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Abstract

This contribution proposes a new rheology-based model for water-hammer wave propa-
gation in visco-elastic pipes. Using a long wavelength analysis and a generalized frequency-
dependent Hooke-law for the stress/strain relation, the pressure/longitudinal stress coupled
wave system is derived. In this general framework, a visco-elastic Fluid-Structure Interaction
(FSI) four equations model is derived by having four visco-elastic kernels associated with the
non-local time response of the visco-elastic solid. The explicit dependence of these kernels
with the material creep function and the pipe dimension is found. Considering a general linear
visco-elastic rheology, the four visco-elastic kernels, and the corresponding creep function are
explicitly derived in frequency and time-domain versus four visco-elastic parameters. For a
given set of boundary conditions, a general analytical solution for the pressure/stress water
hammer wave is obtained in frequency domain. The model’s predictions are successfully com-
pared with experimental measurements as well as with other models adjusted to the same
experimental data set by calibrating the model’s parameter. The proposed model can be
used in many other contexts with the specific ability to distinguish the intrinsic visco-elastic
rheology from the considered pipe geometry and boundary conditions.

Highlights
Frequency varying rheology-based fluid-structure-interactions waves in liquid-filled
visco-elastic pipes.

A.Bayle, F.Rein, F.Plouraboué

• A fluid-structure-interaction water-hammer model for linear visco-elastic rheology is derived.

• It involves new history-dependent visco-elastic response through time-convolution kernels.

• It does not need Kelvin-Voigt calibrated parameters, but rheological ones.

• The dispersive wave velocity is also obtained explicitly versus rheological parameters.
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1. Introduction

Pressure waves in visco-elastic tubes is a topic of importance in many hydraulic contexts [1] as
well as biomechanical ones [2, 3, 4, 5, 6]. It is known for a long time that when a water-hammer
wave propagates into a filled-fluid pipe, the visco-elastic properties of the solid wall drastically
modifies the nature and characteristic of its motion. More precisely, the importance of visco-
elastic stress-strain response of the pipe wall in the water-hammer waves propagation was first
raised by [7]. A few years later some experiments from the same team [8] complemented with a 1D
theoretical model [9] confirmed the relevance and interest of these effects on water-hammer waves
propagation. As opposed to the situation of a purely elastic solid tube, the wave velocity becomes
dispersive when a visco-elastic wall is present [2, 10, 11]. Secondly, not only the wave velocity
depends on the considered frequency, but it also acquires an imaginary component associated
with visco-elastic dissipation resulting in exponential damping [12, 13, 14, 15]. Such exponential
damping is also present in water-hammer wave propagation within elastic filled-fluid pipes but
for a very distinct mechanism: the viscous dissipation arises only within the liquid boundary
layers [16, 17]. Nevertheless, compared to this viscous damping, the visco-elastic one turns out to
be dominant in many configurations, resulting in the filtering of high-frequency bouncing elastic
waves. Recently, [18] indeed analysed the energy rates of dissipation in the fluid and the pipe for
visco-elastic water-hammer.

Since most aspects of water-hammer wave propagation have been found material dependant, the
pioneering studies of [7, 8, 9] inspired many others, following the similar footsteps, combining ex-
perimental measurements with one-dimensional two-equations modelling associated with pressure
(hydraulic head) and axial velocity coupled propagation coupled with solid creep-functions display-
ing Kelvin-Voigt behaviour (Cf [19, 13, 14, 20] among others). The applicative interest and the
relevance of the topic motivated many further studies whereby one could enrich the Kelvin-Voigt
model [21, 22] to better fit with observations. Alternatively, some authors also included both solid
visco-elastic damping and fluid one, through time-convolution shear-stress models [23, 24, 25]. Be-
cause the modelling relies on many parameters, combined with time-convolution many approaches
are possible to match experiments raising a number of questions including wave-speed calibration
in visco-elastic pipes [20, 26]. The influence of the visco-elastic stress response has been more
recently considered in a Fluid-Structure-Interaction (FSI) context as more extensively discussed
in the recent review of [27]. In this context Kelvin-Voigt solid responses of the creep function
have also been used in FSI four-equations models [28, 29] in order to improve the relevance of
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the modelling. Furthermore, for improving data fitting, a series of Kelvin-Voigt units are often
considered [28, 30, 29, 31]. However, in these previous modelling, the creep-function parameters
are calibrated [32] not only to describe the visco-elastic properties of the solid but also the con-
sidered pipe configuration associated with a specific length, thickness, diameter and boundary
conditions. Nevertheless, Kelvin-Voigt units leading to a thermodynamic consistent framework of
internal stress-strain theory have recently been proposed in [31] so as to improve their mechanical
background.

In this contribution we pursue in this direction with the aim of stepping aside from Kelvin-
Voigt models from considering rheology-based visco-elastic modelling of water-hammer propaga-
tion within a visco-elastic solid. The aim of this contribution is thus to distinguish and clarify
the respective contribution of the visco-elastic response within pressure/stress wave propagation
from the considered boundary conditions and pipe configuration. This permits to propose a new
rheology-based visco-elastic FSI four equations model which can be used in many configurations
(pipe’s and boundary conditions) with material dependent only, visco-elastic kernels. The param-
eters of this model evidently need calibration. One option undertaken in this contribution is to
use the existing pressure measurements of the water-hammer wave dynamic for inverse transient
analysis of the model’s parameter [32, 33]. Another possible option opened by our contribution is
to perform the parameter calibration/estimation from rheological measurements of the pipe mate-
rial. The advantage of such rheology-based parameter calibration is to precisely focus the model
estimation independently of the specific configuration at end for water-hammer use (hence not
depending on the configuration geometry, pipe supports, flow conditions, boundary conditions,
etc...). Whilst the latter is interesting, it is beyond the scope of the present contribution from the
lack of existing data. The details of the protocol for this rheological-based parameter calibration
are nevertheless presented in Appendix A.

The paper is organised as follows. Section S.2 provides a first overview of notations and consid-
ered problems. Using a long wavelength analysis and a generalised frequency-dependent Hooke-law
for the stress/strain relation the pressure/longitudinal stress coupled wave system (equivalent to
the classical four-equations Fluid-Structure Interaction (FSI) description) is derived in section S.3.
The resulting set of equations involves four visco-elastic kernels directly related to the generalised
frequency-dependent Hooke-law, the visco-elastic dispersive speed wave being solved as an explicit
function of those. Considering specific visco-elastic rheology in S. 4.1, a specific set of boundary
conditions in S.4.2, an explicit solution for the resulting visco-elastic FSI is derived in section S.4.2.
It is then compared with previously proposed models as well as with experimental observations in
section S. 4.5.

2. General considerations concerning visco-elastic material and their FSI waves.

2.1. Physical analysis overview
We consider the axi-symmetric propagation of a pressure/stress wave inside a Newtonian liquid

filling a visco-elastic cylindrical tube. The circular visco-elastic-walled pipe tube has a thickness
e, an inner radius R0, and a length L0 whilst its density is set constant equal to ρs. The solid has
both an elastic Poisson’s modulus νe and Young modulus Ee. The fluid is assumed isothermal and
inviscid of constant density ρf , bulk modulus Kf and crossed by an acoustic overpressure P ∗, the
elastic wave speed of which is set to cep ([34, 35])

cep =
c0√

1 + χeC2
, c0 =

√
Kf
ρf
, χe =

2Kf
αEeC2

(
2(1− ν2

e )

2 + α
+ α (1 + νe)

)
, C =

c0

cep
, (1)
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which depends on the dimensionless pipe thickness α = e/R0 and the bulk fluid acoustic velocity
c0. From this definition of χe, one can find a trivial but important relation C2 = 1 + χeC2 or
alternatively C =

√
1/(1− χe). The pulse speed wave is also given by cep = c0/C = c0

√
(1− χe)

from definition of C in (1)) which is also important to consider for the simplification of the visco-
elastic model provided in Appendix B.

In the solid, a deformation occurs due to the propagation of the acoustic fluid overpressure
waves, the displacement of which is

ξ∗ = ξ∗er + ζ∗ez. (2)

where (ξ∗, ζ∗) are respectively the radial and axial displacements, whereas (er, ez) are the cylindri-
cal coordinates unit vectors in the radial and axial directions. These deformations are associated
with solid stress tensor

σ∗s =

σ∗rr 0 σ∗rz
0 σ∗θθ 0
σ∗rz 0 σ∗zz

 . (3)

The wave advective time-scale L/cep is chosen as a reference for the physical time t, whilst the length
of the pipe L and radius R0 as a reference length-scale in the longitudinal and radial direction
(r, z), respectively, so that dimensionless time and coordinates are set

τ =
cep
L
t, Z =

z

L
, R =

r

R0

, and ε =
R0

L
, (4)

where we also introduce the tube aspect-ratio being a small parameter ε � 1 as one key feature
of the problem on which a long wavelength approximation is based. In the following the Fourier
transform of a causal function f ∗(t), i.e. f ∗(t) = 0 if t < 0, is denoted f̃(ω∗) from

f̃ ∗(ω∗) =

∫ ∞
−∞

f ∗(t)e−iω
∗tdt ≡

∫ ∞
0

f ∗(t)e−iω
∗tdt, (5)

with associated pulsation ω∗. When a dimensionless system is regarded, the pulsation ω∗ has to
be substituted by the dimensionless pulsation ω such that

ω∗ =
cep
L
ω. (6)

2.2. Visco-elastic solid rheology
2.2.1. General linear dynamical rheological model

In Fourier space, the dimensional form of the 3D solid rheology is a frequency-dependent
generalized Hooke-law [3]

σ̃∗s = λ̃∗s(ω
∗) Tr (ε̃∗s) I + 2µ̃∗s(ω

∗)ε̃∗s , and, ε̃∗s =
1

2

(
∇ξ̃∗ + ∇T ξ̃∗

)
. (7)

where Tr is trace, λ̃∗s, µ̃∗s are the generalized Lamé coefficients, dependent on pulsation ω∗. These
coefficients provide the respective spherical and deviatoric response of the elastic deformation, de-
pending on the considered pulsation ω∗, i.e. the response to oscillating compression and oscillating
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shear stress. From them, one can deduce the generalized Poisson and Young coefficients

2ν̃∗s (ω∗) =
λ̃∗s(ω

∗)

λ̃∗s(ω
∗) + µ̃∗s(ω

∗)
, Ẽ∗s (ω

∗) =
µ̃∗s(ω

∗)
[
3λ̃s(ω

∗) + 2µ̃∗s(ω
∗)
]

λ̃∗s(ω
∗) + µ̃∗s(ω

∗)
. (8)

Subscript s stands thereafter for solid generalized physical fields or quantities. Also, from these
relations one can deduce the reverse Lamé coefficients versus Poisson and Young coefficients

λ̃∗s(ω
∗) =

ν̃∗s (ω∗)Ẽ∗s (ω
∗)

(1 + ν̃∗s (ω∗))(1− 2ν̃∗s (ω∗))
, µ̃∗s(ω

∗) =
Ẽ∗s (ω

∗)

2(1 + ν̃∗s (ω∗))
. (9)

This notation embeds both elastic and visco-elastic contributions. In this general context, one needs
to specify the functional dependence of generalized Lamé coefficients on pulsation ω∗. Nevertheless,
it is not easy to deduce them from experimental measurements as discussed in Appendix A. This
is the reason for considering explicit rheological constitutive laws as later on considered in S.4.

2.3. Dimensionless parameters and physical fields scaling
The general Lamé-Clapeyron rheological parameters (8)-(9) are scaled to their elastic counter-

parts [3]

2νe =
λe

λe + µe
, and, Ee =

µe (3λe + 2µe)

λe + µe
, (10)

so that

ν̃∗s (ω∗) = νeν̃s(ω), Ẽ∗s (ω
∗) = EeẼs(ω), (11)

λ̃∗s(ω
∗) = λeλ̃s(ω), µ̃∗s(ω

∗) = µeµ̃s(ω). (12)

The couple
(
ν̃s, Ẽs

)
then corresponds to the re-scaled Poisson and Young visco-elastic modulus,

respectively. The solid axial visco-elastic and elastic propagating wave speeds are furthermore set
up regarding these dimensionless functions [1]

c̃∗s(ω
∗) =

√
Ẽ∗(ω∗)

ρs
= ces

√
Ẽs(ω) , with ces =

√
Ee
ρs
, (13)

so that their dimensionless ratios to cep of are

Ces =
ces
cep

, and C̃s(ω) = Ces
√
Ẽs(ω). (14)

Four dimensionless Cauchy numbers are associated with the solid elastic and visco-elastic responses
to the acoustic pulse pressure one [36]

Cµe =
ρfc

e
p

2

µe
, Cλe =

ρfc
e
p

2

λe
, (15)

C̃µs(ω) =
ρfc

e
p

2

µeµ̃s(ω)
≡ Cµe
µ̃s(ω)

, C̃λs(ω) =
ρfc

e
p

2

λeλ̃s(ω)
≡ Cλe
λ̃s(ω)

. (16)
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Leading to the dimensionless parametrisation of λ̃∗s(ω∗) and µ̃∗s(ω∗)

λ̃s(ω) =
Cλe
C̃λs(ω)

µ̃s(ω) =
Cµe
C̃λs(ω)

, (17)

and finally, the fluid-solid density ratio is introduced

D =
ρf
ρs
. (18)

The reference longitudinal fluid velocity is chosen has W0. From Joukowsky’s theory, [37, 38] a
reference pressure ρfcepW0 is built. This Joukowsky reference pressure is also chosen as reference
stresses in the fluid and the solid, so that

W∗ = W0W · ez, (19)
P ∗ = ρfc

e
pW0P. (20)

[σrr, σθθ, σzz, σrz]
∗ = ρfc

e
pW0 [σrr, σθθ, σzz, εσrz] . (21)

Finally, it has been shown in [35] that the solid displacements are related to fluid typical velocity
because of kinematic boundary conditions to be applied at the fluid/solid interface. From choosing
L/cep as a reference time it results in the appearance of the dimensionless ratioW0/c

e
p ≡M defined

as the Mach number, in the solid displacement ξ∗ (2) scaling, so that

ξ∗ = αR0M
(
ξer +

ζ

ε
ez

)
, (22)

3. Dimensionless governing equations

3.1. Solid’s equations
In dimensionless form, frequency domain, in cylindrical coordinates (4), the visco-elastic gov-

erning equation (7) using (17) reads

σ̃rr = α

[
2

C̃µs(ω)
+

1

C̃λs(ω)

]
∂Rξ̃ +

α

C̃λs(ω)

[
∂Z ζ̃ +

ξ̃

R

]
, (23)

σ̃θθ = α

[
2

C̃µs(ω)
+

1

C̃λs(ω)

]
ξ̃

R
+

α

C̃λs(ω)

[
∂Z ζ̃ + ∂Rξ̃

]
, (24)

σ̃zz = α

[
2

C̃µs(ω)
+

1

C̃λs(ω)

]
∂Z ζ̃ +

α

C̃λs(ω)

∂R
R

(
Rξ̃
)
, (25)

ε2
C̃µs(ω)

α
σ̃rz = ∂Rζ̃ + ε2∂Z ξ̃, (26)

where it takes the form of a generalised frequency-dependent Hooke-law (form the linearity of
the visco-elastic rheological model (59)). The advantage of these dimensionless forms is to show
that some terms are small as they involve the small parameter ε � 1 [39, 40, 41, 34, 35]. The
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dimensionless form of Lamé-Clapeyron equations in frequency domain are [42]

−ε2
(
ω2ξ̃ + ∂Z σ̃rz

)
=
∂R
R

(Rσ̃rr)−
σ̃θθ
R
, (27)

−α
D
ω2ζ̃ = ∂Z σ̃zz +

∂R
R

(Rσ̃rz) . (28)

Inserting the visco-elastic rheology (23)-(26) into the dimensionless Lamé-Clapeyron equations
(27)-(28) leads to the solid dynamical governing equations

−ε2
(
ω2 +

D
C̃µs(ω)

∂2Z

)
ξ̃ = D2C̃λs(ω) + C̃µs(ω)

C̃µs(ω)C̃λs(ω)
∂R

(
∂R
R

(
Rξ̃
))

+DC̃µs(ω) + C̃λs(ω)
C̃µs(ω)C̃λs(ω)

∂R∂Z ζ̃,(29)

−ε2
(
ω2 +D2C̃λs(ω) + C̃µs(ω)

C̃µs(ω)C̃λs(ω)
∂2Z

)
ζ̃ =

D
C̃µs(ω)

∂R
R

(R∂R) ζ̃ + ε2DC̃µs(ω) + C̃λs(ω)
C̃µs(ω)C̃λs(ω)

∂Z

(
∂R
R

(
Rξ̃
))

(30)

3.2. Fluid equations
In the fluid region, the dimensionless low-Mach, long-wavelength mass conservation and mo-

mentum balance lead to the following outer/core region fluid equations [32, 34, 35]

∂τP + C2∂ZW = −2αC2∂τξ
∣∣
R=1

, (31)
∂τW = −∂ZP. (32)

From the r.h.s of (31) and the long-wavelength approximation, continuity relations of the radial
velocity at the wall is automatically satisfied. Moving to the frequency domain gives

iωP̃ + C2∂ZW̃ = −2iαωC2ξ̃
∣∣
R=1

, (33)

iωW̃ = −∂ZP̃ . (34)

3.3. Fluid/solid interface boundary conditions
Ignoring external constraints applying to the solid radial direction (supposing a zero external

normal stress), and using definition of σ̃rr in (23), the continuity of the normal and tangential
stress as well as axial velocity reads (Cf [35] for more details)

σ̃rr = −P̃ , at R = 1 σ̃rr = 0 , at R = 1 + α (35)
σ̃rz = 0 , at R = 1 σ̃rz = 0 , at R = 1 + α (36)

Note that, for dimensionless radial distance r, since the dimensionless thickness of the pipe is α,
the outer wall is reached as R = 1 + α.

w̃ = iαωζ̃ , at, R = 1. (37)

3.4. FSI four-equations dimensionless visco-elastic problem derivation
From the combination of the fluid, solid and the fluid-solid interface governing equations, a

set of four coupled hyperbolic equations system is obtained upon (P̃ , W̃ , σ̃zz, ζ̃). Its complete
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derivation is provided in Appendix B and achieves as follows [34, 28, 35]

iωP̃ + ∂ZW̃ − 2iωανe∂Z ζ̃ = −iωχeĨFP P̃ +
2Dνe
Ces2 iωĨFσ σ̃zz, (38)

iωW̃ = −∂ZP̃ (39)

iωσ̃zz −
2νe

α(2 + α)
iωP̃ − iωαC

e
s

2

D
∂Z ζ̃ = −iωĨSσ σ̃zz +

2νe
α(2 + α)

iωĨSP P̃ , (40)

α

D
ω2ζ̃ + ∂Z σ̃zz = 0, (41)

where the hereby introduced visco-elastic extra terms ĨFP , ĨFσ , ĨSP and ĨSσ read

ĨFP =

(
Ces
C̃s

)2 1− ν2
e ν̃s + α(2+α)

2
(1 + νeν̃s)

1− ν2
e + α(2+α)

2
(1 + νe)

− 1 ≡ 1

Ẽs(ω)

1− ν2
e ν̃s(ω) + α(2+α)

2
(1 + νeν̃s(ω))

1− ν2
e + α(2+α)

2
(1 + νe)

− 1,(42)

ĨFσ =

(
Ces
C̃s

)2

(ν̃s(ω)− 1) ≡ ν̃s(ω)− 1

Ẽs(ω)
, (43)

ĨSP = ν̃s − 1 + ν̃s
Ces2 − C̃2

s

C̃2
s

≡ −
(

1− ν̃s(ω)

Ẽ(ω)

)
, (44)

ĨSσ =
Ces2 − C̃2

s

C̃2
s

≡ 1− Ẽs(ω)

Ẽs(ω)
. (45)

In (42)-(45), the relation C̃2
s = Ces2Ẽs have been used according to (14). The dimensionless visco-

elastic Young modulus ratio in (42)-(45) are directly connected to the dimensionless, frequency-
dependent, creep function J̃s(ω), defined as

J̃s(ω)− 1 =
1− Ẽs
Ẽs

, or J̃s(ω) =
1

Ẽs
, (46)

so that, each visco-elastic kernel in (42)-(45) is linearly related to the creep function J̃s(ω) which
encapsulates part of their material rheology dependence. Nevertheless, (42)-(45) display supple-
mentary frequency dependence of these kernels related to the visco-elastic Poisson coefficient ν̃s(ω)
and the dimensionless Young modulus Ẽs(ω) defined in (11). Finally, it is interesting to state that
the time-domain version of (39)-(41), i.e the inverse Fourier transform of (39)-(41) is the FSI four-
equations formulation used for the method of characteristics since all l.h.s terms display constant
convective hyperbolic operators associated with a constant travelling velocity. This choice has been
set in order to provide the easiest comparison with previous formulations, such as [28]. However,
the next section details another popular approach for visco-elastic propagation, i.e. the evaluation
of a dispersive frequency-dependent visco-elastic velocity with its associated, wave propagation
operator in the Fourier domain.

3.5. Pressure-stress coupled visco-elastic wave propagation
Let us now consider the three equations (38)-(39)-(40)-, which, from the elimination of ζ̃ and

W̃ produces the following forced wave equation for the pressure perturbation

ω2

[
1 + χeĨFP +

4ν2
eD

α(2 + α)Ces2

(
1 + ĨSP

)]
P̃ + ∂2

ZP̃ =
2νeD
Ces2

(
1 + ĨSσ + ĨFP

)
σ̃zz. (47)
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This wave equation can then be rewritten using (40) and (41) on the right-hand-side of (47), whilst
also using (43) and (45) to simplify the kernel’s dependance

ω2P̃ + [c̃vp]
2∂2
ZP̃ = 2ανeν̃sω

2[c̃vp]
2∂Z ζ̃ (48)

where the effective frequency-dependent corrective visco-elastic pulsed-wave speed c̃vp(ω) has been
introduced

c̃vp(ω) =
1√

1 + χeĨFP −
4Dν2e

α(2+α)Ces2
ĨFσ

1+ĨSP
1+ĨSσ

. (49)

On the other hand, the coupled equations (40) and (41) give rise to the coupled stress/pressure
wave equation in the solid[

1 + ĨSσ
]
ω2σ̃zz + Ces

2∂2
Z σ̃zz =

2νeω
2

α(2 + α)

[
1 + ĨSP

]
P̃ . (50)

The wave system resulting from the FSI four equations hyperbolic problem (39)-(41) can thus be
recast into two coupled waves propagating system associated with a two-component pressure/stress
vector P̃ ≡ [P̃ , σ̃zz] following [35]

ω2P̃ + [c̃vp]
2

 1 2νeD 1+ĨSσ+ĨFσ
1+ĨSσ

2νe
α(2+α)

1+ĨSP
1+ĨSσ

Ces2 1+χeĨFP
1+ĨSσ

+ 4ν2eD
α(2+α)

1+ĨSP
1+ĨSσ

 ∂2
ZP̃ = 0. (51)

The characteristic equation associated with this propagating operator is

(
c̃±
c̃vp

)4

−
(
c̃±
c̃vp

)2
[

1 + Ces
2 1 + χeĨFP

1 + ĨSσ
+

4ν2
eD

α(2 + α)

1 + ĨSP
1 + ĨSσ

]
+

Ces
2 1 + χeĨFP

1 + ĨSσ
+

4ν2
eD

α(2 + α)

1 + ĨSP
1 + ĨSσ

(
1− 1 + ĨSσ + ĨFσ

1 + ĨSσ

)
= 0, (52)

the root of which can then be explicitly found

c̃2
± = [c̃vp]

2
ĉ±

√
ĉ2 − 4

[
Ces2 1+χeĨFP

1+ĨSσ
+ 4ν2eD

α(2+α)

1+ĨSP
1+ĨSσ

(
1− 1+ĨSσ+ĨFσ

1+ĨSσ

)]
2

, (53)

ĉ = 1 + Ces
2 1 + χeĨFP

1 + ĨSσ
+

4ν2
eD

α(2 + α)

1 + ĨSP
1 + ĨSσ

≡
c̃2

+ + c̃2
−

[c̃vp]
2 . (54)

The diagonalisation matrix of (51) operator along with the change of basis relations are

Π̃(ω) =

(
2νeD[c̃vp]2

c̃2−−[c̃vp]2
1+ĨSσ+ĨFσ

1+ĨSσ

2νeD[c̃vp]2

c̃2+−[c̃vp]2
1+ĨSσ+ĨFσ

1+ĨSσ
1 1

)
, and P̃ = Π̃

−1
P̃ =

(
P̃−
P̃+

)
. (55)
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The wave-vector system (51) then becomes diagonal[
ω2 +

(
c̃2
− 0
0 c̃2

+

)
∂2
Z

]
P̃ = 0. (56)

From (56) it is then possible to find the explicit (Z, ω) dependence of P̃(Z, ω) (as well as its
gradient) which depends upon the prescribed boundary condition

(
P̃±(0, ω), ∂ZP̃±(0, ω)

)
as

P̃±(Z, ω) = cos

(
ω

c̃±
Z

)
P̃±(0, ω) + sin

(
ω

c̃±
Z

)[
c̃±
ω
∂ZP̃±(0, ω)

]
, (57)

∂ZP̃±(Z, ω) = − ω

c̃±
sin

(
ω

c̃±
Z

)
P̃±(0, ω) + cos

(
ω

c̃±
Z

)
∂ZP̃±(0, ω). (58)

4. Analysis of an experimental configuration using explicit visco-elastic rheology

The herein rheology-based model is now explicitly derived for a single pipe closed valve config-
uration, also known as the reservoir-pipe-anchored valve problem. Hereafter, general visco-elastic
rheology is considered which allows the analytical derivation of the pressure-stress vector solution
P̃, along with explicit expressions for visco-elastic convolution kernels (42)-(45).

4.1. Generalized 3D visco-elastic rheology
Various Kelvin-Voigt models have been previously considered in the literature [43, 32, 21, 22,

23, 29]. Nevertheless, for a real solid a 3D rheological model is necessary to take care of the solid’s
shape (not necessarily 1D/isotropic/spherical) and the considered boundary conditions. A general
form of 3D visco-elastic rheology reads

a (1 + τr∂t)σ
∗
s = λe (1 + τλ∂t) (∇ · ξ∗) I + µe (1 + τµ∂t)

(
∇ξ∗ + ∇Tξ∗

)
, (59)

where six parameters a, τr, τλ, τµ, λe, µe can be used as constitutive ones, whilst (λe, µe) being the
elastic Lamé coefficients and (τr, τλ, τµ) are characteristic times, all independent from ω∗. Various
3D visco-elastic rheological laws have indeed been considered in the literature [3, 15, 44, 45, 46, 47,
48], (59) encapsulating all of those. More precisely, all model parameters of the cited references,
are provided in table 1. It is important to note that most of the visco-elastic models proposed in
literature did not consider the relaxation parameter τr associated with the instantaneous elastic
response. Only [15] consider this term for an incompressible material. Now, from the Fourier

a τr λe τλ µe τµ
Carcione et al. [44] X X X X
Eringen, Canic et al.[45, 3] X X X X
Kisilova et al. [15] X X X
Bland [46] X X
Ieşan [47] X X X X
Sharma et al. [48] X X X X

Table 1: Comparative table of 3D rheological parameters taken from literature.

transform of (59) and identification with (7) the generalized Lamé coefficients can be deduced for
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this rheology

λ̃∗s(ω
∗) = λe

1 + iω∗τλ
a (1 + iω∗τr)

, and µ̃∗s(ω
∗) = µe

1 + iω∗τµ
a (1 + iω∗τr)

. (60)

Generalized Poisson and Young modulus can also be found from these rheological parameters

ν̃∗s (ω∗) = νe
1 + iω∗τλ
1 + iω∗τν

, and Ẽ∗s (ω∗) =
Ee(1 + iω∗τµ)(1 + iω∗τE)

a(1 + iω∗τr)(1 + iω∗τν)
, (61)

where the above introduced times-scale τν and τE are given by

τν =
λeτλ + µeτµ
λe + µe

, and τE =
3λeτλ + 2µeτµ

3λe + 2µe
. (62)

Also, the dimensionless creep function J̃s(ω) (46) reads regarding (6) and (9)

J̃s(ω) =
1

Ẽs
= a

(
1 + iωτr

cep
L

)(
1 + iωτν

cep
L

)
(

1 + iωτµ
cep
L

)(
1 + iωτE

cep
L

) . (63)

4.1.1. Explicit form of visco-elastic extra-terms kernels
As discussed in S.2.2, the motivation of this study is to built a rheology-based model dependent

on the material visco-elastic properties but not on the specific wave problem and/or its boundary
conditions. For this the visco-elastic kernels are now explicitly derived versus rheological param-
eters. In the 3D visco-elastic rheology model framework, the rheological parameters

(
ν̃∗s , Ẽ

∗
s

)
presented in (11) and (61), are explicit function of the characteristic times (τλ, τµ, τν , τE, τr) pre-
sented in (62) as well as elastic parameters. The convolution visco-elastic kernels (42)-(45) can
thus be explicitly found

ĨFP = a

(
1 + iωτr

cep
L

)(
1 + iωτν

cep
L

)
(

1 + iωτµ
cep
L

)(
1 + iωτE

cep
L

) ν2
e

1+iωτλ
cep
L

1+iωτν
cep
L

− 1− α(2+α)
2

(
1 + νe

1+iωτλ
cep
L

1+iωτν
cep
L

)
ν2
e − 1− α(2+α)

2
(1 + νe)

− 1, (64)

ĨFσ = a

(
1 + iωτr

cep
L

)(
1 + iωτν

cep
L

)
(

1 + iωτµ
cep
L

)(
1 + iωτE

cep
L

) (1 + iωτλ
cep
L

1 + iωτν
cep
L

− 1

)
, (65)

ĨSP = −

1− a

(
1 + iωτr

cep
L

)(
1 + ωτλ

cep
L

)
(

1 + iωτµ
cep
L

)(
1 + iωτE

cep
L

)
 , (66)

ĨSσ = −

1− a

(
1 + iωτr

cep
L

)(
1 + iωτν

cep
L

)
(

1 + iωτµ
cep
L

)(
1 + iωτE

cep
L

)
 . (67)
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Using the inverse Fourier transform, their time-domain form read

IFP =

a
Cν
τr
[
νeτλ

(
νe − α(2+α)

2

)
− τν

(
α(2+α)

2
+ 1
)]
− τEτµ

τEτµ
δ(τ)

+
aL(τE − τr)

(
νe(τλ − τE)

(
α(2+α)

2
− νe

)
+ (τν − τE)

(
α(2+α)

2
+ 1
))

cepτ
2
ECν(τE − τµ)

e
− τL
τEc

e
p H(τ)

+
aL(τµ − τr)

(
νe(τµ − τλ)

(
α(2+α)

2
− νe

)
+ (τµ − τν)

(
α(2+α)

2
+ 1
))

cepτ
2
µCν(τE − τµ)

e
− τL
τµcep H(τ), (68)

IFσ =
aτr(τλ − τν)

τEτµ
δ(τ)−

aL(τλ − τν)

cepτ
2
Eτ

2
µ(τE − τµ)

(
τ2µ(τE − τr)e

− τL
τEc

e
p − τ2E(τµ − τr)e

− τL
τµcep

)
H(τ), (69)

ISP =
aτλτr − τEτµ

τEτµ
δ(τ) +

aL

cep (τE − τµ)

 (τE − τr) (τE − τλ)

τE

e
− τL
τEc

e
p

τE
−

(τµ − τr) (τµ − τλ)

τµ

e
− τL
τµcep

τµ

H(τ), (70)

ISσ =
aτντr − τEτµ

τEτµ
δ(τ) +

aL

cep (τE − τµ)

 (τE − τr) (τE − τν)

τE

e
− τL
τEc

e
p

τE
−

(τµ − τr) (τµ − τν)

τµ

e
− τL
τµcep

τµ

H(τ), (71)

where δ(τ) and H(τ) stands for the Dirac distribution and its primitive, the Heaviside function.
Relations (68)-(71) have been cross-checked using formal calculus software. It is interesting to
note that every r.h.s of(68)-(71) display a Dirac distribution term resulting in a local visco-elastic
response thus modifying the elastic one. In other words, these terms being independent of ω
in Fourier space (the Fourier transform of the Dirac distribution is equal to one) they act as a
modification of the non-dispersive elastic wave-speed. We will more explicitly examine how this
provides an additional visco-elastic contribution to the elastic velocity in the next section. However
it is interesting to mention that the choice for defining kernels ĨFP , ĨFσ , ĨSP , ĨSσ has been done in order
to permit a better comparison with previous models. However, local terms could have been recast
into some elastic-like behaviour resulting from visco-elastic effects and left aside the kernels.

4.2. The reservoir-pipe-anchored valve problem
As depicted in Figure 1, the single visco-elastic pipe anchored upstream to a reservoir and

downstream to an instantaneous closure valve, is now investigated. In the following the experi-
mental data of Covas et al. ([19, 13]) and Pezinga et al. [33] are investigated, the details of which
are given in Table 2. The perturbed flow rate is set to Q0 = 1.01 l/s and Q0 = 4.03 l/s for the
experiments of Covas et al., [19, 13] and Pezinga et al., [33], respectively. For the investigated

H0 = cst

Figure 1: Constant head H0 reservoir-pipe-anchored valve configuration

systems, the elastic fluid pulse wave speed is found equal to cep = 394.6m/s and cep = 360.05m/s
respectively for Covas et al. ([19, 13]) and Pezzinga et al. [33] experimental set up. Upstream, the
reservoir impedes the pressure to fluctuate whereas downstream, a sudden velocity perturbation
is imposed, the result of which is a pressure gradient variation according to (39). Downstream,
the velocity variation associated with an impulse response is thus W (1, t) = −H(t)(here again
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Ref (kg ·m−3) Elas. (Pa) νf (m2 · s−1) νe cep (m · s−1) δ Geom.(m)

[19, 13] ρf = 998.3 Kf = 2.1 · 109 10−6 0.46 394.56 4.6 10−2 R0 = 2.53 · 10−2

ρs = 960.0 Ee = 1.43 · 109 e = 6.3 · 10−3

L = 277.0

[33] ρf = 998.3 Kf = 2.1 · 109 10−6 0.45 359.25 1.6 10−2 R0 = 4.67 · 10−2

ρs = 960.0 Ee = 1.56 · 109 e = 8.1 · 10−3

L = 200.0

Table 2: Physical and geometrical properties for the experimental visco-elastic analysis of the reservoir-pipe-
anchored valve system of Covas et al. ([19, 13]) and Pezinga et al. [33] using HDPE material and water. The
cep reported are evaluated using parameters provided in the table using relation (1). A slightly different values
cep = 339m · s−1 is reported in [33] using a different expression than (1) for cep. In Covas et al. [19, 13] a range of Ee
values provides a range of value 380− 435m · s−1 for cep consistent with the hereby deduced value. Water hammer
dimensionless number δ has been evaluated with (87).

H(t) is the Heaviside function), being minus one for positive time. This transient closure law is
set to compensate steady-state velocity (being one at time zero) with initial transient conditions
W (Z, t = 0) = 0. The Fourier transform of W (1, t) for ω > 0 is thus precisely W̃ (1, ω) = −i/ω
leading to ∂ZP̃ (1, ω) = 1 ≡ iωW̃ (1, w) from (34). The pipe is supposed anchored at both ends so
that no solid motion occurs, i.e. ζ̃(Z = 0, ω) = ζ̃(Z = 1, ω) = 0, which is equivalent to cancel-out
the solid stress gradient according to (41). In the original basis, the boundary conditions read

P̃ (0, ω) = 0 , ∂ZP̃ (1, ω) = 1, ∂Z σ̃zz(0, ω) = ∂Z σ̃zz(1, ω) = 0. (72)

Introducing

β̃(ω) =
c̃+

c̃−
·
c̃2
− −

(
c̃vp
)2

c̃2
+ −

(
c̃vp
)2 , (73)

the diagonal-space vector boundary conditions can be deduced from (55), (58) and (72)

P̃−(0, ω) = − c̃−β̃
c̃+
P̃+(0, ω), (74)

∂ZP̃−(0, ω) = −∂ZP̃+(0, ω), (75)

∂ZP̃−(1, ω) = − ω

c̃−
sin

(
ω

c̃−

)
P̃−(0, ω) + cos

(
ω

c̃−

)
∂ZP̃−(0, ω) =

c̃2− −
(
c̃vp
)2

2νeD
(
c̃vp
)2 (

1− c̃−β̃
c̃+

) 1 + ĨSσ
1 + ĨSσ + ĨFσ

, (76)

∂ZP̃+(1, ω) =
ω

c̃−β̃
sin

(
ω

c̃+

)
P̃−(0, ω)− cos

(
ω

c̃+

)
∂ZP̃−(0, ω) = −

c̃2− −
(
c̃vp
)2

2νeD
(
c̃vp
)2 (

1− c̃−β̃
c̃+

) 1 + ĨSσ
1 + ĨSσ + ĨFσ

.(77)

Defining matrix M̃(ω) as

M̃(ω) ≡

− ω
c̃−

sin
(
ω
c̃−

)
cos
(
ω
c̃−

)
ω sin

(
ω
c̃+

)
c̃−β̃

− cos
(
ω
c̃+

)
 . (78)
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The boundary condition system (74)-(77) can be expressed in the following matrix form

M̃(ω) ·
(
P̃−
∂ZP̃−

)
(0, ω) =

c̃2
− −

(
c̃vp
)2

2νeD
(
c̃vp
)2
(

1− c̃−β̃
c̃+

) 1 + ĨSσ
1 + ĨSσ + ĨFσ

(
1
−1

)
. (79)

Multiplying (79) by M̃−1(ω) leads to

(
P̃−
∂ZP̃−

)
(0, ω) = −

c̃2
− −

(
c̃vp
)2

2νe|M̃|D
(
c̃vp
)2
(

1− c̃−β̃
c̃+

) 1 + ĨSσ
1 + ĨSσ + ĨFσ

 cos
(
ω
c̃+

)
− cos

(
ω
c̃−

)
ω
c̃−

[
sin
(
ω
c̃+

)
β̃
− sin

(
ω
c̃−

)]
 ,(80)

with |M̃|(ω) ≡ det
(
M̃
)
given by

|M̃|(ω) =
ω

c̃−

[
sin

(
ω

c̃−

)
cos

(
ω

c̃+

)
− 1

β̃
sin

(
ω

c̃+

)
cos

(
ω

c̃−

)]
. (81)

Combining (80), (81) and (74) in (57) close the diagonal wave solution in Fourier domain reading

P̃(Z, ω) = P̃−(0, ω)

 cos
(
ωZ
c̃−

)
− c̃+
c̃−β̃

cos
(
ωZ
c̃+

)+
∂ZP̃−(0, ω)

ω

 c̃− sin
(
ωZ
c̃−

)
−c̃+ sin

(
ωZ
c̃+

)
.

 (82)

Or, in a more explicit and compact form

P̃(Z, ω) = −
c̃2− −

(
c̃vp
)2

2νe|M̃|D
(
c̃vp
)2 (

1− c̃−β̃
c̃+

) 1 + ĨSσ
1 + ĨSσ + ĨFσ


[
cos
(
ω
c̃+

)
− cos

(
ω
c̃−

)]
cos
(
ωZ
c̃−

)
+

sin

(
ω
c̃+

)
−β̃ sin

(
ω
c̃−

)
β̃

sin
(
ωZ
c̃−

)
− c̃+

c̃−β̃

([
cos
(
ω
c̃+

)
− cos

(
ω
c̃−

)]
cos
(
ωZ
c̃+

)
+
[
sin
(
ω
c̃+

)
− β̃ sin

(
ω
c̃−

)]
sin
(
ωZ
c̃+

))
 .

(83)

4.3. Numerical Fast Fourier Transform (FFT) inversion procedure
The pressure-stress solution (83) has a simple pole in ω = 0 associated with the trivial zero of

|M̃| (81), the contribution of which is equal to average signal in the time domain. The solution
in the time domain is difficult to obtain first because of the discrete non-trivial set of poles from
condition |M̃| = 0, and second from the square-root dependence of velocity c̃+ (Cf (53)) leading
to a branch-cut. Hence, the inverse Fourier transform of (83) is numerically computed with a
homemade Python code and the use of the Scipy.fft library.

Experimental data analysis. The steady-pressure time-dependent experimental variations have
been disregarded withdrawing the initial static head value to the pressure signal. The transient
component has been scaled according to Joukowsky’s theory [37, 38] (Cf. eq.(20)) and the physical
time on the water-hammer advective one (Cf. eq.(4)). Then, the signal linear time-drift between
the beginning and the end of the experimental pressure measurements is removed so as to anal-
yse the effect of perturbations only, removing the change in the steady-state provided by the valve
aperture. A Fast-Fourier-Transform (FFT) of the experimental time-dependent signal is performed
providing their frequency-dependent counterpart. This FFT analysis is useful for the establish-
ment of a suitable frequency threshold ensuring the Nyquist criterium, i.e. frequency truncation,
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value to perform the inverse numerical FFT of (83). A cutoff frequency of fc = 2000Hz is found
for both the experimental data sets.

Inverse Fast Fourier Transform (IFFT) of the theoretical pressure-stress solution. The dimension-
less pulsation and time resolution are set equal to ∆ω = 10−3 and ∆τ = 2.5 · 10−4, respectively,
providing a frequency cutoff at fc = 2000Hz. At this stage, the direct inverse Fourier transform
of (83) cannot be performed from the ignorance of the rheological parameters [a, τr, τµ, τλ]. This
is where the calibration procedure enters into play so as to minimise the quadratic error (using
"Scipy.optimize.curve_fit" Pyhton’s library) between (83)’s IFFT and the experimental data in
time domain, at the very same time-located points. If needed, a linear interpolation of (83)’s
IFFT is used to perfectly match experimental time and numerical one. The calibration results are
given below (for dimensionless parameters, as dicussed above) for the datasets of Covas et al. and
Pezzinga et al.

[a, τr, τµ, τλ] ≈ [1.3017, 0.1963, 0.3008, 0.1291] for Covas et al., [19, 13] data, (84)
[a, τr, τµ, τλ] ≈ [1.1771, 0.1963, 0.2709, 0.1299] for Pezzinga et al., [33] data. (85)

It is interesting to observe that these calibrated dimensionless visco-elastic parameters are quite
close although the two experiments were performed by two distinct teams in two distinct pub-
lications. However this can be understood from realising that the considered materials (HDPE)
had closed mechanical properties, as provided in table 2. Also, the choice for using dimensionless
parameters rather than dimensional ones permits to test their similarity independantly from the
particular experimental set-up properties. The calibration procedure is thus comforted by this
coherent estimation.

4.4. Comparison between fluid viscous dissipation, elastic FSI effects and visco-elastic effects
As mentioned in the introduction, viscous dissipation in the fluid boundary-layers is a supple-

mentary source of damping, eventually less dissipative than visco-elastic effects as discussed in [14].
To illustrate this point, this section compares the fluid viscous dissipation with various visco-elastic
models and the one observed in experiments. The fluid viscous dissipation brilliantly investigated
by [16] without considering FSI effects is used for this purpose. Furthermore, to complement this
comparison this section also analyses the influence of FSI effects in visco-elastic models. In the
case of a reservoir-pipe-anchored valve system, Mei and Jing [16] derived an analytical exponential
decay Hk, both mode and time dependent, for the pressure time domain variation

Hk = e−
√
λk
2
δτ , with, λk = π

(
1

2
+ k

)
for, k ∈ N, (86)

so that Mei and Jing [16] rediscover the cornerstone role of the small dimensionless water-hammer
dimensionless number

δ =

√
νfL

cepR
2
0

, (87)

in the viscous boundary-layers exponential damping (this parameter was known of importance from
many other previous studies). Recently, [35] provided a time-dependent solution for the elastic
liquid-filled pipe FSI elastic response on the very same reservoir-pipe-anchored valve configuration
but disregarded the effect of fluid viscosity. [35] derived a spectral transcendental equation gov-
erning the elastic resonant frequencies, the structure of which is found close to (81) when elastic
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parameters are considered only. The visco-elastic pressure at the valve, i.e. Z = 1, for the experi-
ment of Pezinga et al., [33] is depicted in Figure 2a along with its elastic counterpart where fluid
viscous damping and FSI effects have been evaluated using the Method of Characteristics (MOC)
[49] (figures 2a-2b) and Bayle and Plouraboué [35] (figures 2c-2d), respectively. For the viscous
damping solved by the MOC method, Darcy-Weisbach model for unsteady friction and Zielke’s
kernel to take into account retarded fluid viscous effects have been used [49] with a time-step of
1.110−2s into the single pipe configuration of Pezinga et al., [33]. One can observe in figures 2a that
the fluid viscous damping is small compared to the visco-elastic one, as previously mentioned. Fur-
thermore, the purely elastic FSI effect illustrated in figures 2c produces high-frequency response
to the signal that are not visible in Pezinga et al., [33] experimental observations. Also, these
high-frequencies are not clearly visible in the frequency domain either, as illustrated in figure 2d.
Nevertheless both elastic non-FSI (figure 2b) and FSI predictions figure 2d accurately capture the
first-two lowest frequency observed in Pezinga et al. [33]’s signal. Finally it is interesting to observe
that visco-elastic FSI effects are interesting to consider in order to more accurately describe Pezinga
et al. [33] pressure time variations as illustrated in figure 2e. Hence figure 2 illustrates the strong
impact of the visco-elastic response to the pressure signal which displays a much stronger decay
than the one found from viscous dissipation in the fluid [14]. This figure shows that the proposed
visco-elastic theory permits a convincing description of the experimental pressure signature both
in time and frequency domains. For longer times, the elastic and visco-elastic predictions rapidly
diverge from each other. This is also consistent with the fact that for this long time, i.e smallest
frequency, the corrective velocity c̃vp is dissipative and strongly depends on frequency (as latter-on
reported in figure 4a). As expected, the visco-elastic FSI response much more strongly attenuates
high-frequency oscillations than the elastic one. More precisely, the signal’s high frequencies arising
from FSI-couplings quickly attenuate from the influence of visco-elastic kernel convolution and are
barely discernible after the wave’s first back and forth. The spectrum analysis provided in Figure
2b reveals how much the visco-elastic response smoothens high-frequencies so that only the first
three harmonics appear relevant. A small shift of the visco-elastic resonant frequency compared
to the elastic ones provided by the red dotted lines of figure 2b is also found as previously noted
in [50]. However, in the early stage of the signal the proposed theoretical model fails to accurately
reproduce the observed pressure variations by ≈ 18%, so that the Joukowsky [37, 38] over-pressure
is not exactly recovered from visco-elastic FSI effects at this position Z = 1. Nevertheless, the
overall damping trend and phase seem correctly represented. The comparison of the proposed
visco-elastic rheology-based model with previous Kelvin-Voigt models is now discussed.

4.5. Comparison with previous theoretical models.
In Fourier-domain, the dimensionless form of models proposed by Covas et al. [13], on the left,

and Keramat et al. [28], on the right, reads

iωW̃ = −∂ZP̃ , iωW̃ = −∂ZP̃ , (88)

iωP̃ + ∂ZW̃ = − 2D
αCes2 iωĨCovP̃ , iωP̃ + ∂ZW̃ − 2iωανe∂Z ζ̃ = −2D (1− ν2

e )

αCes2 iωĨKerP̃ , (89)

iωσ̃zz − iω
νe
α
P̃ − iωαC

e
s

2

D
∂Z ζ̃ = −iωĨkerσ̃zz +

νe
α
iωĨKerP̃ ,

(90)
α

D
ω2ζ̃ + ∂Z σ̃zz = 0, (91)
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where ĨCov –resp. ĨKer– is the Fourier transform of kernels proposed in Covas et al. [13] (resp.
Keramat et al. [28]). The Covas et al. [13]’s model stands as a limit when νe tends to zeros
of the Keramat et al. [28]’s one as the Poisson coupling vanishes, resulting in decoupling fluid
axial dynamic to the solid’s one. The dimensionless derivation of the Keramat et al. [28]’s
model is provided in Appendix C. Both authors consider Nkv Kelvin-Voigt elements to build their
convolution kernel interpreted as a creeping law, each having its own exponential times-decay τk,
amplitudes Jk, to model their convolution kernels, [30]

(
ĨCov, ĨKer

)
=

Nkv∑
k=1

EeJk

1 + iω
cepτk
L

. (92)

The values of (τk, Jk) for both models are provided in Table 3 for the experimental set-up of [13].
It is very interesting to note that Covas et al. [13]’s and Keramat et al. [28]’s models both display

k τk(s) Jk(10−10Pa)

1 0.05 1.060
2 0.5 0.933
3 1.5 1.120

(a) Model [13]

k τk(s) Jk(10−10Pa)

1 0.05 1.057
2 0.5 1.054
3 1.5 0.9051
4 5 0.2617
5 10 0.7456

(b) Model [28]

Table 3: Covas et al.[13] and Keramat et al. [28]’s convolution kernels parameters for the experimental data of
Covas et al. [19, 13].

a very similar form compared to (39)-(41). Qualitatively, the visco-elastic material response can
indeed be recasted into similar convolution products with pressure and axial stress. In order to
make this comparison more precise it is interesting to consider the very same hypothesis that the
generalized Young modulus ν∗s equals the elastic one νe, i.e. ν̃s = 1, and the dimensionless tube’s
thickness is small, i.e. α� 1, in which case the visco-elastic kernels (42)-(45) in frequency-domain
simplify to

ĨFP = ĨSP = ĨSσ = J̃s(ω)− 1 , and ĨFσ = 0. (93)

This simplified framework indeed provides a simple condition for the equivalence of formulation
according, to (46) and (92)

J̃s(ω) ≡ 1 +

Nkv∑
k=1

EeJk

1 + iω
cepτk
L

. (94)

Hence, within ν̃s = 1 (ν̃∗s = νe) and α → 0 hypothesis, it is nice to observe that the l.h.s of (38)
display a convolution product with the pressure only, as so does (43) when IFσ = 0 as provided
by (93). Furthermore, the kernel associated with ĨFP , ĨSP and ĨSσ is the same, so that both r.h.s
terms of (40) share the same kernel respectively applied to the pressure and the axial stress. The
very same feature is satisfied by the r.h.s of (90). Hence, the visco-elastic rheological based model
(39)-(41) is similar with Keramat et al. (2011) (88)-(91) when using the ν̃s = 1 and α → 0
hypothesis. In other words, in the limit of thin-wall and without visco-elastic contribution to the
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Poisson coupling, the proposed rheological model produces convolution kernels directly provided
by the creep function, as previously done in [13, 28]. The various visco-elastic convolution kernels
are compared in Figure 3 for the experimental data of [13] presented in Table 2. Each kernel family
has been fitted with the same pressure field time variation coming from [19, 13]. Even though they
present similar exponential decay family types, ĨCov and ĨKer display faster attenuation that the
various kernels IFP , IFσ , ISP , ISσ of the proposed model. Also, both IFP and ISσ are very similar for
the obtained visco-elastic parameters.

Concerning the velocity dispersivity prediction provided in figure 4, it is interesting to mention
that every models display a similar trend for the norm of complex velocities: it varies from a
minimum value at ω = 0 within a narrow low-frequency region (associated with a long time
behaviour) so as to reach a constant plateau for large |ω| values. Hence, at short-time/large
|ω| most dispersivity of the wave velocity is lost and the visco-elastic response is very much like
the elastic one, [51, 52]. This allows to define a ’dispersive’ frequency gap band depicted within
vertical orange dotted lines for which visco-elastic effects are important. The ’dispersive’ frequency
gap band ∆ωv is more precisely define as the 95% difference velocity region from the asymptotic
high-frequency regime, as exemplified in the inset of figure 4a. The larger this dispersive gap-
band, and the deeper the ω = 0 velocity, the larger visco-elastic effects are. It is interesting
to observe in figure 4 that the dispersive gap is wider for Covas et al. [13] and Keramat et
al. [28] models than for the hereby model (in black) for parameters obtained from the same
data set [19, 13]. Considering specifically the corrective visco-elastic velocity c̃vp(ω) predictions
analysed in figure 4a it can be observed that for the Covas [13] and Keramat [28] models the
corrective visco-elastic velocity c̃vp(ω) tends to one in the |ω| � 1 limit. Noteworthy, this is not
the case for our model for which the high-frequency limit of c̃vp(ω) is approximately 6.5% above
one as can be observed in figure 4a. Combining this limit with the c̃− → 1 as |ω| � 1 found
in figure 4c produces a slight over-visco-elastic-velocity of about 6.5% larger than the elastic one.
These additional contributions to the elastic velocity from visco-elastic effects result from local
terms in the visco-elastic kernels (as previously mentioned at the end of S.4.1.1). The vertical
dotted line, depicted in the zoom inset of Figure 4a, reports the time-scale range for which the
complex corrective velocity factor c̃vp evaluated with the same visco-elastic parameter display a non-
dissipative behaviour, i.e very weakly depends on frequency. This result is interesting per-see since
it affects the predicted Joukowsky over-pressure which should be higher in visco-elastic materials
when taking into account their elastic properties only. This 6.5% over-velocity of our prediction
compared to Covas et al. [13] and Keramat et al. [28] models is also observable for c̃+ in figure 4c.
Previous studies, e.g. [19, 43, 20], had indeed pointed-out some difficulties in correctly estimating
the effective wave speed in visco-elastic materials, consequently, leading to bad predictions for the
first pressure overshoot according to Joukowsky’s theory. The visco-elastic wave-speed correction
(approximately evaluated between 10%−25% in [19, 43, 20]) is of practical consequence. It should
be taken into account in the modelling from using rheology-based visco-elastic dispersive velocities
such as (49) and (53). This can be implemented using the transfer matrix method [53] recently
extended to visco-elastic materials [54]. Such theoretical method which is very useful for leakage
detection in pipes [55, 56, 57], could suffer from an approximated wave speed modelling that our
contribution might improve. For now, we did only compared subsequent quantities not easy to
measure experimentally i.e. visco-elastic kernels and the dispersive velocities. It is nevertheless
interesting to compare predictions for the pressure signature to [13] and [28] ones. This comparison
is illustrate in Figure 5 for the pressure signal at the valve. Whilst Covas’s model slightly overshoot
its prediction for the first pressure mode, it succeeds in nicely capturing the second and third one
as illustrated in figure 5a. In time-domain, this first frequency overshoot manifests itself from a
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systematic over-pressure prediction at long times as illustrated in figures 5c and 5e although more
markedly noted in the case associated with dimensionless distance Z = 0.42. For these long-time
behavior the proposed visco-elastic model in blue provides a better fit to the pressure dynamics.
Nevertheless, at small time, the opposite can be observed in figure 5c for capturing the first peak.
A similar behavior is observed with Keramat’s model in 5b with an overshoot prediction for the
first Fourier’s peak, but for a less accurate fitting for the further second and third peaks. In time-
domain, this again explains why Keramat’s model over-predicts the pressure at long-time. It is
interesting to observe that, at short time, both Keramat’s model and the proposed visco-elastic one
nicely match together, especially for providing high-frequency peaks which are absent in Covas’s
model prediction in figure 5a. These high-frequency peaks result from the FSI interaction from
bouncing elastic waves in the solid obviously not considered in Covas’s model. They are not
observed in the experiments from high-frequency filtering of the measurement’s sensors. Also of
interest in figure 5a and 5b are the reported dispersive frequency band ∆ω evaluated in figure
4a indicating which frequency range is associated with the elastic response (on the left) and the
visco-elastic one (on the right). Overall our proposed visco-elastic model provides a convincing
comparison to the pressure signal measured at various positions, comparable with other previous
models.

4.6. Sensitivity analysis
This section considers the sensitivity analysis of visco-elastic kernels to parameters in the

four-dimensional parameter-space of (a, τr, τλ, τµ) –in general the elastic parameters (λe, µe) are
supposed known material properties–. More precisely, any method (e.g. steepest-descent, Newton
method, etc..) for minimizing the distance/the error between measurements and model’s predic-
tions needs the evaluation of visco-elastic kernel gradients in the parameter space. It is interesting
to mention that the analytical relations between kernels ĨFP , ĨFσ , ĨSP , ĨSσ and parameters (a, τr, τλ, τµ)
has been obtained in 64-67, permitting the explicit analytical evaluation of the kernel’s Jacobian
in parameter space if needed.

In order to simplify the picture, it is first interesting to realize from the definition of the visco-
elastic kernels ĨFP , ĨFσ , ĨSP , ĨSσ in 64-67 that these kernels are all linear functions of parameter a
and τr. Thus the derivative of visco-elastic kernels in the a − τr space does not depend on these
parameters and decays in time as illustrated in figures 6a and 6b. Considering the other parameters
(τλ, τµ) being chosen at their optimal value, it is interesting to observe that the kernel derivatives in
the a−τr sub-space is very moderate. In other words, visco-elastic kernels are poorly sensitive to a
and τr parameters. Similarly the derivative of the kernels with respect to τλ are also moderate, with
a significant decay in time, as illustrated in figure 7a -7d. On the contrary, the derivative of the
kernels with respect to τµ reach much higher values as shown in figures 8a-8d where, at short time,
the kernels derivatives are an order of magnitude more sensitive to τµ that all other parameters.
Hence, from the four dimensional parameters, the most sensitive one to visco-elastic kernels is τµ,
meaning that its precise evaluation is of clear significance in the parametric estimation. This result
is consistent with the fact that the visco-elastic kernels exponential decay are directly related to
τµ in (64)-(67).

5. Conclusion

A rheology-based model for water-hammer wave propagation in a visco-elastic pipe has been
proposed. Using a long wavelength analysis and a generalized frequency-dependent Hooke-law for
the stress/strain relation the pressure/longitudinal stress coupled wave system has been derived.
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In this general framework, a visco-elastic FSI four equations model having four visco-elastic kernels
and the corresponding pressure/longitudinal stress wave equation system have been established.
This has first permitted us to find the generalized visco-elastic dispersive propagating velocity as
explicit functions of the visco-elastic kernels. For a general linear visco-elastic rheology, the four
visco-elastic kernels, and the corresponding creep function have been derived explicitly. They can
be used to find visco-elastic rheology parameters in any specific pipe/boundary conditions config-
uration (e.g. from numerically solving the corresponding FSI-four equation problem, i.e. using a
time-domain version of (39)-(41), with kernels (68)-(71) and creep function (63)). Furthermore,
for specific boundary conditions, an explicit analytical solution in Fourier domain for the pres-
sure/stress wave has been derived and used so as to estimate the visco-elastic parameters from
experimental water-hammer time-domain pressure measurements from numerical inverse Fourier
transform.

The model’s predictions have then been successfully compared to the experimental measure-
ments as well as with other models adjusted to the same experimental data set. Also, the model’s
parameter sensitivity has been quantified by computing the four visco-elastic kernels derivative
with parameters, showing a stronger influence of the viscous relaxation time τµ over all other
parameters. This contribution has shown that the proposed rheology-based visco-elastic model
provides a convincing description of the water-hammer wave propagation in the visco-elastic pipe.
It can be used in many other contexts with the specific ability to distinguish the intrinsic visco-
elastic rheology from the considered pipe geometry and boundary conditions.

Let us finally discuss the practical relevance and usefulness of this contribution. Even if the
proposed model needs parameter calibration exactly as previous other visco-elastic Kelvin-Voigt
models, it nevertheless presents two distinct features. First, as opposed to other models which need
the numerical computation of the water-hammer wave system problem, our Fourier-domain ana-
lytical solution permits getting the time-domain pressure solution from a simple Fourier transform
only. This is more simple and more useful than being able to accurately compute the wave equa-
tions (a hyperbolic problem necessitates devoted numerical schemes and methods). Furthermore,
the minimisation between observation and model for parameter calibration could also be performed
in frequency-domain, from a simple Fourier transform of the pressure observations themselves as
done in this paper in Figures 5a and 5b. In this case, the parameter calibration could directly
benefit from our analytical solution as well as from the analytical sensitivity matrix computation,
the derivative of which is needed in the calibration numerical procedure. This is a simplified pro-
cedure over the state of the art. Secondly, because our parameters are rheology-based, they can
be estimated before-end from applied mechanical stress-strain response tests. These mechanical
stress-strain tests might be of various kinds (e.g. oscillatory, shear, compression, mixed, etc..) so
as to increase the parameter estimation step robustness. In this case, the presented model could
provide water-hammer time-domain pressure prediction without the need for parameter calibration
on water-hammer tests. A distinct path which is beyond the scope of the present paper but might
motivate future investigations.
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Appendix A. Visco-elastic parameters estimation from creep and stress relaxation
methods

In this appendix, the rheological parameters identification within a 3D linear rheological model
is discussed. Most common rheological models are based upon a mechanical approach, where
springs and dashpot are associated in order to establish differential equations describing media’s
deformation. The Kelvin-Voigt, Maxwell, and Zener models are built within this approach and
represent 1D models involving parameters either directly fitted to pressure signals [32, 28] or to
mechanical measurements [58, 59]. A wide variety of techniques (e.g. creep and stress relaxation,
free oscillation methods, resonance methods, and wave propagation methods) based on different
solicitation frequencies can be used to quantify visco-elastic models and estimate their parameters.

23



Here, the details of the rheological parameters determination of 3D models 59 based on the creep
and stress relaxation methods are presented. In index form model 59 reads

a(1 + τr∂t)σ
∗
ij = λe(1 + τλ∂t)ε

∗
llδij + 2µe(1 + τµ∂t)ε

∗
ij, (A.1)

δij being the Kronecker’s symbol. In rheological studies, one applies stress (either constant or
oscillating) to the visco-elastic media and measures the associated strain. Hence, the strain field
components ε∗ij, have to be written versus the stress fields ones σ∗ij, thus inverting (A.1). Let us first
focus on the non-diagonal part of (A.1). The strain non-diagonal components achieve as follows

ε∗ij(t) =
1

2µe

a

τµ

∫ t

0

(1 + τr∂T )σ∗ij(T ) e
T−t
τµ dT + ε∗ij(0) e−t/τµ , (A.2)

whilst performing an integration by parts of (A.2)’s r.h.s, yields

ε∗ij(t) =
a

2µe

(
1− τr

τµ

)
1

τµ

∫ t

0

σ∗
ij(T )e

T−t
τµ dT︸ ︷︷ ︸

Visco-elastic component

+
τr
τµ

a

2µe
σ∗
ij(t)︸ ︷︷ ︸

Elastic component

+

(
ε∗ij(0)−

τr
τµ

a

2µe
σij(0)

)
︸ ︷︷ ︸

Initial conditions

e−t/τµ . (A.3)

The ε∗ij strain field components are therefore composed of three terms. A visco-elastic component
whose dynamics is only driven by the characteristic shear-time τµ, an elastic component whose
response is instantaneous and an exponentially decaying initial conditions contribution. The in-
version of (A.1)’s diagonal terms is now considered. Introducing the stress σ∗d and strain ε∗d vector
field

σ∗d =
(
σ∗xx(t), σ

∗
yy(t), σ

∗
zz(t)

)T , and ε∗d =
(
ε∗xx(t), ε

∗
yy(t), ε

∗
zz(t)

)T
. (A.4)

From considering the applied stress configurations of figure A.9b, it yields

λe
[
τλ∂t + A−1B

]
ε∗d = aA−1 (1 + τr∂t)σ

∗
d, (A.5)

with A and B defined by

A =

1 + µe
λe

τµ
τλ

1 1

1 1 + µe
λe

τµ
τλ

1

1 1 1 + µe
λe

τµ
τλ

 , and, B =

1 + 2µe
λe

1 1

1 1 + 2µe
λe

1

1 1 1 + 2µe
λe

 . (A.6)

To obtain the strain evolution, A−1B is diagonalized. In the eigenvector basis, it follows

(∂t + Ω) ε̂∗d =
a(1 + νe)

Ee
F (1 + τr∂t) σ̂

∗
d, (A.7)

with Ω and F defined by

Ω =

1/τµ 0 0
0 1/τµ 0
0 0 1/τE

 , and, F =

1/τµ 0 0
0 1/τµ 0
0 0 1

τE

1−2νe
1+νe

 , (A.8)
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whilst ε̂d and σ̂d vectors are defined by

ε∗d = Π ε̂∗d , and, σ∗d = Π σ̂∗d , where Π =

−1 −1 1
0 1 1
1 0 1

 . (A.9)

Using the base change matrix Π, we found the strain components as

ε∗i (t) =
a(1 + νe)

Ee


∫ t

0

∑
j

ΠijFjjσ̂j
∗(T ) e(T−t)Ωjj (1− τrΩjj)dT︸ ︷︷ ︸

Visco-elastic component

+
∑
j

τrΠijFjjσ̂j
∗(t)︸ ︷︷ ︸

Elastic component



+
∑
j

Πij

(
ε̂i
∗(0)− (1 + νe)

Ee
σ̂j
∗(0)

)
e−tΩjj︸ ︷︷ ︸

Initial conditions

.

(A.10)

Similarly to the shear case, the strain field can be expressed with three contributions: (i) a visco-
elastic one the dynamics of which is driven by the characteristic times resulting from matrix
Ω and F (ii) an elastic one, not depending of time, having an instantaneous contribution (iii) an
exponentially decaying initial conditions contribution, the characteristic time of which results from
matrix Ω. Using the model previously developed in the context of stress or creep relaxation tests, it
is possible to determine parameters (a, τr, τµ, τλ) for various visco-elastic materials. Unfortunately,
all model’s parameters cannot be determined through a single experiment. Indeed, for a creep
test, the characteristic stress relaxation time τr does not appear. It is, therefore, necessary to
carry out two independent tests, a creep one and a stress relaxation one so as to determine all
model parameters. However, for a given material it is not easy to find all the necessary mechanical
stress configurations in the literature to close the parameter estimations. We perform some of
those from the data sets found in the literature to further exemplified the approach.

Appendix A.1. Creep
In the framework of a single step loading of a stress σ∗0, the model predicts the strain from

(A.10), so that the creep compliance J∗(t) = ε∗(t)/σ∗0 is

J∗(t) = J∗(0)

[
a− 1− a

3

(
2(1 + νe)e

−t/τµ + (1− 2νe)e
−t/τE

)]
. (A.11)

This test allows to determine parameters (a, τµ, τλ).

Appendix A.2. Stress relaxation
Similarly to the creep test, for a single step strain ε∗0, the model involves stress from (A.3) and

therefore Young modulus E(t) = σ∗(t)/ε∗0

E(t) =
Ee
a

(
1 + (a− 1)e−at/τr

)
. (A.12)
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This test allows finding parameters (a, τr). Note that in both experiments, the a value can be
evaluated, thus providing a cross-checked evaluation.
An example of parameter estimation based on creep and stress relaxation tests on femur bones
experiments carried out by [60] is illustrated inA.10. The parameter estimation has been carried
out using a least square method in order to find the minimum error between the model and
data. Figure A.10 display the stress and strain time variations respectively associated with stress
relaxation and creep tests. Parameters a = 1.77 and τr = 4.42h for the stress relaxation test and
a = 1.41, τµ = 4.32 min and τλ = 33.8 min for the creep test have been found. These results
show a good agreement between the model with the experimental measurements. Also, the a value
estimate lies within the 25% difference between both tests. The a parameter is then allowed to
characterize the visco-elastic strain of a material, which is added to its elastic strain. It is thus
necessarily larger than one. Furthermore the larger parameter a, the more visco-elastic the media.

Appendix B. Theoretical derivation of the visco-elastic FSI four-equations model

Keeping O(1) terms and neglecting O(ε2) in (29)-(30), it is possible to find that, to leading
order, the displacements fields fulfils (Cf [35] for more details)

ζ̃ = H̃1(Z, ω) , and, ξ̃ =
H̃2(Z, ω)

2
R +

H̃3(Z, ω)

R
, (B.1)

where H̃[1,2,3] are functions of ω and Z given by the boundary conditions associated with axial
velocity and radial constraint (Cf [35]). Note that this analysis is a long wavelength approach
which neglects O (ε2) (Cf [17] for more details on the asymptotic context) so that (B.1) is in fact
consistent with (26). Following [35], combining boundary conditions (35)-(36) with ξ̃ expression
in (B.1) whilst using visco-elastic Poisson modulus (8) and (11) leads to

H̃2(Z, ω) = 2νeν̃s(ω)

(
C̃λs(ω)

P̃

α2(2 + α)
− ∂Z ζ̃

)
, and, H̃3(Z, ω) = C̃µs(ω)

(1 + α)2

2α2(2 + α)
P̃ . (B.2)

The deformation vector field at the solid wall is necessary in order to close fluid momentum equation
(33). It can be found from replacing results (B.2) in (B.1)

ξ̃
∣∣
R=1

=
χ̃s(ω)P̃

2α
− νeν̃s(ω)∂Z ζ̃ , (B.3)

χ̃s(ω) =
2νeν̃s(ω)C̃λs(ω) + (1 + α)2C̃µs(ω)

α(2 + α)
(B.4)

where χ̃s(ω) generalizes the elastic effective velocity parameters χe, introduced in (1). Now, con-
sidering the leading-order solid stress, from σ̃rz in (28), whilst using (B.1) as well as σ̃zz in (25),
the shear-stress boundary conditions (35)-(36) leads to find zero shear-stress everywhere inside the
solid (at leading order, neglecting O(ε2)), as in the elastic case [34, 35]

σ̃rz = 0. (B.5)

It is noteworthy that this zero-shear stress in the solid is also a hypothesis of thin-shell approxi-
mation, hence consistent with this result. Using (B.2) in (B.1) to replace the ξ̃ field in the axial
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constraint σ̃zz visco-elastic rheology expression (25) yields

σ̃zz = 2νeν̃s
P̃

α(2 + α)
+
αC̃2

s

D
∂Z ζ̃ , (B.6)

whilst simplification α
[

2
C̃µs

+ 1−2νeν̃s
C̃λs

]
≡ αC̃2s

D has also been used. Finally, combining (28) and (B.5),
one gets

α

D
ω2ζ̃ + ∂Z σ̃zz = 0. (B.7)

By, using (33), (34), (B.3), (B.6) and (B.7), the dimensionless visco-elastic FSI four equation model
can be derived

iωW̃ = −∂ZP̃ (B.8)

iωP̃ + C2∂ZW̃ = −iωC2
[
χ̃sP̃ − 2ανeν̃s∂Z ζ̃

]
, (B.9)

σ̃zz = 2νeν̃s
P̃

α(2 + α)
+
αC̃2

s

D
∂Z ζ̃ , (B.10)

α

D
ω2ζ̃ + ∂Z σ̃zz = 0. (B.11)

Injecting (B.10) in (B.9) permits to express the r.h.s of (B.9) versus pressure and axial stress, i.e.

iωP̃ + ∂ZW̃ − 2αiωνe∂Z ζ̃ = −iω
[(
χ̃s − χe +

4ν2
e ν̃s (ν̃s − 1)D
α(2 + α)C̃2

s

)
P̃ − 2Dν

e
s (ν̃s − 1)

C̃2
s

σ̃zz

]
, (B.12)

or equivalently

iωP̃ + ∂ZW̃ − 2αiωνe∂Z ζ̃ = −iω
[
χe

(
χ̃s − χe
χe

+
4ν2

e ν̃s (ν̃s − 1)D
α(2 + α)χeC̃2

s

)
P̃ − 2Dνe (ν̃s − 1)

C̃2
s

σ̃zz

]
.

(B.13)
The elastic and visco-elastic velocity parameters (χe, χ̃s) introduced in (1) and (B.4) respectively,
can be revised regarding the solid acoustic wave speeds (13), their ratio to the acoustic fluid wave
speed (14) and the density ratio (18). It thus follows

χe =
4D

α(2 + α)Ces2

[
1− ν2

e +
α(2 + α)

2
(1 + νes)

]
, (B.14)

χ̃s =
4D

α(2 + α)C̃2
s

[
1− ν2

e ν̃s
2 +

α(2 + α)

2
(1 + νeν̃s)

]
, (B.15)

so as to achieve

χ̃s − χe
χe

+
4ν2

e ν̃s (ν̃s − 1)D
α(2 + α)χeC̃2

s

=

(
Ces
C̃s

)2 1− ν2
e ν̃

2
s + α(2+α)

2
(1 + νeν̃

s
s) + ν2

e ν̃s(ν̃s − 1)

1− ν2
e + α(2+α)

2
(1 + νe)

− 1, (B.16)

or equivalently

χ̃s − χe
χe

+
4ν2

e ν̃s (ν̃s − 1)D
α(2 + α)χeC̃2

s

=

(
Ces
C̃s

)2 1− ν2
e ν̃s + α(2+α)

2
(1 + νeν̃

s
s)

1− ν2
e + α(2+α)

2
(1 + νe)

− 1. (B.17)
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Finally, the relation (B.13) results in

iωP̃ + ∂ZW̃ − 2αiωνe∂Z ζ̃ = 2Diω νe(ν̃s − 1)

C̃2s
σ̃zz − χeiω

((
Ces
C̃s

)2 ν2e ν̃s − 1− α(2+α)
2 (1 + νeν̃

s
s)

ν2e − 1− α(2+α)
2 (1 + νe)

− 1

)
P̃ . (B.18)

Likewise, the (B.10) r.h.s is modified to bring out elastic contributions in its l.h.s

σ̃zz − 2νe
P̃

α(2 + α)
− αCes2

D
∂Z ζ̃ = 2νe (ν̃s − 1)

P̃

α(2 + α)
+
α

D

(
C̃2
s − Ces

2
)
∂Z ζ̃ , (B.19)

so that re-injecting the ∂Z ζ̃ term of (B.10) yields

σ̃zz − 2νe
P̃

α(2 + α)
− αCes2

D
∂Z ζ̃ =

C̃2
s − Ces2

C̃2
s

σ̃zz +
2νe

α(2 + α)

(
ν̃s − 1− ν̃s

C̃2
s − Ces2

C̃2
s

)
P̃ . (B.20)

Finally, (B.8), (B.9),(B.18) and (B.10) lead to

iωW̃ = −∂ZP̃ (B.21)

iωP̃ + ∂ZW̃ − 2iωανe∂Z ζ̃ = −iωχeĨFP P̃ +
2Dνe
Ces2 iωĨFσ σ̃zz, (B.22)

iωσ̃zz −
2νe

α(2 + α)
iωP̃ − iωαC

e
s

2

D
∂Z ζ̃ = −iωĨSσ σ̃zz +

2νe
α(2 + α)

iωĨSP P̃ , (B.23)

α

D
ω2ζ̃ + ∂Z σ̃zz = 0, (B.24)

where the hereby introduced visco-elastic extra terms ĨFP , ĨFσ , ĨSP and ĨSσ read

ĨFP =

(
Ces
C̃s

)2 1− ν2
e ν̃s + α(2+α)

2
(1 + νeν̃s)

1− ν2
e + α(2+α)

2
(1 + νe)

− 1, (B.25)

ĨFσ =

(
Ces
C̃s

)2

(ν̃s − 1) , (B.26)

ĨSP = ν̃s − 1 + ν̃s
Ces2 − C̃2

s

C̃2
s

, (B.27)

ĨSσ =
Ces2 − C̃2

s

C̃2
s

. (B.28)

Appendix C. Dimensionless formulation of Keramat et al.’s model

The model of Keramat et al. [28] reads

∂tW
∗ = −∂zP ∗, (C.1)

∂tP
∗ + ∂zW

∗ − 2νe∂z ζ̇
∗ =

2
(
νe

2 − 1
)

α
∂t

∫ t

0

I∗ker(t
′
)P ∗(t− t

′
)dt
′
, (C.2)

∂τσ
∗
zz −

νe
α
∂τP

∗ − ρsces
2∂z ζ̇

∗ = −ρsces
2∂t

∫ t

0

I∗ker(t
′
)σ∗
zz(t− t

′
)dt
′
+
νe
α
∂t

∫ t

0

I∗ker(t
′
)P ∗(t− t

′
)dt
′
, (C.3)

ρs∂τ ζ̇
∗ − ∂zσ∗

zz = 0, (C.4)
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where the original hydraulic head H terms have been substituted by the pressure P = ρfgH, and

I∗ker =
d

dt
J∗(t), (C.5)

the time derivative of the [28]’s Fourier creep function. The equations set (C.1)-(C.4) are now
regarded under dimensionless form according to the scaling provided from (19) to (22) and by
assuming the creep function to scale as the inverse of the elastic Young modulus, i.e. J∗(t) =
J(τ)/Ee. It then yields

∂t

∫ t

0

I∗ker(t
′
)P ∗(t− t′)dt′ =

D
Ces2

W0

L
∂τ

∫ τ

0

Iker(τ
′
)P (τ − τ ′)dτ ′ , (C.6)

∂t

∫ t

0

I∗ker(t
′
)σ∗zz(t− t

′
)dt

′
=
D
Ces2

W0

L
∂τ

∫ τ

0

Iker(τ
′
)σzz(τ − τ

′
)dτ

′
, (C.7)

so that

∂τW = −∂ZP, (C.8)

∂τP + ∂ZW − 2ανe∂Z ζ̇ =
2D
(
νe

2 − 1
)

αCes
2 ∂τ

∫ τ

0

Iker(τ
′
)P (τ − τ

′
)dτ

′
, (C.9)

∂τσzz −
νe
α
∂τP −

αCes
2

D
∂z ζ̇ = −∂τ

∫ τ

0

Iker(τ
′
)σzz(τ − τ

′
)dτ

′
+
νe
α
∂τ

∫ τ

0

Iker(τ
′
)P (τ − τ

′
)dτ

′
, (C.10)

α

D
∂τ ζ̇ − ∂Zσzz = 0. (C.11)

Finally, in the frequency-domain (C.8)-(C.11) achieve as follows

iωW̃ = −∂ZP̃ , (C.12)

iωP̃ + ∂ZW̃ − 2iωανe∂Z ζ̃ = −2D (1− ν2
e )

αCes2 iωĨker(ω)P̃ (ω), (C.13)

iωσ̃zz −
νe
α
iωP̃ − αCes2

D
∂z ζ̃ = −iωĨker(ω)σ̃zz(ω) +

νe
α
iωĨker(ω)P̃ (ω), (C.14)

α

D
ω2ζ̃ + ∂Z σ̃zz = 0, (C.15)

which is equal to (88)-(91).
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(a) Time-dependent pressure signal at the valve compared to the
non-FSI Mei and Jing [16]’s theory. (b) Positive-half pressure signal spectrum at the valve.
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(c) Time-dependent pressure signal at the valve compared to the
FSI, fluid non-viscous Bayle and Plouraboué [35]’s theory.
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(d) Positive-half pressure signal spectrum at the valve. The Bayle
and Plouraboué [35]’s resonant frequencies are depicted by dotted
red lines.
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(e) Limit in νe → 0 of the visco-elastic solution.

Figure 2: Dimensionless time (using (4)) and frequency (using (6)) pressure signature at the valve comparing
model’s prediction with the experiment of Pezinga et al., [33]. The elastic signature is also depicted to point-out
(a) the fluid viscous damping without FSI in the elastic pipe (b) the associated resonant frequencies (Mei and Jing
[16]’s resonant frequencies are depicted by dotted red lines. Numerical MOC resonant frequencies with a viscous
damping model (Darcy-Weisbach+Zielke’s one) are provided in dotted green vertical lines) (c) the elastic FSI effects
without fluid viscous damping (d) the associated resonant frequencies. Figure (e) displays the limit νe → 0 of (83)’s
IFFT compared to Pezinga et al. [33]’s experiment.
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Figure 3: Comparison to (a) Covas et al. [13]’s and (b) Keramat et al. [28]’s visco-elastic convolution kernels for
the experimental data of Covas et al. [19, 13]. Dimensionless time τ (using (4)) has been used.

31



(a)

−8 −6 −4 −2 0 2 4 6 8
ω= 2πf

0.80

0.85

0.90

0.95

1.00

||
̃ c −

||

Negative wave speed mode, || ̃c− ||

Theory
Keramat̃et̃al.

(b)

−8 −6 −4 −2 0 2 4 6 8
ω= 2πf

2.8

3.0

3.2

3.4

3.6

||
̃ c +

||

Positive wave speed mode, || ̃c+ ||

Theory
Keramat̃et̃al.

(c)

Figure 4: Comparison of frequency domain dependence of dimensionless visco-elastic velocities obtained from fitting
parameters to the experimental data of [19, 13]. (a) c̃vp(ω) (49), (b) c̃+ (53), (c) c̃− (53). Dimensionless pulsation
ω using (6) have been used.

32



0.0 0.5 1.0 1.5 2.0
ω= 2πf

−4

−2

0

2

4


(P

)

Δω
v

Δω
Co

v

Pressure spectrum signature at Z= 1
Experimental data
Visco-elastic theory
Covas et al. (2005)

(a)

0.0 0.5 1.0 1.5 2.0
ω= 2πf

−3
−2
−1

0
1
2
3
4
5


(P

)

Δω
v

Δω
Ke

r

Pressure spectrum signature at Z= 1
Experimental data
Visco-elastic theory
Keramat et al. (2011)

(b)

0 5 10 15 20 25 30 35
τ

-1.0
-0.8
-0.5
-0.2
0.0
0.2
0.5
0.8
1.0
1.2

P

Pressure signature at Z= 1
Experimental data
Visco-elastic theory
Covas et al. (2005)

(c)

0 5 10 15 20 25 30 35
τ

-1.0
-0.8
-0.5
-0.2
0.0
0.2
0.5
0.8
1.0
1.2

P

Pressure signature at Z= 1
Experimental data
Visco-elastic theory
Keramat et al. (2011)

(d)

0 5 10 15 20 25 30
τ

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

P

Pressure signature at Z≈0.42
Experimental data
Visco-elastic theor 
Covas et al. (2005)

(e)

0 5 10 15 20 25 30
τ

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

P

Pressure signature at Z≈0.42
Experimental data
Visco-elastic theor 
Keramat et al. (2011)

(f)

Figure 5: Comparison between the proposed rheology-based model and [13] and [28] ones for the pressure signal at
various location for the reservoir-pipe-anchored valve configuration. Dimensionless pulsation ω using (6) have been
used in (a) and (b), dimensionless time using (4) in (c), (d), (e) and (f).
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Figure 6: Dispersive behaviour of the visco-elastic corrective pulse wave speed, c̃vp versus dimensionless time (using
(4)).

0.1 0.2 0.3 0.4
τ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

τ λ

∂τλSσ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(a)

0.1 0.2 0.3 0.4
τ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

τ λ

∂τλSP

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

(b)

0.1 0.2 0.3 0.4
τ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

τ λ

∂τλFσ

−0.08
0.00
0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64

(c)

0.1 0.2 0.3 0.4
τ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

τ λ

∂τλFP

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(d)

Figure 7: Visco-elastic kernels derivatives with respect to parameter τλ versus dimensionless time (using (4)).
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Figure 8: Visco-elastic kernels derivatives with respect to τµ versus dimensionless time (using (4)).
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Figure A.9: Sketch of (a) shear, and (b) creep applied mechanical stress configurations on a visco-elastic material.
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a) b)

Figure A.10: Plot of the stress (a) and strain (b) evolution with time based on the femur bones media.
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