
HAL Id: hal-04253469
https://hal.science/hal-04253469v1

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Natural convective loops heat transfer scaling analysis
Franck Plouraboué, Martin Rudkiewicz, F. David, H. Neau, Gerald Debenest

To cite this version:
Franck Plouraboué, Martin Rudkiewicz, F. David, H. Neau, Gerald Debenest. Natural convective
loops heat transfer scaling analysis. International Journal of Heat and Mass Transfer, 2024, 218,
pp.124743. �10.1016/j.ijheatmasstransfer.2023.124743�. �hal-04253469�

https://hal.science/hal-04253469v1
https://hal.archives-ouvertes.fr


Highlights

Natural convective loops heat transfer scaling analysis

Plouraboué, M. Rudkiewicz, F. David, H. Neau, G. Debenest

• Natural convective loops heat-exchanges are dominated by boundary-
layer transfert

• The 3D buoyancy-driven flow-field is mainly unidirectional along the
loop center-line

• The loop thermal efficiency fulfills a simple scaling with Graetz number,
the exponent of which depends on the applied thermal conditions

• New scaling laws for Reynolds number versus Grashof relation are pro-
posed which depends on the applied thermal conditions



Natural convective loops heat transfer scaling analysis

Plouraboué1,∗, M. Rudkiewicz1, F. David1, H. Neau1, G. Debenest1

Abstract

Heat transfer arising in natural convective loops is analyzed. Combining
3D direct numerical simulations, unidirectional heat-transfer semi-analytical
computations, scaling arguments and asymptotic analysis new universal scal-
ing laws are proposed to account for dimensionless heat transfer behavior
of natural convective loops. These scaling laws are successfully confronted
with experimental measurements in various heating configurations. It is
shown that the leading heat-transfer exchanges in natural convective loops
are mainly dominated by boundary layers transfers, without noticeable in-
fluence of possibly complex 3D flow patterns found in the fluid flow. The
proposed simple scaling laws constitute a progress over previously existing
correlations which have disregarded the effect of boundary layers, heating
configurations as well as fluid to solid variable diffusivity/conductivity.

Keywords: Convection in cavities, Buoyancy-driven instability, Coupled
diffusion and flow, Natural convection, heat transfer, boundary layer

1. Introduction

Natural convective loops are passive thermal systems heated from bellow,
cooled from above, where critical heating conditions produce a bifurcation
above which a self-sustained ”steady” flow is produced (Cf figure1a,b) break-
ing symmetry from rotating in one given direction. This stable limit-cycle,
can nevertheless become unstable for higher heating forcing condition, and
possibly reach a chaotic state from switching between various states [1, 2].
This first limit-cycle associated with the rotating periodic flow turns-out to
be stable over a wide range of applied thermal conditions henc
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Figure 1: Natural convection loops having horizontal heated/cooled regions length L̃ (L̃ =
LR̃) and vertical height H̃ (H̃ = HR̃), adiabatic length H̃a (H̃a = HaR̃) are considered in
this study. 2D slices in the vertical mean-plane of the 3D loop are represented in (a-b). The
interior fluid loop where thermal field iso-values drawed from hot (red) to cold (blue), has
circular section of radius R̃ in the transverse plane (Cf bottom c). (a) Dirichlet/Dirichlet
configuration (b) Neumann/Neumann one. (Top c) Deployed loop along the centerline
periodic coordinate s. In 3D simulations provided in §2 the solid conduction is ignored
(infinite solid conductivity limit) so that boundary conditions are directly applied at the
fluid edge.
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e producing a self-sustained buoyancy-driven steady flow interesting for
heat transfer. This is a cooling flow without any pump, a so-called passive ex-
changer. These natural convective loops are thus ubiquitous heat exchangers
in various applicative contexts such as nuclear plants [3, 4, 5], passive housing
thermal exchangers, solar heaters [6], geothermal processes [3]. In these con-
texts several well-established correlations have been proposed to set-up and
design the exchanges properties [7, 4]. These correlations produce a sensible
power-law relation between the convective Reynolds number Re = W̃s2R̃/ν
based upon the steady average velocity W̃s, pipe/tube radius R̃, fluid kine-
matic viscosity ν and the Grashof number Gr = 8βg∆T̃hR̃

3/ν2 related to
fluid density ρ, gravity acceleration g, thermal expansion coefficient β and
the reference forced temperature difference ∆T̃h = T̃H−T̃C between the lower
hot-pipe temperature T̃H and the cold bottom one T̃C in the case of Dirichlet
type boundary conditions, or, in Neumann/Dirichlet case ∆T̃h = φwR̃/kf
where φw[W.m−2] is the heat flux surface density, and kf [W.m−1K−1] the
fluid thermal conductivity. Also more seldomly used in the literature three
relevant non-dimensional parameters are interesting to consider : (i) the
Péclet number Pe = RePr, closely related with the Reynolds number by
the Prandtl number Pr = ν/αf , with αf the fluid thermal diffusivity related
to its thermal conductivity kf and specific heat cp by αf ≡ kf/ρfcp (ii) the
Boussinesq number Bo = GrPr2 (iii) and the Graetz number Gra = PeR̃/L̃,
L̃ being the horizontal length of the loop. Although partially based upon
energy balance and rational derivation, previous correlations derived in the
literature have disregarded the effect of boundary layers for considering one-
dimensional modeling only [8, 3, 9]. Also, all produced correlations have
ignored both the significance of the applied boundary conditions in the loop.

Hence, in this contribution we revisit this problem. §2 analyses the gen-
erated flow field and transfer in a natural convective loop from 3D numerical
simulations. §3 considers the modeling of unidirectional flow with gener-
alized Graetz mode decomposition, the use of which permits to obtain a
quasi-analytical solution for the 2D (axi-symmetric) temperature field. One
outcome obtained in §3.3 is the evaluation of loop’s exchanger efficiency,
given by the dimensionless ratio between the averaged temperature differ-
ence ∆T̃ between the outlet heated temperature at s̃ = L̃ and the inlet cold
one at s̃ = 0, i.e ∆T̃ = 〈T̃f〉(L̃) − 〈T̃f〉(0) (〈〉 stands for cross-section aver-
age inside the circular loop), and the reference forced temperature difference
∆T̃h, i.e E = ∆T̃ /∆T̃h. The large Péclet asymptotic behaviour of E is further
analyzed within a boundary layer analysis in §3.4. §4 then discusses the com-
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parison between the resulting asymptotic predictions for relations between
Re (or Pe), Gr (or Bo) and E confronted with experimental data both taking
into account the heating configuration and the conductivity heterogeneity of
fluid and solid.

2. Numerical study of 3D natural convection loop flow

The purpose of this section is to investigate the relevance of 3D flow
field and geometry for heat-transfer in natural convective loops previously
analyzed in the litterature. In most considered loops the aspect ratio between
the inner tube radius and the loop’s corner radius of curvature was small, so
that 3D effects are expected to be moderate in this context. For this, finite-
volume 3D simulations have been performed in a 3D domain similar to figure
1a for the configuration studied in [10] the details of which is given in table
1. The open-source software Saturne [11] has been used with dimensional
formulation (using tilde fields) so as to permit a better comparison with
experiments over a wide range of relevant Grashoff number, i.e from Gr =
7.103 to Gr = 5.106.

In these simulations boundary conditions are directly applied at the fluid
flow frontier without considering conduction effects. Incompressible, non-
stationnary, Boussinesq buoyancy-driven Navier-Stokes equations for velocity
field ũf , pressure p̃, temperature T̃ , are solved in the 3D domain depicted in
figure 1a associated with the Dirichlet/Neumann configuration

ρ
∂ũf
∂t

+ ρ∇ũf · ũf = −∇p̃+ βρg(T̃ − T̃ ?) + µ∇2ũf , (1)

whereby the fluid density and viscosity have been linearized around their
value at reference temperature T̃ ?, i.e ρ(T̃ ?) ≡ ρ, µ(T̃ ?) ≡ µ, and β is the
thermal expansion coefficient. T̃ ? is provided by a shift from the imposed
cold temperature T̃C , i.e T̃ ? = T̃C + ∆T̃ ?/2 where ∆T̃ ? is the tempera-
ture drop gained from heat flux, i.e ρW̃sπR̃

2cp∆T̃
? = φw2πR0L where the

longitudinal velocity W̃s is related to the viscous pressure drop ∆P̃ from
W̃s = ∆P̃ R̃2/(8µL̃t) with the L̃t = 2(L̃ + H̃a) the total lenght of the heat
loop along s. The pressure drop ∆P̃ is compensated by buoyancy effects so
that ∆P̃ = ρgβ∆T̃ ?H, leading to

∆T̃ ? =

√
16
φwµL̃tLR0

ρ2βcpgH̃R̃4
. (2)
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Navier-Stokes equations are coupled with the energy transport equations

∂T̃

∂t
+∇ · (ũf T̃ − αf∇T̃ ) = 0, (3)

where thermal diffusivity αf = kf/ρcp is related to thermal fluid conductivity
kf and fluid specific heat capacity cp. No-slip boundary conditions are applied
at the fluid domain edges. Also, at these edges, three distinct temperature
boundary conditions are considered (i) imposed cold temperature TC at ΓD
(ii) heated region at ΓN (iii) adiabatic condition at ΓA i.e

T̃

∣∣∣∣
ΓD

= T̃C & kf∇T̃ · n
∣∣∣∣
ΓN

= φw & ∇T̃ · n
∣∣∣∣
ΓA

= 0 (4)

The loop boundary is hence decomposed into two parts : thermally active
regions where the loop is either heated or cooled and passive adiabatic ones
where zero heat-flux is imposed. The domain itself is split in three regions
: horizontal heated/cooled ones, bended parts, and vertical adiabatic ones.
All thermo-physical quantities are taken for water at temperature T̃ ?. A 3D
mesh-grid is generated from a 2D mesh extrusion. Local refinements of the
grid have been performed in the bended regions and in the boundary layers so
as to correctly capture temperature gradients. A mesh-refinement sensitivity
analysis has been performed to reach less than 0.5% difference of the pre-
sented results. A time-stepping approach is adopted starting from a uniform
initial condition. Then, imposing the prescribed boundary conditions, the
solution converges toward a stable limit-cycle steady-state. A criteria to the
convergence toward this self-rotating steady flow is found close within less
than 0.04% of its previous value, i.e. the computation is stopped when find-
ing temperature/pressure/velocity L2 residual variations from one times-step
to the following lower than 4.10−4. The numerical results are now analyzed
in order to quantify the deviation from a one dimensional unidirectional flow
of the 3D components one.

First, the hot to cold temperature difference ∆T̃ obtained from numerical
simulations are compared with the experimental results of [10] in table 1. The
agreement obtained over these temperature differences is reasonnable (from
23 to 28 %) albeit not perfect. This difference might be attributable to
idealized boundary conditions in the modeling side, whilst, at the same time,
hardly controllable in experiments. This motivates a deeper analysis of the
influence of solid conduction performed in the next section.
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Figure 2: (a) Average pressure and variations along the center-line axis s inside each cross-
sections of the heat loop. The static buoyancy pressure is superposed with continuous
lines.(b) Cross-sectional averaged Nusselt number versus the dimensionless loop centerline
distance s. A Lévêque behavior Nu ∼ s−1/3 is depicted with dotted lines.

2πR̃0L̃φw[W ] Re ∆T̃ [K] Exp ∆T̃ [K] CFD
300 317 16 11.4
400 354 19.5 14.9
500 378 22.5 17.1
700 441 27.2 20.3

Table 1: Comparison between the reported experimental temperature difference (exper-
imental set-up MTT-1) of [10] and CDF ones. Reynolds number have been estimated
from an energy balance on the heater [12], i.e. Re = 4πR̃0L̃φwR̃/ρfcp∆T̃ ν. The loop

parameters are R̃ = 0.01m, L̃H = 0.72m, L̃C = 0.6m, H̃ = 0.637m, H̃a = 0.759m. The
total heat flux is 2πR̃0L̃φw.
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Figure 3: 3D Numerical simulations of natural convection stationary flow within a Dirich-
let/Neumann thermal loop. (a-top) 2D temperature field in the transverse plane at various
dimensionless axial distance s from the top-left of the loop. (a-bottom) 2D temperature
field into the loop longitudinal plane. (b) Longitudinal to transverse flow velocity compo-
nents ratio along the center-line coordinate s. (c) Radial velocity profile along directions
direction s1⊥ (parallel to gravity) in the iso-s cross-section (Cf figure 1c) have been ex-
tracted. (d) same convention as (c) for direction s2⊥ (perpendicular to gravity).7



The influence of 3D effects on the surface-averaged pressure drop vari-
ations along the loop are first considered. Figure 2 compares the pressure
variations along the curvilinear axial coordinate s along the loop center-
line with the static pressure associated with the buoyancy Boussinesq static
term. This results shows a poor influence of other contributions to pressure
variations i.e. viscous dissipation in bended regions (the so-called singular
perturbation on pressure drop) or inertial pressure drop in the tube. Sec-
ondly, the temperature non-axi-symmetry and the resulting 3D velocity are
illustrated and analyzed in figure 3. The temperature field (figure 3a) dis-
play a clear, axi-symmetric thin boundary layer structure along the circular
tube periphery, whereas in the center, a top-to-bottom asymmetry is found.
The non-axial component of the velocity field are also analyzed along the
loop in figure 3, the relative amplitude of which are compared to the axial
ones. A 10 % maximal variations of non-axial components relative to ax-
ial ones are found either within the straight portions of the loop, or in the
heated/cooled regions. Furthermore, in average along centerline s the trans-
verse velocity amplitude represents less than 5% of the longitudinal velocity.
Also, deviations from Poiseuille flow of the longitudinal velocity component
W̃ (r) = 2W̃s(1 − (r̃/R̃)2) have been quantified in figure 3 at various dis-
tance from the entrance of the upper cooled region (i.e 10, 22.5, 47.5 and
60 dimensionless diameter units). Since the 3D longitudinal velocity pro-
files are not axi-symmetric, two profiles (in the plane perpendicular to the
center-line coordinate s (Cf figure 1c) have been extracted in the direction
parallel to gravity (s1

⊥) or perpendicular to it (s2
⊥). A clear buoyancy driven,

gravity-enhanced a-symmetric longitudinal velocity profile is visible in the
left-bottom figure 3 along s1

⊥. The profile a-symmetry is enhanced along the
longitudinal direction increasing along the centre-line coordinate s. On the
contrary, neither symmetric breakage of the velocity profile nor a-symmetry
increase along s are found along s2

⊥ profiles in figure 3’s right-bottom. There,
it is interesting to observe that the fluid boundary-layers effect at the entrance
clearly decay along s leading to a closely parabolic profile far from it. Since
both temperature and velocity display boundary layers, there are worth of a
careful investigation. Figure 2 display the cross-sectional integrated transfer
from evaluating the local Nusselt number along the curvilinear center-line
coordinates s. As expected, heat transfer is decreasing from the entrance of
the heated zone, down along the channel. A s−1/3 decay of the local heat
transfer is more precisely shown in figure 2, as expected from Lévêque ap-
proximation [13]. This behavior of the heat transfer indicates the dominant
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effect of boundary layers on heat exchanges. This observation thus weakens
the relevance of buyancy effects shown for velocity profiles to heat transfer.
Since most of the transfer is controlled by thin regions near the solid bound-
ary, the a-symetry of the velocity profile is not expected to impact much the
near-wall radial temperature gradients.

Finally it is interesting to mention that since Saturne has embedded tabu-
lated laws, numerical simulations using real water thermo-physics properties
with temperature varying density, viscosity, specific heat capacity have also
been produced and compared with the hereby discussed Boussinesq approx-
imation results. A poor difference lower than 2% have been found between
both. For this reason, the Boussinesq approximation has been kept as a rel-
evant framework in the following sections. Furthermore, since a boundary-
layer dominated heat transfer has been found from 3D simulations, the follow-
ing section is further analyzing the expected predictions from heat-transfer
resulting only from convection-diffusion arising within a axially invariant ve-
locity profile ignoring the effect of transverse velocity components been small
compared to longitudinal ones. Thus, we now proceed to the further anal-
ysis of the temperature field within unidirectional dimensionless flow field
uf = (0, 0, wf (r)) with wf (r) = W̃ (r)/W̃s, now taking into account (possi-
bly heterogeneous) conductive effects in the solid. Next section develops the
leading order analysis of the bended-loop in the limit of asymptotically small
pipe radius to loop radius of curvature ratio.

3. Unidirection convective exchanges in natural convection loop

3.1. Dimensionless formulation

As mentioned in the introduction the relevant dimensionless numbers
in this context are Péclet number Pe = W̃s2R̃/αf and Graetz number
Gra = PeR̃/L. Rescaling the radial and axial coordinates r̃, z̃, s̃, L̃ ,H̃a,
& H̃ by R̃ (so that the fluid/solid interface Γ is at r = 1 whereas external
boundary conditions ΓA, ΓD, ΓN are set at r = R0 ≡ R̃0/R̃), the velocity
by W̃s, then, stationary dimensionless energy balance for the dimensionless
fluid temperature Tf reads

1

2
wf (r)

∂Tf
∂s
− 1

Pe
∇2Tf = 0, (5)

with dimensionless velocity wf (r) = 2(1 − r2). Distinct conductive proper-
ties of solid walls within each compartment (i.e. cooled or heated region,
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adiabatic regions) of the loop are considered. For each solid i, an harmonic
temperature field associated with stationary conduction is prescribed for the
dimensionless solid temperature Ts

∇2Ts = 0. (6)

Continuity of temperature and fluxes are prescribed between fluid and solid
domains

Tf

∣∣∣∣
Γ

= Ts

∣∣∣∣
Γ

&
∂Tf
∂r

∣∣∣∣
Γ

= κ
∂Ts
∂r

∣∣∣∣
Γ

, (7)

with κ = ks/kf being the dimensionless solid to fluid conductivity ratio. In
the following the field w is introduced being w = wf (r)/2 in the fluid and
w = 0 in the solid for 1 < r < R0. At external solid wall, either an adia-
batic (homogeneous Neumann), Dirichlet or a constant heat flux (constant
Neumann) are prescribed. Two distinct dimensionless temperature are thus
considered. In the case of Dirichlet/Diriclet configurations (i.e D/D case) di-
mensionless T = (T̃ − T̃C)/(T̃H − T̃C) is considered leading to dimensionless
boundary conditions

∂Ts
∂r

∣∣∣∣
ΓA

= 0 & Ts

∣∣∣∣
ΓC
D

= 0 & Ts

∣∣∣∣
ΓH
D

= 1, (8)

where ΓCD and ΓHD are where the cold temperature T̃C and the hot one T̃H
are prescribed. In the Dirichlet/Neumann case (i.e D/N case), T = φw(T̃ −
T̃C)/(kf R̃) and dimensionless boundary conditions read

∂Ts
∂r

∣∣∣∣
Γa

= 0 & Ts

∣∣∣∣
ΓD

= 0 & κ
∂Tf
∂r

∣∣∣∣
ΓN

= 1. (9)

3.2. Semi-analytical solutions

Problem (5)-(8) & (5)-(9) can be solved by separation of variables using
generalyzed Graetz modes decompositions [14, 15]. For homogeneous bound-
ary conditions there is an orthogonal base decomposition upon discrete radial
modes Θn(r) which fulfill the following radial problem in both fluid and solid
domains

κ
(
∇2
r + λ2

n

)
Θn = λnw(r)PeΘn, (10)

where ∇2
r stands for the radial part of the Laplacien operator. These modes

are denoted with an upper D for Dirichlet when they fulfill boundary con-
dition ΘD

n (R0) = 0 or N for Neumann in the case ∂rΘ
N
n (R0) = 0. General
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solutions for non-homogeneous boundary conditions of Dirichlet, Neumann
have been derived in [14, 16, 17]. In each stretch of the loop, having non-
homogeneous constant boundary conditions, solutions (taking in each case
the origin s = 0 of axial coordinate as the entrance of the boundary condi-
tion stretch) are provided. These solutions are decomposed into a general
solution associated with uniform boundary conditions, and a particular one
taking care off the non-homogeneous boundary condition (uniform in our
case), the amplitude of which is given by αD,Nn [15]

αDn = −2πR0κ

λ2
n

dΘD
n

dr

∣∣
R0

& αNn =
2πR0

λn
ΘN
n

∣∣
R0
. (11)

3.2.1. Dirichlet/Dirichlet case

In this case, since the adiabatic regions do not play a role in the solid/fluid
heat transfer, we disregard their role, and consider a succession of hot/cold
temperature boundary conditions i.e

T (R0, s)

∣∣∣∣
0<s<L

= 1 & T (R0, s)

∣∣∣∣
L<s<2L

= 0 (12)

The solution reads

T (r, s) = Π(
s+ L/2

L
)+
∑
n>0

xDn ΘD
n e

λDn s+
∑
n<0

xDn ΘD
n e

λn(s−2L)+
∑
n∈Z?

αNn cn(s)ΘD
n

(13)
with Π(s) is the rectangular function equal to one between s = ±1/2 and
c±n(s) functions

cn(s) = −
(
H(s)−H(s− L)e−λnL

)
eλns (14)

c−n(s) =
(
H(s)e−2λ−nL − [1−H(s− L)]e−λ−nL

)
eλ−ns, (15)

with xD±n amplitudes given by

xDn = αDn
1− (1− e−λnL)e2λnL

1− e2λnL
, (16)

xD−n = αD−n
1− (1− eλ−nL)e−2λ−nL

e2λ−nL − 1
, (17)

and for n ∈ N?. From the numerical viewpoint, the behavior of (13) solution
to mode truncation is not very favorable, so that, ones should alternatively
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consider regularized boundary conditions (e.g erf-function shapes), for which
some alternative analytical solutions using generalized Graetz modes could
similarly be deduced from [15], the mode-convergence of which better be-
haves.

3.2.2. Dirichlet/Neumann case

In this case, boundary conditions at the solid surface are given by

T (R0, s)

∣∣∣∣
0<s<L

= 0 &
∂T (R0, s)

∂r
|−(L+2Ha)<s<−(L+Ha) = 0(18)

κ
∂T (R0, s)

∂r
|−(L+Ha)<s<−Ha = 1 &

∂T (R0, s)

∂r
|−Ha<s<0 = 0. (19)

The solution within the Dirichlet region 0 < s < L reads

TD(r, s) = Tw +
∑
n>0

xD+nΘD
n+e

λDn s +
∑
n<0

xD−nΘD
−ne

λn(s−L). (20)

whilst the solution in the non-homogeneous Neumann region −(L+ 2Ha) <
s < 0 is

TN(r, s) =
∑
n>0

xN+nΘN
n e

λn(s+2s0)+
∑
n<0

xNn ΘN
n e

λns+
∑
n∈N?

αncn(s)−(s′+
L

2
)Π(

2s′

L
)
R0

Pe
,

(21)
where we have introduced the translated coordinate s′ = s+s0 with s0 = (L+
2Ha)/2. Albeit analytical, this solution is not explicit for needing unknown
amplitudes xD,N±n . These amplitudes are found from imposing continuity of
temperature and fluxes between the beginning of the first adiabatic region
at s = −2s0 with Dirichlet region outlet at s = L and between the end of
the second adiabatic region at s = 0 with Dirichlet one at s = 0. Hence,
minimizing functional

J [xDn , x
N
n ] =

∫ 1

0

[(
TD − TN

)2
+

(
∂TD

∂s
− ∂TN

∂s

)2
]
∣∣s=0

rdr +

∫ 1

0

[(
TD∣∣s=L − TN∣∣s=−2s0

)2

+

(
∂TD

∂s

∣∣
s=L
− ∂TN

∂s

∣∣
s=−2s0

)2
]
rdr,(22)

one can find the linear system to be solved in order to find the unknown
vector [xDn , x

N
n ], the detail of which is provided in Appendix §Appendix A.

12



3.3. Numerical results for the loop efficiency
From the computed temperature fields provided in previous sections, one

can evaluate the loop’s efficiency whose expression simplifies to E = 〈Tf〉(L)−
〈Tf〉(0) for dimensionless temperature. This efficiency has been evaluated
in figure 4 for both D/D and D/N cases for rectangular loops with L =
H = Ha varying between 2 to 100, for various Péclet numbers from unity
to one thousand. In each case, the variation of the efficiency with Péclet
follows the same qualitative trend, i.e. a sharp increase for moderate Péclet
values followed by a gentle decrease as observed in most heat-exchangers
(e. g. [18]). This secondary decay can be collapsed into a single curve
from using the Graetz number rather than the Péclet as illustrated in figure
4b,d. Furthermore, the inset of figure 4b,d also show that the decay of the
efficiency follows an asymptotic power-law decay with Graetz number, the
slope of which is distinct in the D/D case and D/N one. Hence, whenGra � 1
the efficiency follows the simple scaling

ED/D = E0

(
Pe

L

)−1/3

& ED/N = E0

(
Pe

L

)−2/3

. (23)

Note that since R = 1 for the dimensionless internal radius, the Péclet to
Graetz relation simplifies to Gra = Pe/L. The respective values of this
power-law decay are further analyzed in the next section within an asymp-
totic analysis. The prefactor E0 of this power-law depends on the various
conductivity ratios of the loop. For a loop having solid to fluid conductivity
ratio κ = ks/kf , the asymptotic regime Gra � 1 is further investigated. For

this, in the D/D case the quantity E0 ≡ EG1/3
ra has been analyzed in figure 5.

One can observe on figure 5a that this prefactor very weakly changes within
large variations of the Péclet number, as expected from (23). Furthermore,
when considering the variation of this prefactor in a large range of variations
of conductivity ratio κ parameter, a significant variation is found, with dis-
tinct asymptotic behaviors. For κ → ∞, one can see in figure 5b that E0

reaches a plateau value, associated with the limit of a perfectly conductive
solid (analysed in the next section). On the other hand, in the limit κ� 1,
one finds a linear decay E0 ∼ κ (a fit capturing both trends is provided in
figure 5’s legend).

3.4. Boundary layer analysis
Now considering the local boundary layer dimensionless thickness δ =

Pe−1/3 � 1 following [13], the dimensionless longitudinal velocity w(r)
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Figure 4: Efficiency of the loops computed from E = ∆T̃ /∆T̃h = ∆T . (a-b) Diri-
clet/Diriclet case. (c-d) Dirichlet-Neumann case.
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Figure 5: (a) E0 prefactor defined in (??) variation versus Pe number. (b) Continuous
line is E0 versus conductivity ratio κ. Dotted lines provide a fit of this numerical result

with the following fitting function 1.45 κ/2.2√
1+(κ/2.2)2

. A loop of dimensionless length L = 4

and R0 = 6/5 has been chosen here.

nearby the wall, can be expressed with near wall outer variable Y = 1 − r,
or inner one y = Y/δ, so that wf (r)/2 = (1 − r2) = Y (2 − Y ) = δy(2 − δy)
exhibiting an approximately linear behavior in the boundary layer where (5)
then leads to Peδy∂sT ∼ Peδ ∼ (1/δ2)∂2

yT ∼ (1/δ2) justifying the boundary
layer dimensionless thickness scaling with Pe. In this section, since we wish
to address the effect of the fluid boundary layer in the limit of large Péclet
number we consider the limiting case on infinite solid conductivity κ → ∞
for which the thermal boundary conditions are imposed at the fluid/solid
interface.

3.4.1. Dirichlet/Dirichlet case

On the one hand, the leading order boundary layer dimensionless tem-
perature T 0

in deduced from (5) fulfills

2y
∂T 0

in

∂s
− ∂2T 0

in

∂y2
= 0, (24)

with, boundary condition T 0
in(y = 0) = 1, complemented with matching con-

ditions with the dimensionless outer temperature T 0
out such as T 0

in(y →∞) =
T 0
out(Y → 0) ≡ T 0

out(0). It admits Lévêque self-similar solution introducing
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self-similar variable Y = y/(9s/2)1/3 so that classical results is recovered [13],

T 0
in(η) = T 0

out(0) + (1− T 0
out(0))

3

Γ(1/3)

∫ ∞
Y

exp−t
3

dt (25)

On the other hand, from (5), one can find that the leading-order outer field
verifies ∂sT

0
out = 0, i.e is invariant along s –this property holds, up to O(δ3)

corrections–. Since the efficiency E = ∆T̃ /(T̃H − T̃C) = 〈Tf〉(L) − 〈Tf〉(0)
can be evaluated using boundary-layer leading-orders from

〈Tf〉(L) =

∫ δL1/3

0

Tin(y)(1− δy)dy +

∫ 1

δL1/3

Tout(Y )(1− Y )dY (26)

= δL1/3 +

∫ 1

δL1/3

T 0
out(Y )(1− Y )dY +O(δ2) (27)

At s = 0, since ∂sT
0
out = 0, one gets

〈Tf〉(0) =

∫ δL1/3

0

Tout(Y )(1− Y )dY +

∫ 1

δL1/3

Tout(Y )(1− Y )dY (28)

= T 0
out(0)δL1/3 +

∫ 1

δL1/3

T 0
out(Y )(1− Y )dY +O(δ2) (29)

From (27) and (29), one finds that, in the D/D case, the loop efficiency scales
as

ED/D = 〈Tf〉(L)− 〈Tf〉(0) = [1− T 0
out(0)]δL1/3 +O(δ2) ∼ (L/Pe)1/3 (30)

This results is consistent with figure 4b inset behavior, i.e (23) scaling.

3.4.2. Dirichlet/Neumann case

In this case, the leading-order solution of the O(1) boundary-layer prob-
lem (24) associated with homogeneous boundary condition ∂yT

0
in(y = 0) = 0

is constant, i.e T 0
in = T 0

out(0), given by the matching condition with the
s-invariant, ∂sT

0
out = 0, outer solution. Next order O(δ) correction also ful-

fills (24) with the non-homogeneous uniform boundary condition ∂yT
1
in(y =

0) = 1 preventing a self-similar solution in this case, but for a linear profile
T 1
in(y) = y (Cf Appendix Appendix B for more details). Using (26) one finds

in this D/N case

〈Tf〉(L) = T 0
out(0)δL1/3 +

∫ 1

δL1/3

T 0
out(Y )(1− Y )dY +O(δ3), (31)
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Figure 6: Reynolds number versus Grashof number for various experimental natural con-
vection loops. Dotted lines are the correlation proposed in [4]. (a) D/D case. Continuous

line is the D/D scaling (36) Re ∼ Gr3/4. (b) D/N case. Continuous line is the D/N scaling

(36) Re ∼ Gr3/5.

and using definition (28),

〈Tf〉(0) = T 0
out(0)δL1/3(1−δ

2
L1/3)+

∂T 0
out

∂Y
(0)

δ2

2
L2/3+

∫ 1

δL1/3

T 0
out(Y )(1−Y )dY+O(δ3),

(32)
From matching condition ∂Y T

0
out(0) = 1 (Cf Appendix Appendix B for more

details), one gets

ED/N = 〈Tf〉(L)− 〈Tf〉(0) =
[T 0
out(0)− 1]

2
δ2L2/3 +O(δ3) ∼ (L/Pe)2/3 (33)

Again, this is consistent with figure 4d inset behavior and (23) scaling.

4. Results

Balancing the fluid pressure including both viscous pressure drop and
singular perturbation contributions associated with loop’s corners (provided
by ξs parameter) , with Archimedian one leads to

βρg∆T̃ H̃ =
1

2
ρW̃ 2

s (
64

Re
Lt + ξs), (34)
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Using previous dimensionless number definitions and dimensionless notation
Ng = (Lt+Reξs/64) in (34) leads to the simple relation between the Grashof
number Gr, the efficiency E and the Reynolds number Re

HGrE = 32ReNg. (35)

Now using scalings (23) in (35) provides new scaling laws for the Re-Gr
relation

D/D : Re ∼
(
Gr

Ng

H(
L

Pr
)1/3

)3/4

& D/N : Re ∼
(
Gr

Ng

H(
L

Pr
)2/3

)3/5

.

(36)
Both scaling are tested upon experimental results of [10, 19, 20, 21, 12, 22] in
figure 6. Figure 6 also depicts the correlations Re ∼

√
Gr proposed by [4]. In

the D/N case, the predicted slope of our scaling (36) (continuous line) com-
pared to previous correlations (Re ∼

√
Gr) (dotted line) provides a better

trend to the experimental points which have been gathered from numer-
ous experimental configurations (having distinct loops dimensions, thermal
conditions, as well as materials). The comparison between figure 6a and 6b
trend, clearly shows that the experimentalRe-Gr relation also depends on the
applied sets of boundary conditions. To be specific, the experimental points
collapsed into figure 6a show a Re ∼ Gr3/4 scaling (continuous curve) distinct
from the Re ∼ Gr3/5 of figure 6b as well as from [4] correlation’s Re ∼ Gr1/2.
Thermal conditions, i.e boundary-conditions dependant behaviour of natural
convective loops is an issue previously disregarded. Furthermore, it is worth
observing that the data collapse obtained in figure 6 is not perfect, as also
found in previous scaling analysis of the Reynolds-Grashof relation in natural
convective loops [4, 23]. However, here, the data collapse has been improved
from considering the all sets of parameters and dimensionless number given
in (36), among whose prefactor E0(κ) improved it significantly. This suggest
that some other distinct features of specific experimental loops could be re-
sponsible for this imperfect data collapse, as for exemple, another additional
solid (with a different conductivity) used in the adiabatic regions.

5. Conclusion

Natural convective loops are practical, sparce, pump-free boyency driven
heat exchangers, heated from below and cooled from above. Above a criti-
cal Grashof number, and within a wide range of Gr, they display a stable,
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self-sustained rotating flow. This work has investigated the origin of experi-
mentally reported scaling-laws for the Reynolds-Grashof relation within these
loops. Numerical simulations have permitted to analyze the 3D complex flow
field resulting from both complex geometry and inertia. Albeit the flow-field
significantly differs from a laminar unidirectional buyency driven Poiseuille
flow, deviations from it are found poorly relevant to heat transfer, being dom-
inated by entrance exchanges within boundary layers. This has motivated
forthcoming efforts to analyse heat transfer in these loops within unidirec-
tional flow approximation. Using a semi-analytical approach, the complete
advection-diffusion-conduction transport problem (both in fluid and solid)
has been solved using generalyzed Graetz-mode solutions. Studying the loop
thermal efficiency, distinct and well-defined power-law scalings are found for
the efficiency versus Graetz number relation in the large Gra limit. These
semi-analytical results have been complemented with an asymptotic analy-
sis of heat transfer within boundary layers providing consistent scaling for
the thermal efficiency. Using this efficiency scaling within a one-dimensional
pressure balance within the loop leads to new scaling relationship for the
Reynolds-Grashof relation dependant on the chosen set of applied thermal
boundary conditions. These predictions have been convinsingly compared
with experimental obervation collapsed into proper combination of dimen-
sionless parameters. This analysis could help designing convective loop ex-
change’s capabilities.
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Appendix A. Dirichlet-Neumann linear problem

Let us first define matrix P±±DD, from its elements [P±±DD]ijfor (i, j) ∈ N∗,

[P±±DD]ij =

∫ 1

0

(
1 + λD±iλ

D
±j
)

ΘD
±iΘ

D
±jrdr. (A.1)

Similarly P±±DN defined by

[P±±DN ]ij =

∫ 1

0

(
1 + λD±iλ

N
±j
)

ΘD
±iΘ

N
±jrdr, (A.2)
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Furthermore, for (i, j) ∈ N∗, let us define diagonal matrices D±D(s) parametrized
by s as

[D+
D]ij = δij expλ

D
+js , [D−D]ij = δij expλ

D
−j(s−L) (A.3)

and D±N(s) as

[D+
N ]ij = δij expλ

N
+js & [D−N ]ij = δij expλ

N
−j(s+2s0) (A.4)

with 2s0 = L + 2H. Now defining symmetric matrix M1 (associated with
the top part of functionnal (22)) as

M1 =


P++
DD P+−

DDD−D(0) P++
DND+

N(0) P+−
DN

. . . D−N(0)P−−DDD−N(0) D−D(0)P−+
DND+

N(0) D−D(0)P−−DN
. . . . . . D−N(0)P++

NND+
N(0) D+

N(0)P+−
NN

. . . . . . . . . P−−NN


(A.5)

and symmetric matrix M2 (associated with the bottom part of functionnal
(22)) as

M2 =


D+
D(L)P++

DDD+
D(L) D+

D(L)P+−
DD D+

D(L)P++
DN D+

D(L)P+−
DND−N(−2s0)

. . . P−−DD P−+
DN P−−DND−N(−2s0)

. . . . . . P++
NN P+−

NND−N(−2s0)
. . . . . . . . . D−N(−2s0)P−−NND−N(−2s0)

 ,

(A.6)
with, again, −2s0 = −L − 2H. Unknown vector X is build from unknown
amplitudes vectors xD± —resp -xN±–whose components are xD±n —resp -xN±n–
from X = (xD+ ,x

D
− ,x

N
+ ,x

N
− )T . Vectors SN± (s) are define from their compo-

nents
SN±n(s) = αN±nc±n(s) (A.7)

with c±n(s) given in (16) and αNn in (11). Defining RD
± vectors RN

± with their
components

RD
±n =

∫ 1

0

ΘD
±nrdr & RN

±n =

∫ 1

0

ΘN
±nrdr, (A.8)

with generalyzed Graetz modes Θn defined in (10). Vectors B1 is then defined
as

B1 =
2R0L

Pe


D+
D(0)RD

+

D−D(0)RD
−

D+
N(0)RN

+

D−N(0)RN
−

+


D+
D(0)P++

DNSN+ (0) + D+
D(0)P+−

DNSN− (0)
D−D(0)P−+

DNSN+ (0) + D−D(0)P−−DNSN− (0)
D+
N(0)P++

NNSN+ (0) + D+
N(0)P+−

NNSN− (0)
D−N(0)P−+

NNSN+ (0) + D−N(0)P−−NNSN− (0)

 ,

(A.9)
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and

B2 =


D+
D(L)P++

DNSN+ (−2s0) + D+
D(L)P+−

DNSN− (−2s0)
D−D(L)P+−

DNSN+ (−2s0) + D−D(L)P−−DNSN− (−2s0)
D+
N(−2s0)P++

NNSN+ (−2s0) + D+
N(−2s0)P+−

NNSN− (−2s0)
D−N(−2s0)P+−

NNSN+ (−2s0) + D−N(−2s0)P−−NNSN− (−2s0)

 , (A.10)

Assembling
M = M1 + M2 & B = B1 + B2 (A.11)

The linear system to be solved is finally :

M X = B (A.12)

Appendix B. Dirichlet-Neumann boundary layer analysis

Appendix B.1. Inner analysis

It is first interesting to provide the expansion of the radial Laplacian of
the r.h.s of (5) in ther inner variable y

1

(1− δy)

∂

∂y

(
(1− δy)

∂

∂y

)
=

∂2

∂y2
− δ ∂

∂y
− δ2y

∂

∂y
+O(δ3) (B.1)

In the inner region, the temperature field is expended as

Tin = T 0
in + δT 1

in + δ2T 2
in +O(δ3) (B.2)

At O(1), (5) leads to

2y
∂T 0

in

∂s
− ∂2T 0

in

∂2y
= 0, (B.3)

with boundary condition ∂yT
0
in(0) = 0. The leading order solution then reads

T 0 = a0
0 + a0

1(
y3

3
+ s) (B.4)

At O(δ), (5) with wf (r)/2 = δy(2− δy) provides

2y
∂T 1

in

∂s
− ∂2T 1

in

∂y2
= y2∂T

0
in

∂s
− ∂T 0

in

∂y
, (B.5)

associated with boundary condition ∂yT
1
in(0) = 1. The first order solution is

decomposed into a particular solution dealing with the non-zero boundary
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condition and the r.h.s. of (B.5) and a general solution which is a copy of the
leading order (B.4). Since the contribution associated with r.h.s. of (B.5)
evaluated with (B.4) cancels out, one finds

T 1
in = y + a1

0 + a1
1(
y3

3
+ s) (B.6)

At O(δ2), using (B.1)

2y
∂T 2

in

∂s
− ∂2T 2

in

∂y2
= y2∂T

1
in

∂s
− ∂T 1

in

∂y
− y ∂

∂y
T 0
in, (B.7)

with boundary condition ∂yT
2
in(0) = 0. Again, the solution is decomposed

into the general and particular ones, so that

T 2
in = −1

2
y2 + a0

1y
3 + a2

0 + a2
1(
y3

3
+ s) (B.8)

Appendix B.2. Outer analysis

The outer region temperature field is expended as

Tout = T 0
out(0) +O(δ3) (B.9)

because up to O(δ3) corrections, (5) with wf (r) = 2Y (2− Y ) provides

1

2
wf (Y )

∂T 0
out

∂s
= 0. (B.10)

Hence, the leading order outer temperature is independant of the axial co-
ordinate s, so that T 0(Y ) which is both determined by the inlet profile and
the matching. Since the inlet profile is O(1), there is no O(δ) and O(δ2)
corrections to the outer solution.

Appendix B.3. Matching

Using the intermediate variable η = yδ1−γ = Y δ−γ with 0 < γ < 1, and
expanding Tout in η leads to

Tout = T 0
out(0) + ηδγ

∂T 0
out

∂Y
(0) +

1

2
η2δ2γ ∂

2T 0
out

∂Y 2
(0) + ... (B.11)
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Expanding the inner solution leads to

Tin =
a0

1

3
η2δ3(γ−3) +

a1
1

3
η2δ3(γ−2) + (

a2
1

3
+ a0

1)η3δ(3γ−1)

+a0
0 + a0

1s+ δ(a1
0 + a1

1s) + ηδγ − 1

2
η2δ2γδ2(a2

0 + a1
2s) + ...

Matching at O(δ3(γ−3)), O(δ3(γ−2)), O(δ3(γ−1)) gives a0
1 = a1

1 = a2
1 = 0.

Matching O(1) and O(δγ) gives

a0
0 = T 0

out(0), & 1 =
∂T 0

out

∂Y
(0), (B.12)

whilst matching O(δ) and O(δ2) gives a1
0 = a2

0 = 0. This finally leads to

T 0
in = T 0

out(0) + δy +O(δ3) (B.13)
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