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Abstract
On-farm experimentation (OFE) embeds the conduct of agronomic research within normal farm business operations such that
experiments are driven by farmers’ needs for business improvement, albeit enabled and facilitated by collaborating ‘experts’ in a
process of co-learning. Because experiments are laid down using the farmers’ own equipment in their own fields and at a scale
that is consistent with the scale at which farm management decisions are made, it provides them with a salient, credible and
legitimate means of creating knowledge for effective application that is valuable to the individual farmer in their field and farm,
and potentially to neighbouring farmers in a region. Here, with a particular view to the potential application of OFE in Australian
farming systems, we consider the synergies between OFE and the use of precision agriculture (PA) technologies such as yield
monitors, crop and soil sensors, and variable rate application of inputs. Indeed, it is suggested that whilst the tools of PA greatly
facilitate the conduct of OFE, it is arguably the case that OFE is an essential part of the optimal deployment of PA. We also
address statistical issues associated with OFE conducted using PA, including the use of replication, randomization for experi-
mental design, and concerns about spatial autocorrelation in data collected at the within-field scale. However, whilst farmers are
generally disengaged from data analysis and place greater emphasis on the magnitude of gross effects and benefit:cost than on
statistical significance, they nevertheless want robust and interpretable results. Accordingly, we identify some tools which
facilitate simple assessment of alternative management actions across the range of variation in the production systems which
farmers encounter. The need for farmer-trustworthy systems of data governance and data sharing amongst those engaged in OFE
is also highlighted.
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1 Introduction

Farmers are under pressure; the world needs them to produce
more food, and in Australia for example, despite recent im-
provements (2015–2020) to their terms of trade following a
lengthy period (1995–2010) of decline (Zammit and Howden
2020), they frequently face marked ‘shocks’ to their cost
structures. For example, the price of urea doubled in the period
between May and October 2021 resulting in the ratio of the
grain price to urea price being well over 2.5 t wheat per t urea
(Whitelaw 2021b) compared to a long-term average of 1.26
(Whitelaw 2021a). Against this background, to maintain prof-
itability and business viability, farmers must either increase
yield (and/or quality), reduce expenditure on inputs or
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enhance the efficiency with which they make use of inputs. In
short, they must find a way of improving productivity (Zhao
et al. 2021) at the same time as maintaining the sustainability
of the land resources on which we all depend; some have
referred to this as sustainable intensification (Garnett et al.
2013). In recent discussions of Australian farm performance
metrics, both Zhao et al. (2021) and Malcom (2021) have
highlighted the importance of innovation to productivity
growth. In other words, productivity growth and by inference,
farm business sustainability, depends on research and devel-
opment, whether it derives from innovation on the part of the
farmers themselves or researchers working in universities or
research institutes.

For the purposes of this paper, and consistent with the
definition used by the #OFE2021 conference (https://
o f e 2021 . com /man i f e s t o ) , we de f i n e “on - f a rm
experimentation” (OFE; Lyon 1996, Bramley et al. 1999;
Adams and Cook 2000; Lacoste et al. 2022) as an approach
to innovation in which farmers and researchers (or other
“specialists” such as consultants) work in partnership to
deliver both farm business improvement and advancement
of agronomic and other scientific knowledge. Lacoste
et al. (2022) characterise OFE as embedded within normal
farm management and driven by farmer-initiated ques-
tions, the answers to which support farmers’ own man-
agement decisions; thus, “farmer-centric”. However, it is
undertaken in partnership with specialists; that is, it is
“farmer-centric” and “specialist-enabled”, thereby pro-
moting co-learning. Whilst OFE relies on the analysis of
farm-specific data, it is scalable in that knowledge is cre-
ated of local value to the farmer but also stimulates
broader insight and potential application in other fields,
farms, or regions. In this paper, we follow this same
Lacoste e t a l . (2022) charac ter i sa t ion of OFE.
Furthermore, and as noted by Lacoste et al. (2022), whilst
precision agriculture (PA) is by no means an essential
component of OFE, here we especially consider the value
of using the tools of PA as OFE enablers, especially in
relation to spatially distributed experimental designs
(Bramley et al. 2013) as better alternatives to small plots
in directing farm business improvement.

It may be readily observed that farmers like experimenting;
they often try new things (e.g. a new fertilizer or crop variety,
different sowing depths, or in a vineyard, different pruning
methods or the use of an inter-row cover crop (Fig. 1)) and
have likely been doing so for much longer than Agronomy has
been recognised as field of research endeavour amongst the
scientific community (Pretty 1991; Hansson 2019). It is there-
fore somewhat ironic that, even though farmer trials are pri-
marily directed at farm business decision-making rather than
scientific advancement, and that demonstrations of the rich-
ness in farm data are not hard to find (e.g. Lawes and Kingwell
2012; Bramley et al. 2019), researchers often regard farmers’

trials with circumspection (e.g. Lyon 1996; Johnson et al.
2003; Piepho et al. 2011; Alesso et al. 2019) on the basis that
treatments may not be replicated, that other elements of sta-
tistical rigour are missing, or that the results may not lead to
improved scientific understanding. Yet these farmer trials are
almost always conducted using the farmers’ own equipment
and at a scale that is relevant to the scale at which farmers must
make and implement farm management decisions. Farmers
perceive such trials (e.g. Fig. 1) as offering advantage over
small plot-based randomized experiments (Griffin et al. 2008;
Bramley et al. 2013), especially when the plot trials are con-
ducted at locations other than their own farm, because as a
source of advice for agronomic management, larger scale tri-
als (Fig. 1) meet the requirements of salience, credibility and
legitimacy (Cash et al. 2003). Critically, they generate the
“actionable knowledge” (Evans et al. 2017) that is necessary
to underpin decision-making. The re-emergence, re-align-
ment, and growth of effort between farmers and researchers
in farmer-centric OFE, as described by Lacoste et al. (2022), is
therefore important as it promotes a shift towards co-
innovation in which experimentation is directed towards farm
business improvement, with scientific or consultancy support
provided, as required, by researchers or other specialists. The
latter benefit through access to the OFE as a research resource
and in the case of researchers, as a possible ‘path to market’
for their research. To build momentum in this area and
move beyond more classical, researcher-driven approaches
to participatory research (Petheram 2000; Carberry et al.
2002) to a farmer-centric model, researcher concerns at the
credibility of farmer trials must be overcome. Likewise,
farmer distrust of so-called experts (Rust et al. 2021),
whose outputs may be perceived as lacking salience, cred-
ibility or legitimacy (Cash et al. 2003), needs to be ad-
dressed. Desirably, the number of farmers who regard
OFE as ‘business-as-usual’ and who are willing to share
their OFE data also needs to grow. Drawing especially on
experience in Australian farming systems, this paper dis-
cusses these various issues with a particular focus on the
role of PA and other elements of digital agriculture (DA;
Shepherd et al. 2018; Hansen et al. 2022) in overcoming
them. We begin by considering the synergies between OFE
and PA/DA, address perceived statistical deficiencies in
OFE conducted using PA, highlight some spatial analysis
tools which enable analysis of OFE to the satisfaction of
both farmers and researchers, and finish with some sug-
gestions as to how OFE might be more readily adopted
and implemented.

2 Precision agriculture and experimentation

Figure 2 shows yield maps collected in a 96-ha field over a 7-
year period by an Eyre Peninsula (South Australia) farmer. It
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Fig. 1 True colour aerial
photograph of an on-farm
experiment conducted in a 4.8-ha
vineyard planted to Merlot (Vitis
vinifera L.) in the Clare Valley of
South Australia, 2004–2007
(Panten et al. 2010, 2011). The
experiment sought to evaluate
alternative approaches to mid-row
management intended to enhance
vine vigour. Also shown is the
plant cell density (PCD),
otherwise known as the simple
ratio (the ratio of infrared to red
reflectance) obtained using
airborne remote sensing, which
provides an indication of vine
vigour. With this image, the
vineyard manager could go into
the vineyard and align his
observation of the different
treatment effects and their
variation to different parts of the
block.

Fig. 2 Selected data collected by a farmer-adopter of precision
agriculture in a 96-ha cereal field on the Eyre Peninsula of South
Australia over a 7-year period (2004–2010). The yield maps, all of
which have units of t/ha, were generated using data collected using a
yield monitor on the harvester. Also shown is a map of apparent soil
electrical conductivity (ECa; mS/m) derived from a survey using an

electromagnetic induction sensor in 2009, and an airborne image (0.76-
m resolution) acquired mid-season in 2010. The data are draped over an
elevation model derived from the kinematic GPS used for machine
guidance on the harvester. All maps, including the zones derived from
k-means clustering, were processed using PAT (Ratcliff et al. 2020). Note
that the orientation of the north arrow is approximate only.
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also shows an electromagnetic induction soil survey and mid-
season airborne image that he purchased from service pro-
viders in one of the years, some management zones derived
from these various map layers (Taylor et al. 2007), with all
layers draped over a digital elevation model derived from the
20-mm accuracy GPS data generated and used by his har-
vester’s guidance system. It is a deliberately old dataset to
highlight the point that such data have been accessible for
some time and that, notwithstanding lower rates of PA adop-
tion than some might consider ideal (Bramley and Ouzman
2019; Ofori et al. 2020), most farmers operating modern farm-
ing systems nevertheless have ready access to such data if they
want it. Key to the establishment of the management zones
(Fig. 2) is temporal stability in the patterns of spatial variation
in the yield maps and their alignment with both the high-
resolution soil survey data and digital elevation model. In this
example, sodic soils in the low-lying parts of the field, asso-
ciated boron toxicity in the sub-soil, coupled with early season
waterlogging in wet years, constrain yields in these areas. It is
most likely that, due to farmer experience, the map layers
shown in Fig. 2 do not present as a surprise to the farmer; he
knows roughly which parts of the field are lower or higher
yielding, but maps such as Fig. 2 delineate these areas more
precisely and also provide rigorous quantification of their dif-
ferences in performance (Cook and Bramley 1998).Whilst the
knowledge generated through interpretation and understand-
ing of the map layers in Fig. 2 is therefore potentially valuable
to the farmer, it also poses a difficult question: how should he
modify management in the different zones to reflect their dif-
ferent yield potential arising from their differences in soil and
terrain? Perhaps the answer to this question might lie in an
experiment? This is where the farmer-centric element of OFE
(Lacoste et al. 2022) becomes critical because, with reference
to Fig. 2, the scientific understanding of soil sodicity, boron
toxicity, and waterlogging impacts on crop performance is
already sound. What is needed here is not an experiment
to quantify the impact of these constraints to production
and their relative importance, but rather an experiment
which underpins the improved business performance of
this field within this farm. How, for example, should rates
of mid-season nitrogen (N) be varied between the zones in
order to optimise yield, grain protein, and/or return on
investment in N at the end of the season? Such questions
are those which confront the farmer with much greater
immediacy than questions relating to scientific quantifica-
tion of the factors impacting crop performance. They are
why the farmer-centric element of OFE is so important.
And if an experiment is to be conducted to inform the
farmers’ decision-making in relation to management of
the field shown in Fig. 2, where should it be located and
using what design? Clearly, a classical ‘small plot’ agro-
nomic trial may not be the best way to underpin a busi-
ness decision impacting this 96-ha field, and perhaps

other parts of the farm, given the potential impact of trial
location on the results obtained, their interpretation, and
the merit of their extrapolation beyond the trial area
(Bramley et al. 2005, 2013).

The development of so-called spatially distributed or whole
of block experimentation was reviewed by Bramley et al.
(2013). In brief, by taking advantage of the various PA tech-
nologies now available (variable rate controllers, remote and
proximal sensing, yield monitoring, grain protein sensing,
etc…), conducting experiments at scale in such a way that
the range of underlying variation in the land on which the
decision is to be made is included as an experimental tool,
farmer experimenters can gain guidance towards decision
optimisation. In effect, in addition to enabling better un-
derstanding of variation in crop performance, what the spa-
tially distributed approach does is enable the farmer to take
advantage of Krige’s relation (Webster and Oliver 2007).
Thus, the wider range of variation in a potentially useful
explanatory covariate affecting treatment response over
several hectares, compared to within a few small plots,
can be used as the basis for extrapolating the experimental
results to other parts of the field or farm. In the case of
Fig. 2, elevation and the soil exchangeable sodium per-
centage, which is easily determined through routine soil
testing, are examples of such covariates, yet neither might
be expected to vary much within the area occupied by a
typical small plot agronomic trial. Importantly, spatially
distributed designs (e.g. strips, checkerboards) move away
from the objective of a classical plot trial analysed using
analysis of variance (ANOVA) and its derivates — to
identify whether treatment A is better than treatment B.
Instead, the spatially distributed approach recognises that
both A and B may deliver benefit, but with the relative
magnitude of their benefit varying in different parts of the
field (Bramley et al. 2013). This was the philosophy un-
derpinning the original checkerboard experiment (Cook
and Bramley 1998; Cook et al. 1999; Adams et al.
1999), the ‘adjacent strip’ variety comparison experiments
of Doerge and Gardner (1999) and the whole-of-vineyard
floor management trial (6.8 ha) of Bramley et al. (2005)
amongst other examples. None of these trials was
analysed using classical Fisherian approaches (ANOVA
etc; Fisher 1925) as the primary determinant of treatment
effect. Instead, they employed map interpolation, with or
without simple map algebra (Cook and Bramley 1998;
Bramley et al. 2005), moving window regression (Cook
et al. 1999), or more sophisticated machine learning methods
(Adams et al. 1999). Anecdotally, they were regarded with
varying degrees of scorn by classically trained agronomists
and biometricians on the basis of lack of statistical rigour,
even though in each case, the collaborating farmers were en-
thusiastic, especially in terms of the business-relevance of the
trials; Marchant et al. (2019) provide a useful commentary on
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many of the statistical issues arising. Where there is strong
agreement, however, is with the notion that PA greatly
facilitates the conduct of OFE — both in the collection
of experimental data and also in the laying down of trials
using variable rate equipment (e.g. Bramley et al. 2013;
Bullock et al. 2019; Marchant et al. 2019) — an idea
that was implemented in the mid-1990s in the experi-
ments of Cook et al. (1999), Pringle et al. (1999),
Adams et al. (1999), and Adams and Cook (2000) and
otherwise proposed by Reetz (1996) — i.e. more than 25
years ago.

3 Statistical analysis, statistical significance,
and perceptions of experimental rigour

Two particular avenues of critique of both the early spatially
distributed on-farm trials, and of farmer trials generally, were
perceived flaws in experimental design relating to replication
and randomization. In terms of replication, it is simply not
possible to take the same soil or plant sample more than once.
Thus, for example, destructive measurement of crop yield is
very different to replicating measurements of the pH of the
same solution. It is therefore of note that each of the yield
maps in Fig. 2 is underpinned by approximately 18,000 yield
records; in the context of the statistical robustness of these
maps, each of these yield records is a replicate, albeit one with
spatially autocorrelated replicates, which is why a yield map
can be regarded as the simplest form of experiment — the
uniformity trial. Similarly, in the case of strip trials used to
underpin fertilizer decision-making (Lawes and Bramley
2012; Colaço et al. 2022 — see below), whilst an individual
strip might be viewed as just one treatment, because it is laid
out across the field and so crosses the range of underlying soil
and topographic variation, one can have as many virtual
replicates as are desired, albeit that these are subject to auto-
correlation, with this replication achieved by taking multiple
measurements, most likely using sensing technology, includ-
ing yield monitors and crop canopy sensors. In other words,
and in this context, a strip is not the same as one large plot.

Randomization is arguably a more vexed issue with some
(e.g. Piepho et al. 2011; Bullock et al. 2019; Trevisan et al.
2021) insisting that spatially distributed designs adhere to the
use of randomized treatments. On the other hand, what ran-
domization might achieve if applied to an experiment de-
signed to fine tune management of the field shown in Fig. 2
is open to question. The farmer knows perfectly well that the
performance of the two zones is different and why, so has little
to gain by randomizing experimental treatments across them.
Similarly, in the case of the adjacent strip method of Doerge
and Gardner (1999) and the checkerboard of Cook and
Bramley (1998), the whole point of the non-randomized (but
highly replicated) design is to enable side-by-side treatment

comparison in all parts of the field. In the case of the
checkerboard, this is possible in all directions, albeit with
the issue of anisotropy possibly needing consideration in
the case of yield monitor data obtained from such a trial
(Marchant et al. 2019). How important such anisotropy
might be when controlled traffic is used, such that ma-
chines always travel in the same path and in the same
direction, is worthy of investigation.

Another area of concern in relation to experimentation
using the tools of PA has been that the data generated by yield
monitors and other digital technologies will almost certainly
be spatially autocorrelated (van Es et al. 2007; Piepho et al.
2011; Alesso et al. 2019; Bullock et al. 2019; Marchant et al.
2019; Griffin et al. 2020; Trevisan et al. 2021). Indeed, were
this not the case, yield maps such as those shown in Fig. 2
would not show spatial structure and so would not be of much
value to a farmer. However, Alesso et al. (2019) have argued
in the context of evaluating experimental results, that autocor-
relation leads to an increase in so-called type 1 error rates
(false positives), whilst Taylor and Bates (2013) and
Tisseyre and Leroux (2017) have cautioned against the use
of significance tests in correlation and ANOVA when data
are autocorrelated, suggesting the use of corrections (e.g.
Dutilleul 1993) to account for this. Whilst the merits of the
statistical arguments on this issue are not questioned, the im-
portance of their impact certainly can be. First, drawing on a
large literature, McBratney and Pringle (1999) provide strong
evidence that any multiple within-field measures of soil, and
by inference crop attributes will be autocorrelated; the now
much larger PA literature provides further weight of evidence
of this. It might therefore be argued that correction for auto-
correlation in any agricultural dataset is needed, not just those
derived from PA/DA technologies or as a part of OFE.
Second, the impact of autocorrelation is only an issue if a
measure of statistical significance is required which, as dis-
cussed below, for farmer-centric OFE it may not be.
However, across a range of disciplines, several authors (e.g.
Matthews 2018; Amrhein et al. 2019; Wasserstein et al. 2019,
and references therein) have advocated a move away from the
use of tests of statistical significance because they can readily
lead to misinterpretation of results, especially in the context,
for example, of whether or not a drug exerts an effect
(Amrhein et al. 2019); the effects of fertilizers or herbicides
are similarly open to mis-interpretation. In this regard, Rowe
(1994) provides a useful discussion of uncertainty.

Recently, Song et al. (2022b) sought to understand the
motivations and behaviours of farmer experimenters and their
consultants in the Australian wine sector across a diverse
range of enterprise sizes and types. Twenty-nine out of 35
vineyard managers, and all 8 consultants interviewed made
use of experimentation in some form each year, with common
objectives being to improve grape or wine quality, reduce the
costs of production or otherwise improve management
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operations in the vineyard. However, the primary aim of all of
these vineyard trials was to improve confidence in operational
decisions. (Note that, for the most part, these were not OFE
under the Lacoste et al. (2022) definition as they were not
specialist-enabled.) Yet, with the exception of a small number
of growers who had access to technical support, this vineyard
experimentation did not involve statistical analysis, and none
of the growers reported considering statistical significance in
their evaluation of trial results — including those who made
use of statistical analysis. Instead, growers relied on simple
comparisons between treatments, mainly because statistical
significance and business significance are not the same
thing. One grapegrower reported to Song et al. (2022b) that
decisions about practice change following experimentation
were based on “the efficacy and cost… did it work; how well
did it work; how much did it cost ?” In other words, financial
and experiential metrics, coupled with simple assessments of
gross effects, were important determinants of actions being
taken as a result of vineyard experiments. Nonetheless, and
notwithstanding the low use of statistical analysis, growers
expressed a desire for “robust results” and efficient ap-
proaches to experimentation that incorporate spatial informa-
tion to underpin more informed decision-making (Song et al.
2022b). Griffin et al. (2008) and Thompson et al. (2019),
working with grain growers in the USA, report broadly similar
results. Spatial variability in land was recognised as a factor
confounding trial results amongst the Australian grapegrowers
interviewed by Song et al. (2022b) for whom access to or
adoption of PA technologies was lower than is the case in
the Australian grains sector (Bramley and Ouzman 2019;
Bramley 2021). Therefore, tools which assist in the evaluation
of trial results would clearly be valuable, as would experimen-
tal approaches and farm business analytics which recognise
the reality of spatial variation in the land underlying vineyards
and other farms (Oberthür et al. 2017; Song et al. 2022a).

4 Tools for spatial analysis of OFE

Notwithstanding general grower disinterest in statistics, the
geostatistically based method of Bishop and Lark (2006) for
analysis of “landscape scale” experiments was an important
advance over analytical methods based on map algebra as it
provided a means of attaching statistical significance to treat-
ment effects assessed using some spatially distributed designs
(Bramley et al. 2013). It therefore provided a counter to re-
searcher perceptions of a lack of statistical rigour in such de-
signs given that it enabled the statistical significance of treat-
ment effects to be mapped in addition to the effects them-
selves. Illustrations of the use of this approach to experimental
analysis are provided for broadacre cereals by Bishop and
Lark (2007) and in vineyards by Panten et al. (2010), Panten
and Bramley (2011, 2012) and Bramley et al. (2011).

However, as discussed by Bramley et al. (2013), one problem
with the Bishop and Lark (2006) method was that it employed
a ‘global’ analysis, leading to two shortcomings. First, the
matrix inversions involved meant that for a field such as that
shown in Fig. 2, using data from a yield monitor (> 18,000
yield records) to analyse a trial conducted over the entire field
with two or three treatments would be beyond the power of
most desktop computers. Second, the ‘global’ analysis was
inconsistent with the standard approach to yield mapping
using ‘local’ kriging (e.g. Taylor et al. 2007), which is both
a response to the computer power issue and also the likelihood
that, in a field containing two or more contrasting soils with
consequent differences in yield potential, the assumption of
stationarity (e.g. Webster and Oliver 2007), a requirement for
map interpolation by kriging, may not be met. The method of
Jin et al. (2021) is an improvement on Bishop and Lark (2006)
as it enables local analysis, with the size of the local
neighbourhood determined using the method of Bakar et al.
(2021). Both Jin et al. (2021) and Bakar et al. (2021) are
enabled in Precision Agriculture Tools (PAT; Ratcliff et al.
2020) thereby providing a freely available open-source tool
which can be used by growers, their advisors, and researchers
in analysing spatially distributed OFE. Of course, whether the
growers take notice of the statistical significance metrics
offered by such tools is irrelevant. Implementation of the
methods of Jin et al. (2021) and Bakar et al. (2021) in a tool
such as PAT (Ratcliff et al. 2020) still provides growers, con-
sultants and researchers with a useful map-based analysis tool
for on-farm experiments with particular utility when digital
technologies such as yield monitors or remotely sensed imag-
ery are used to assess treatment effects. Importantly, they
also provide an entry point for classically trained agron-
omists and their statisticians to such spatial analysis.

A possible objection to the whole-of-block approach has
been that, especially for fertiliser response experiments
using low or zero rates, such designs might lead to reduced
revenues due to lost production, with small strip designs
suggested as an alternative (Whelan et al. 2012). Another
might be that since most adopters of PA tend to manage on
a zone basis (e.g. Fig. 2; Whelan and Taylor 2013; Bramley
and Ouzman 2019) rather than using continuous variable
rate application of inputs, there might be less need to ex-
periment in an entire zone or field than in representative
parts of each zone. Thus, for example, Lawes and Bramley
(2012) positioned ‘N-rich’ strips so that they crossed pre-
viously identified management zones in three fields in the
Australian grainbelt and used a moving window analysis to
assess the difference between the N-rich strip and adjacent
farmer practice along the length of the strips. Whilst the t-
test element of this work can be criticised on the basis that
correction for autocorrelation (e.g. Dutilleul 1993) was not
employed, its results were nonetheless similar to those ob-
tained using a ‘spatial ANOVA’ which did account for
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autocorrelation (Lawes and Bramley 2012). More impor-
tantly, the moving window approach allowed the farmers
involved to see both the magnitude of the gross differences
between the strip and adjacent areas and to quantify a re-
sponse index describing these. In addition to supporting
decision-making relating to zone-based management, this
moving window approach was valuable in highlighting the
fact that contrary to frequent commentary, management zones
are not “homogenous”. More recently, Colaço et al. (2021,
2022) and Lawes et al. (2019) have concluded that such OFE
is essential if optimization of N fertiliser management is the
farmers’ goal, with Lawes et al. (2019) and Colaço et al.
(2022) also highlighting the utility of ‘N-zero’ in addition to
‘N-rich’ strips, even if these are short (Whelan et al. 2012)
rather than running over the full length of the field (Lawes
and Bramley 2012; Colaço et al. 2022). Moving window trial
analysis is also available in PAT (Ratcliff et al. 2020).

5 Grower needs for OFE implementation

Whilst farmers commonly experiment, the use of more data-
intensive experimentation as a ‘business as usual’ approach to
improved agronomic management is yet to be realised given
that the availability of time, labour, and unexpected events are
frequent reasons for trials not being completed (Song et al.
2022b). Whilst the farmer-led, specialist-enabled nature of
OFE as defined by Lacoste et al. (2022) may help to alleviate
some of the pressures, such considerations dictate that OFE
needs to be simple and/or easy for the farmer to implement.
This is likely why both grapegrowers (Song et al. 2022a) and
cereal farmers (Lawes and Bramley 2012; Colaço et al. 2022;
Cho et al. 2021) see simple strips as attractive. In the case of
vineyards, this will especially be the case in the absence of
readily commercially available DA technologies that fa-
cilitate automation of vineyard operations. Equally, it is
why the conduct of OFE as an inherent part of PA (Reetz
1996; Cook and Bramley 1998) was seen as attractive
given the opportunity for the tools of PA to be used for
automated trial establishment and measurement of treat-
ment effects. However, current mainstream PA software
lacks functionality for experimental analysis. Whilst it is
expected that such analysis will primarily be the domain
of either the farmers’ agronomic consultant or a research-
er partner supporting the OFE (Lacoste et al. 2022), ex-
perimental analysis may be facilitated for all participants
by tools such as PAT (Ratcliff et al. 2020) and it is to be
hoped that further development of such tools will contin-
ue. As a part of this, some exploration of the application
of machine learning methods to OFE analysis (Adams
et al. 1999; Colaço et al. 2021, 2022) may prove valuable.

Pannell et al. (2006) have highlighted that innovations are
more likely to be adopted when they have a “high relative

advantage” over current practice, and when they are readily
“trialable”; that is, when they are easy to test and to learn about
before adoption. In the context of farmer-centric OFE
(Lacoste et al. 2022), ‘trialability’ is an obvious inherent ele-
ment of the adoption process itself, whilst a clear purpose of
OFE is to facilitate identification of the ‘relative advantage’ of
a new approach to management. So, what might enable such
practice to become a part of ‘business as usual’ for farmers
who, as discussed, are disposed to try things anyway, and
what might impede adoption? These are important questions
given the suggestion (Lacoste et al. 2022) that the
“restructuring” of the relationship between farmers and
scientists promised through participatory processes has so
far failed to materialise.

Rust et al. (2021) examined the information sources of
farmers in Hungary and the UK who were considering inno-
vations in sustainable soil management. They found, perhaps
unsurprisingly, that farmers place most trust in other farmers.
They also found that farmers place least trust in so-called
experts, especially “agricultural researchers from academic
and government institutions”. The reality of this problem is
readily supported by the observation of Bouma (2021) that, in
identifying a role for Soil Science in realising the Sustainable
Development Goals by 2030, Evans et al. (2021) failed to
mention the role of farmers and landholders. Likewise, in
identifying research priorities to overcome barriers to the
benefits of DA being realised in New Zealand, Shepherd
et al. (2018) acknowledged the need for a move away from
reductionist approaches. However, their focus appeared more
strongly aligned to partnership between researchers and tech-
nology companies than with the end-users of the technologies.
Tsouvalis et al. (2000) reported dissatisfaction with compa-
nies developing PA technologies amongst UK farmers who
felt ignored in this process, and more broadly, a mismatch can
readily be identified between the objectives of digital technol-
ogy developers and those of farmers (Rose et al. 2018;
Bronson 2019; Jakku et al. 2019; Hansen et al. 2022). It is
therefore somewhat surprising that, in a UK-based study
aimed at identification of priority research questions for DA
(defined in this case as the application of big data and preci-
sion technology systems in agriculture), Ingram et al. (2022)
invited 148 stakeholders to participate in a survey, of whom
only 8 (5%) were “Farmer representatives”. Of the 40 who
accepted the invitation and who were then asked to offer up
research questions for consideration, only three were from the
“Farmer representatives” cohort. Twenty-eight participants
then prioritised the total of 195 research questions identified
through a voting process, again with three of these participants
being “Farmer representatives”. This was followed by an
online workshop in which the ideas were elaborated, on
this occasion with four of the 25 participants being
“Farmer representatives”. Whether any of these “Farmer
representatives” were actual farmers is unclear. However,
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by far the most represented group in this process were
researchers, with the second most represented group being
from DA companies (Ingram et al. 2022). In each of these
examples, it might be suggested that acknowledgment of
the need for salience, credibility and legitimacy (Cash
et al. 2003) amongst farmer stakeholders has been a con-
straint to progress.

In contrast to the above examples, and in the context of a
biosecurity management problem relating to pathogen
incursions, Evans et al. (2020) suggest some valuable alterna-
tives to the ‘expert’ presenting as such. They highlighted the
need for scientists (and their host organizations) to take a wide
view of the system in which the problem is situated and to
adopt a “problem focus” rather than a “solution focus” to gain
a deeper understanding of the issues being addressed, their
context and the likelihood of different stakeholders reacting
differently to the situation (c.f. experimental results). They
would thus be better positioned for their expertise to be of-
fered or sought when the farmer is most receptive in terms of
timing, content, and mode of delivery. This approach is also in
marked contrast to that which predominated at the recent
International Conference on farmer-centric OFE (ISPA
2021) and presents as a significant area in which much value
would accrue through scientists re-thinking their objectives in
regard to on-farm trials and considering the desirability of
these being farmer-centric. Thus, for OFE as envisioned by
Lacoste et al. (2022) to succeed and progress, in addition to
being driven by the farmers’ questions (i.e. farmer-led), the
insistence of some researchers on the use of complex method-
ologies for on-farm trials (e.g. Bullock et al. 2019; Cho et al.
2021) could desirably be softened so that OFE uses simpler
designs which fit with normal farm operations (Colaço et al.
2022; Song et al. 2022a). Such an approach need not lessen
the specialist-enabled element of OFE nor compromise the
value to the specialist of participating. As Lacoste et al.
(2022) make clear, OFE should be a process of co-learning
between farmers and specialists. In summary, it is a pro-
cess which depends on trust.

Finally, implicit in the farmer-specialist OFE partnership,
and especially its scaling beyond the farm hosting the trial, is
sharing of data amongst participants. However, a potential
difficulty arises in the case of PA-based OFE relating to the
numerous concerns around farm data ownership and privacy,
and the potential for it to be captured by proprietary PA/DA
systems and/or be used for purposes beyond those intended by
the farmer (Jakku et al. 2019; Wiseman et al. 2019; Koch
2021). In Australia, the move towards development and adop-
tion of a Farm Data Code (National Farmers Federation 2020)
is a step in the right direction; it would be unfortunate if de-
velopment of OFE were constrained by concerns as to where
trial results might end up. On the other hand, the willingness
of farmers to share data with other farmers and with re-
searchers (Wiseman et al. 2019) bodes well for OFE; arguably

their unwillingness to share with DA service providers does
not. Accordingly, systems which facilitate this data sharing,
but which recognise and are transparent about whose data are
whose and what rights exist in regard to data access and
re-use (Wiseman et al. 2019), would add value to the OFE
process and contribute to its scalability. For example,
whereas individual strip trials used to support N decision
optimisation are only of immediate benefit to the farmer
hosting the trial, the amalgamation of data derived from
such trials into a single database could be valuable to the
generation of improved models for farmer decision sup-
port (Colaço et al. 2021, 2022).

6 Conclusions and future directions

Farmer-centric OFE does not depend on digital technologies,
but it seems clear that such technologies are a potentially
significant enabler for OFE, given the time and labour con-
straints facing many growers. In the same way, OFE are likely
significant enablers for the productive use of such technolo-
gies in farming system optimisation. Many of these technolo-
gies already exist for many cropping systems in the suite of
tools which comprise PA. However, further development and
sharing of methods for trial design and analysis, which are
simple to use and deliver results in a manner that is consistent
with the farm business objectives of OFE, would be valuable.
A focus on the building of trust between researchers and
farmers, along with recognition on the part of researchers that
farm business improvement is of greater importance to the
farmer than the advancement of science, will also be impor-
tant. In successful OFE, these things will not be mutually
exclusive. Overall, the data-driven and “evidence-based” na-
ture of OFE (Lacoste et al. 2022) provides a means of reduc-
ing the metrical and translational uncertainty (Rowe 1994) of
decision-making. Ideally, the OFE process needs to become
embedded in normal operations such that it supports the farm-
er as they tackle the other uncertainties which mitigate against
farm productivity growth.
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