we had considered the original runtimes t1 as the
stopping criterion for algorithm B in machine M2 (shorter than the estimated
equivalent runtime t̂2), it would have been more difficult for the local search to
perform better than the EDA. In that case, H0 might not have been rejected.

5 Limitations, applicability and future work

Below, we discuss the limitations, applicability, and potential future develop-
ments of the proposed methodology.
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5.1 Multiple threads/cores

The purpose of the presented work is to compare two algorithms with the same
computational resources. One of the limitations of the presented model is that
it should only be applied with optimization processes that run on a single-
thread. This is because the single-thread PassMark score and the optimization
process ρ′ (see Appendix C)) that were used to calibrate the linear regression
in Definition 4 are also single-threaded.

However, many of the optimization algorithms in the literature today are not
single-threaded. For example, many problems involve linear algebra operations
that can benefit from a multithreaded speedup, and most consumer CPUs today
have at the very least two cores. Hence, the single-thread PassMark score is
not suitable for optimization algorithms that involve these types of operations.
Although, theoretically, it should always be possible to execute parallel code
sequentially.

The multi thread PassMark score does take into account the multithreaded
nature of the CPUs, and could, therefore, be used to re-calibrate the linear
regression. This re-calibration would also involve defining another optimization
process ρ′ that makes use of the multi thread capabilities of the CPU, such as
solving linear problems or other processes that involve matrix multiplications.

There is, however, an additional limitation inherent to parallel executing algo-
rithms that makes their comparison in different machines difficult. Suppose we
have two algorithms that run in parallel and their maximum speedup is obtained
when executed in four cores, and additional threads/cores offer negligible im-
provement. Now let us assume that we have two machines, M1 with four cores
and M2 with sixteen. Let us also assume that the cores in these two machines
are similar in speed. Then, roughly speaking, we expect that the algorithm
executed in machine M2 should have an equivalent runtime 4 times shorter.
However, since the two algorithms can only take advantage of the speedup pro-
vided by, at most, four cores; the algorithm executed in machine M2 would have
a huge disadvantage.

In general, it is difficult to know the maximum potential speedup of the exe-
cution in parallel of an algorithm presented in the literature. This makes the
prediction of the equivalent runtime of parallel algorithms more challenging than
for single-thread algorithms. Taking into account the additional difficulty asso-
ciated to the comparison of parallel algorithms, we think that the comparison of
optimization algorithms that run on single-thread is a reasonable starting point.
In future work, it would be interesting to extend the proposed methodology for
multi thread algorithms.
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5.2 CPU as the only bottleneck

The PassMark single-thread score measures the computing capability of the
CPU, disregarding other components like the hard disk or the speed and the
size of the RAM memory. Therefore, the prediction of the equivalent runtime is
only applicable to optimization algorithms that are CPU intensive, or in other
words, optimization algorithms that have their execution speed limited by the
CPU.

There are many optimization algorithms whose runtime is determined mainly
by the speed of the memory, instead of the CPU. Specially, when optimization
algorithms require large amounts of data to be loaded to memory repeatedly.
Conversely, when an optimization algorithm does not use too much memory, we
can expect its runtime to be more CPU dependent.

In addition, many optimization algorithms in machine learning today are ex-
ecuted in GPUs and sometimes even on specialized hardware. Compared to
CPU execution, GPU offers speedups when similar operations are applied to
large amounts of data. As in the multi core case, predicting the runtime of
algorithms in GPUs is more challenging than in single-threaded execution in
CPU. GPUs themselves have several processing cores and integrated memory
that varies in size and speed from model to model.

The proposed methodology could be adapted for algorithms whose runtime de-
pends on memory or GPU speed. In fact, PassMark has a benchmarks for RAM
and GPUs. Therefore, it could be possible to re-calibrate the linear regression
for either RAM or GPU dependent tasks. This re-calibration would also involve
defining another optimization process ρ′. Taking into account the additional dif-
ficulty associated to measuring the runtime of algorithms that depend on RAM
and GPU, we think that the comparison of optimization algorithms whose run-
time depends primarily on the CPU is a reasonable starting point for this paper.
In future work, it could be interesting to adapt the methodology for algorithms
whose runtime depends on RAM or GPU.

5.3 Efficiency of the implementation

In addition to the limitations related to the hardware, the implementation of
the algorithms can also have an impact in the runtime. For instance, if the same
algorithm is implemented in both Python and C, the runtime in C is likely to be
shorter. But even within the same programming language, the runtime could
change depending on the compiler flags (i.e. the -O3 will probably outperform
no optimizations) or the configuration of the interpreter. In addition to the
previous factors, the implementation itself could also be more or less efficient,
depending on the skill of the programmer and the time it invests in designing
efficient code.

Even though there are quite a few factors that depend on the implementation,

26



we argue that by implementing the code in the same programming language
the results should be comparable. In any case, even when the methodology
proposed in this paper is not used, it is the responsibility of the researcher to
make sure that the comparison is fair in terms of the implementation. This
limitation is not inherent to the proposed methodology, but to the comparison
of two algorithms in general.

5.4 The variance in the PassMark single-thread score

The PassMark single-thread score is a score for CPUs that is correlated with
their single-thread performance. However, the performance of CPUs is not the
same even within the same model. This is known as the silicon lottery, and is
caused by the manufacturing process of CPUs. In addition, the performance of
the CPU will also be limited by the cooling system used. With better cooling,
we can expect a better CPU performance.

The PassMark single-thread score takes into account this variance, and the
scores are the averages of several users’ submitted results. Still, the cooling
setup and the silicon lottery of the researcher that wants to apply the pro-
posed methodology will inevitably introduce a variance to the predictions of the
equivalent runtime.

The presented method models the probability of predicting an equivalent run-
time that is longer than the true equivalent runtime. And by doing so, it takes
into account this variance because the machines used in the calibration process
of the linear regression inevitably have different cooling systems and are also
affected by the silicon lottery.

5.5 Very high and low PassMark scores

Finally, there is a limitation regarding the chosen machine score: the PassMark
single-thread score. In Section 2, we saw that a linear function is a suitable func-
tion to model the relationship between the machine score and the runtime of the
reference optimization process ρ′ (the definition of ρ′ is given in Appendix C).
The reference optimization process ρ′ is used to calibrate the linear regression
in Definition 4 so that the equivalent runtime of other optimization processes ρ
can later be predicted based on this formula. The formula of the fitted linear
regression is t(Mj , ρ

′) ≈ −0.62280sj + 2008 where t(Mj , ρ
′) is the equivalent

runtime of ρ′ in machine Mj , and sj is the score of machine Mj . With this
formula, a PassMark single-thread score higher than 3223 produces a negative
estimated equivalent runtime, which does not make sense. However, for the 8
machines used to fit the data, as Figure 2 shows, the linear model seems to be
suitable.

To overcome this limitation, we recommend applying the proposed methodology
only in machines with PassMark single-thread scores in the interval (411, 2185).
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These values correspond to the highest and lowest values used in the fitting of
the linear regression. More than 70% of the CPUs in the provided list (see the file
cpu_scores.md in the GitHub repo) have their PassMark score in this interval.
In addition, the CPUs that do not have their score in this interval are either
very new or very old, which means that the proportion of the user base with the
PassMark single-thread score in this interval is probably way higher than 70%.
As future work, and especially when more powerful processors are available, the
methodology can be updated to incorporate these new processors or even change
the machine score to other benchmark scores beyond the PassMark single-thread
score.

5.6 Assumptions of the corrected sign test

The corrected sign test is based on certain assumptions and should only be used
taking into account certain limitations that will be addressed in this section.
First, we will address the assumption related to the probability of predicting a
runtime longer than the true equivalent runtime. Let (t̂2 > t2)i be a random
variable that represents if the estimated equivalent runtime for algorithm A,
instance i in machine M2, is longer than the true equivalent runtime or not. The
required assumption is similar to assuming that t̂2 > t2 is mutually independent
for each instance i. Specifically, it is required8 that P[(t̂2 > t2)i|∩i̸=j(t̂2 >
t2)j ] < pγ .

One could argue that this assumption is false because (t̂2 > t2) depends on
many factors, such as the machines used in the experimentation. The same two
machines are used to compute all samples ai, bi suggesting that all (t̂2 > t2)i
can never be truly independent among each other. However, even though we
can not ensure that P[(t̂2 > t2)i|∩i ̸=j(t̂2 > t2)j ] < pγ , by choosing a suitable
correction coefficient γ, in Section 2, we estimated that P[(t̂2 > t2)i] < pγ .

In addition to the previous assumption, the proposed methodology only consid-
ers one side hypothesis testing. In this regard, it should only be applied to show
a statistically significantly superior performance of the algorithm whose equiva-
lent runtime was estimated (denoted as algorithm B in this paper). The reason
is that algorithm B has a high probability of having a lower runtime, thus, it
is easy that B performs worse than A, while the opposite is difficult. Failing to
reject H0 only indicates a lack of evidence against H0, and in our context, it
only indicates that there is not enough evidence to say that B performs better
than A (it tells us nothing about A performing better than B).

8This assumption is required in the proof of Equation (5) in Appendix E. Specifically, it is
used in Lemma 3.
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6 Conclusion

Usually, comparing optimization algorithms with a maximum runtime as a com-
mon stopping criterion requires the algorithms to be executed in the same ma-
chine. Unfortunately, the code of all the algorithms is not always available. An
alternative is to adjust the runtime of the algorithms relative to the speed of the
machine in which they are executed. In this paper, we proposed a methodology
to statistically compare the performance of two optimization algorithms in two
different machines, when the results of one of the algorithms are already known
and without having to execute this algorithm again. The methodology ensures
that the probability of type I error does not increase due to the algorithms being
executed in different machines. To achieve this, first, the runtime of the exe-
cuted algorithm is adjusted based on the speed of the CPUs of both machines.
Then, a modified one-sided sign test is used so that the probability of using an
unfairly longer runtime is taken into account. We illustrate the application of
the proposed methodology with two examples.

Alongside this paper, a tutorial with examples is presented in our GitHub repos-
itory. In addition, we offer two standalone scripts (also in the same repository):
one to estimate the equivalent runtime and another one to generate the corrected
p-values. This will hopefully make it simple for people to apply the proposed
methodology.

Supplementary Material

Code to Reproduce the Results

The code to reproduce the results in this paper are available in the GitHub
repository.

Scripts to Apply the Methodology

The scripts equivalent_runtime.py and corrected_p_value.py required to apply
the methodology are also available in the GitHub repository.
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A The importance of using the same resources in
algorithm comparison

It is essential to run the algorithms with the same computational resources to
carry out a fair comparison. To better illustrate this point, in the following lines,
a small experiment is presented. This experiment illustrates the increase in the
probability of type I error (the probability of erroneously concluding a difference
in performance, when in reality, there is none) with respect to the difference in
execution time. Specifically, we run a random search algorithm twice in each
problem instance9 and perform the one-sided sign test [7]10 (see Section 3.1 for
an explanation of the sign test), on the set of results obtained. The significance
level is set to α = 0.05. Even though the random search algorithm is being
compared with itself, we increase the runtime of one of the executions by 8,
16, 32, or 64 percent. We repeat the steps above 1000 times to estimate the
probability of type I error (estimated as the probability of rejecting H0).

Figure 7 shows the estimated probability of type I error. Notice that the type
I error starts at 0.05, which is the expected result for a significance level of
α = 0.05. However, the error shoots up dramatically when the difference in
runtime increases, more than doubling when the percentage of extra runtime
reaches 32%. Therefore, a discrepancy in the runtime of the algorithms being
compared, if high enough, can lead to falsely concluding that the performance
of the algorithms is not the same. A fair comparison requires the same compu-
tational resources to be assigned in the execution of each algorithm.

B Justification of Assumption 1

The runtime of an optimization process (a sequence of computational instruc-
tions) is different in each machine. However, even though it is different, there
might be a proportional relationship between the runtime of the same opti-
mization process in two different machines. This hypothesis is the basis of
Assumption 1.

To experimentally study this assumption, we compute the correlation of the
runtime that several optimization processes have on two machines. Specifically,
we computed the correlation of 64 different optimization processes (see Ap-
pendix C for additional details on the optimization processes) for every possible
pair of machines from the 8 different machines used in the experimentation.
The average Pearson’s correlation coefficient of the runtimes is 0.989987, which
shows a strong linear [21] (not necessarily proportional) relationship between

9A set of 16 permutation problem instances is considered, 4 instances of 4 problems. The
four permutation problems considered are the traveling salesman problem, the permutation
flowshop scheduling problem, the linear ordering problem, and the quadratic assignment prob-
lem.

10In D, we explain why we limit the statistical analysis to the sign test in this paper.
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Increase in the probability type I error with respect
to the difference in runtime

0% 8% 16% 32% 64%
Percentage of extra execution time

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y 
of

 ty
pe

 I 
er

ro
r

Figure 7: Probability of type I error in the one-sided sign test when comparing
two identical random search algorithms. One of the algorithms is given extra
runtime, according to the x-axis. The test is applied to a set of 16 problem
instances.

the runtime of the same optimization process in two different machines.

Given two machines M1 and M2, the runtime of an optimization process can
be considered as a two-dimensional vector, where each of the dimensions rep-
resents the runtime of the optimization process in each of the machines. Thus,
knowing the runtime t(s,M1) of an optimization process ρ in a machine M1, it
is reasonable to estimate the equivalent runtime of ρ in another machine M2,
when the runtime of two other optimization processes ρ′ and ρ′′ is known for
both machines. In fact, with such a high Pearson’s correlation coefficient, the
runtimes of these optimization processes (red crosses in Figure 8) will almost be
aligned in a line [21]. Therefore, the estimated runtime of ρ in machine M2 is
defined as the value that makes the runtime of the three optimization processes
aligned. This is shown by the orange line in Figure 8.

Observe that this procedure requires the runtime of two optimization processes
ρ′ and ρ′′ to be known in both machines M1,M2. However, by considering an
additional hypothesis, we can reduce the requirement to only one optimization
process ρ′. This additional hypothesis is that the regression line has to cross
the origin. Intuitively, if an optimization process (sequence of computational
instructions) takes no time in a machine, it makes no sense that it takes a
positive amount of time in another machine. In addition, without this condition,
it could be possible to estimate a negative runtime, which is not properly defined.

In this setting, the estimated runtime for the optimization process ρ in machine
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Estimating the equivalent runtime
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Figure 8: Estimation of the runtime of an optimization process ρ with one ρ′ or
two ρ′, ρ′′ reference optimization processes. The x-axis represents the runtime
in machine M1, while the y-axis is the runtime in machine M2. The runtime of
the optimization process ρ is estimated for machine M2.

M2 is set so that the runtime of the optimization processes ρ and ρ′ and the
origin are in the same line. This is represented by the blue line in Figure 8. The
estimation of the runtime of the optimization process ρ in machine M2, shown
in the figure as a blue square, is given by the slope-intercept formula for the
points (0, 0) and (t(M1, ρ

′), t(M2, ρ
′)):

t(M2, ρ) ≈
t(M2, ρ

′)

t(M1, ρ′)
t(M1, ρ) (6)

By rewriting Equation (6), we obtain that the ratio of two optimization processes
is (approximately) constant in different machines

t(M2, ρ)

t(M2, ρ′)
≈ t(M1, ρ)

t(M1, ρ′)
(7)

which is exactly Assumption 1.

C Optimization processes

As defined in this paper, an optimization process is just a sequence of compu-
tational instructions that can be executed in any machine. Specifically, each
of the optimization processes described in this section consists of executing an
optimization algorithm in a problem instance for a maximum of 2 ·106 objective
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Problem instances

instance name problem size
tai75e02 qap 75
sko100a qap 100
tai100a qap 100
tai100b qap 100
eil101 tsp 101
pr136 tsp 136
kroA200 tsp 200
kroB200 tsp 200
tai100_20_0 pfsp (100,20)
tai100_20_1 pfsp (100,20)
tai200_20_1 pfsp (200,20)
tai200_20_1 pfsp (200,20)
N-be75np_150 lop 150
N-stabu3_150 lop 150
N-t65d11xx_150 lop 150
N-t70f11xx_150 lop 150

Table 4: The list of 16 problem instances and their size.

function evaluations. In total, we considered 64 optimization processes, execut-
ing 4 algorithms in 16 problem instances. The optimization process ρ′ is the
sequential execution of these 64 optimization processes.

Problem instances: We solved four types of optimization problems (all of
them are permutation problems): the traveling salesman problem [11], the
quadratic assignment problem [14], the linear ordering problem [6] and the per-
mutation flowshop scheduling problem [12]. For each of these four problem
types, we chose 4 problem instances, as listed in Table 4.

Optimization algorithms: Each of the 16 problem instances was optimized
with four optimization algorithms. These optimization algorithms are random
search and local search with three different neighborhoods: swap, interchange,
and insert [16, 5]. The local search is a best-first or greedy approach that is
randomly reinitialized when a local optimum is found.

We define each of the 64 different optimization processes as running each of
these four optimization algorithms in each of the 16 problem instances.

Machines: The experimentation was carried out in a set of 8 different machines.
Table 5 lists the CPU models of these machines, as well as their single-thread
PassMark CPU scores.
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Machines

CPU model name PassMark score
Intel i5 470U 539
Intel Celeron N4100 1012
AMD A9 9420 with Radeon R5 1344
AMD FX 6300 1486
Intel i7 2760QM 1559
Intel i7 6700HQ (2.60GHz) 1921
Intel i7 7500U 1955
AMD Ryzen7 1800X 2185

Table 5: The list of 8 machines used in the experimentation and their speed
score, measured in terms of PassMark single-thread score.

D The sign test for algorithm performance com-
parison

When statistically assessing the comparison of the performance of optimization
algorithms, a classical way is to use non-parametric tests as the distribution of
the performance is usually unknown. In the literature, the Wilcoxon signed-
rank test, the Mann-Whitney test and the sign test [7] are often used to assess
a statistically significant difference in the performance of two algorithms. We
argue that, in the context of optimization algorithm performance comparison,
it may be more suitable to use the sign test than the Wilcoxon signed-rank or
the Mann-Whitney test.

It turns out that the result of the Wilcoxon and the Mann-Whitney tests might
change when the objective function value of some of the problems is scaled
(multiplied or divided by a positive constant). The reason is that they both
take into account the magnitude of the differences between the observations,
and these differences change with scaling. A usual solution is to consider the
average relative deviation percentage with respect to the optimum (or any other
reference solution) instead of the objective value, but this only changes the
problem: now the results of these tests change when the objective function
value of some of the problems is shifted (add or subtract a constant). In our
opinion, the performance comparison of two optimization algorithms should be
invariant to these two alterations, otherwise, problems that are on a higher scale
(for example, when the dimension of the problem is high), will have a larger
impact on the result of the statistical test. In addition, we believe that it is
reasonable that all problem instances have the same weight in the conclusion of
the statistical test, which both the Wilcoxon signed-rank and the Mann-Whitney
test are unable to accomplish due to their dependence on the magnitude of the
differences.

An alternative is the sign test [7], which is invariant to the shifting and scaling
of the problems. In fact, the result of the sign test does not change even if
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some of the problems are modified by composing the objective function with
any strictly increasing function. For this reason, and even though the sign test
is a less powerful alternative (higher probability of type II error), we believe it is
the most suitable hypothesis test for algorithm performance comparison when
the objective functions of all the problems are not directly comparable.
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E Proof of Equation (5).

When performing the statistical analysis, a set of n problem instances is used
to compute the statistic and the p-value. The goal of the analysis is to draw
conclusions on a larger set of problem instances based on the observed sample of
size n. Given a problem instance, we can define the performance of an algorithm
in this instance.

Definition 6. (The performance of an algorithm in an instance)
Let M be a machine, t a stopping criterion in terms of maximum runtime, A an
optimization algorithm and i a problem instance. The performance of algorithm
A in an instance i, denoted A(M, t, i), is defined as a random variable whose
outcome is obtained by first sampling a random seed r and then optimizing
instance i with optimization algorithm A in machine M for time t. Given this
random seed r, the performance of an algorithm in an instance is deterministic.

In Section 2, we defined t1 as the stopping criterion for algorithm A in machine
M1, which is obviously the time it takes to carry out this optimization process
in machine M1. We also defined the equivalent runtime t2 as the time it takes
to replicate the exact same optimization process in machine M2 in Definition 3.
Because of this definition, A(M1, t1, i) and A(M2, t2, i) are the same random
variables. Therefore, it makes sense to denote A(M1, t1, i) and A(M2, t2, i) or
B(M1, t1, i) and B(M2, t2, i) as Ai or Bi, respectively. To ease the notation, we
will also denote B(M2, t̂2, i) as B̂i.

Finally, as discussed in Section 5.6, we assume that whether t̂2 < t2 is true or
not is independent for each instance i, and that P(t̂2 < t2) < pγ . Let us now
prove Equation (5).

Lemma 1. Let n be an integer, X and Y two random variables. Let X1, ..., Xn

be n independent random variables distributed as X. Let Y1, ..., Yn be n indepen-
dent random variables distributed as Y . Let vx and vy be two possible outcomes
of the random variables X and Y respectively, l ∈ {0, ..., n} be an integer and
p ∈ (0, 1) be a real number.

I) If P[Y = vy | X = vx] = 1, then

P[X = vx] ≤ P[Y = vy]

and
#{Xi = vx} ≤ #{Yi = vy}

II) If P[Y = vy | X = vx] = 1 and P[X = vx | Y = vy] = 1 then

P[X = vx] = P[Y = vy]
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III) If P[X = vx] < p then

P[#{Xi = vx} ≥ l] < P[Bin(n, p) ≥ l]

Lemma 2. Let i ∈ {1, .., n} be n problem instances and let A and B be two
optimization algorithms. Let ai, bi and b̂i be the observed values of Ai, Bi and
B̂i respectively, ∀i ∈ {1, ..., n}. Let k and v ∈ {0, ..., n} be two integers. Suppose
that Ai ̸= Bi and Ai ̸= B̂i.

Then,

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v] ≤
P[#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k) | #{Ai < Bi} = v]

Proof.
#{Ai < min(B̂i, Bi)} ≤ min(k, v) =⇒
#{Ai < B̂i ∧Ai < Bi} ≤ min(k, v) =⇒

#{Ai < Bi} −#{Ai > B̂i ∧Ai < Bi} ≤ min(k, v) =⇒

Substituting #{Ai < Bi} = v,

v −min(k, v) ≤ #{Ai > B̂i ∧Ai < Bi} =⇒

Considering v −min(k, v) = max(0, v − k),

#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k)

We have just shown that

#{Ai < min(B̂i, Bi)} ≤ min(k, v) =⇒ #{Ai > B̂i ∧Ai < Bi} ≥ max(0, v− k)

Which means that,

P[#{Ai > B̂i∧Ai < Bi} ≥ max(0, v−k) | #{Ai < min(B̂i, Bi)} ≤ min(k, v)] = 1

Finally, we apply Lemma 1 I), obtaining

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v] ≤
P[#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k) | #{Ai < Bi} = v]
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Lemma 3. Let i ∈ {1, .., n} be n problem instances and let A and B be two
optimization algorithms. Let ai, bi and b̂i be the observed values of Ai, Bi and
B̂i respectively, ∀i ∈ {1, ..., n}. Let k and v ∈ {0, ..., n} be two integers. Suppose
that Ai ̸= Bi and Ai ̸= B̂i.

Then,

P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] < P[Bin(n, pγ) ≥ max(0, v − k)]

Proof.
P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] ≤

P[#{Ai < min(B̂i, Bi)} ≤ k | #{Ai < Bi} = v]

Now, observe that #{Ai < min(Bi, B̂i)} ≤ #{Ai < Bi} = v, which implies that

#{Ai < min(B̂i, Bi)} ≤ k ⇐⇒ #{Ai < min(B̂i, Bi)} ≤ min(k, v)

This means that

P[#{Ai < min(B̂i, Bi)} ≤ k | #{Ai < min(B̂i, Bi)} ≤ min(k, v)∧#{Ai < Bi} = v] = 1

and

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < min(B̂i, Bi)} ≤ k∧#{Ai < Bi} = v] = 1

We apply Lemma 1 II), obtaining

P[#{Ai < min(B̂i, Bi)} ≤ k | #{Ai < Bi} = v] =

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v]

Applying Lemma 2, we obtain

P[#{Ai < min(B̂i, Bi)} ≤ min(k, v) | #{Ai < Bi} = v] ≤

P[#{Ai > B̂i ∧Ai < Bi} ≥ max(0, v − k) | #{Ai < Bi} = v]

Note that bi is the score obtained with the true equivalent runtime t2 as the
stopping criterion, while in the case of b̂i, the stopping criterion is the estimated
equivalent runtime t̂2. In a minimization context, b̂i < bi =⇒ t̂2 > t2,
because a better score can only be obtained with a longer runtime (a shorter
runtime implies an equal or worse performance). Let us consider the following
implications:

ai > b̂i ∧ ai < bi =⇒ b̂i < bi =⇒ t̂2 > t2
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We infer that
P[t̂2 > t2 | Ai > B̂i ∧Ai < Bi] = 1

Applying Lemma 1 I), we obtain

P[#{Ai > B̂i ∧Ai < Bi | #{Ai < Bi} = v} ≥ max(0, v − k)] ≤

P[#{t̂2 > t2 | #{Ai < Bi} = v} ≥ max(0, v − k)] =

P[#{t̂2 > t2} ≥ max(0, v − k)]

The estimated runtime t̂2 was computed with the equation in Definition 5 in
Section 2, with an estimated probability that t̂2 < t2 lower than 0.01. With this
information, we apply Lemma 1 III) taking into account that P[t̂2 > t2] < 0.01:

P[#{t̂2 > t2} ≥ max(0, v − k)] <

P[Bin(n, 0.01) ≥ max(0, v − k)]

Theorem 1. Let i ∈ {1, .., n} be n problem instances and let A and B be two
optimization algorithms. Let ai, bi and b̂i be the observed values of Ai, Bi and
B̂i respectively, ∀i ∈ {1, ..., n}. Let H0 be the null hypothesis under which the
statistic #{Ai < Bi} follows the null distribution Bin(n, 0.5). Suppose that
Ai ̸= Bi and Ai ̸= B̂i. Then,

P[#{Ai < B̂i} ≤ k | H0] ≤
n∑

v=0

(1− P[Bin(n, 0.01) < max(0, v − k)]) · P[Bin(n, 0.5) = v]

Proof. Let X,C be a two random variables, where SC and SX are the sets
of all possible outcomes of C and X respectively. Consider the law of total
probability [3]:

∀x ∈ SX , P[X = x] =
∑
c∈SC

P[C = c] · P[X = x | C = c]

Applying this formula, we obtain

P[#{Ai < B̂i} ≤ k | H0] =
n∑

v=0

P[#{Ai < B̂i} ≤ k | H0 ∧#{Ai < Bi} = v] · P[#{Ai < Bi} = v | H0]

Given that #{Ai < Bi} = v, we can say that #{Ai < B̂i} ≤ k is independent
of H0, because #{Ai < B̂i} is determined by how many times t̂2 > t2 resulted
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in Ai < Bi∧Ai > B̂i and t̂2 < t2 resulted in Ai > Bi∧Ai < B̂i. Specifically, H0

gives the prior probabilities of Ai > Bi, which are not relevant when we know
that #{Ai > Bi} = v. That gives us

n∑
v=0

P[#{Ai < B̂i} ≤ k | H0 ∧#{Ai < Bi} = v] · P[#{Ai < Bi} = v | H0] =

n∑
v=0

P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] · P[#{Ai < Bi} = v | H0]

Applying Lemma 3 and considering that H0 implies the null distribution Bin(n, 0.5)
for the statistic #{Ai < Bi},

n∑
v=0

P[#{Ai < B̂i} ≤ k | #{Ai < Bi} = v] · P[#{Ai < Bi} = v | H0] <

n∑
v=0

P[Bin(n, 0.01) ≥ max(0, v − k)] · P[#{Ai < Bi} = v | H0] =

n∑
v=0

P[Bin(n, 0.01) ≥ max(0, v − k)] · P[Bin(n, 0.5) = v] =

n∑
v=0

(1− P[Bin(n, 0.01) < max(0, v − k)]) · P[Bin(n, 0.5) = v]
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