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Multi-time-step explicit–implicit method for
non-linear structural dynamics
Anthony Gravouil†;‡ and Alain Combescure§,¶

Laboratoire de Mécanique et Technologie; ENS de Cachan; 61 Avenue du President Wilson;
94235 Cachan Cedex; France

We present a method with domain decomposition to solve time-dependent non-linear 
problems. This method enables arbitrary numeric schemes of the Newmark family to be 
coupled with different time steps in each subdomain: this coupling is achieved by 
prescribing continuity of velocities at the interface. We are more specifically interested in 
the coupling of implicit=explicit numeric schemes taking into account material and 
geometric non-linearities. The interfaces are modelled using a dual Schur formulation where 
the Lagrange multipliers represent the interfacial forces. Unlike the continuous formulation, 
the discretized formulation of the dynamic problem is unable to verify simultaneously the 
continuity of displacements, velocities and accelerations at the interfaces. We show that, 
within the framework of the Newmark family of numeric schemes, continuity of velocities 
at the interfaces enables the definition of an algorithm which is stable for all cases 
envisaged. To prove this stability, we use an energy method, i.e. a global method over the 
whole time interval, in order to verify the algorithms properties. Then, we propose to extend 
this to non-linear situations in the following cases: implicit linear=explicit non-linear, 
explicit non-linear=explicit non-linear and implicit non-linear=explicit non-linear. Finally, 
we present some examples showing the feasibility of the method. 

KEY WORDS: non-linear structural dynamics; multi-time-step method; mixed method; 
subcycling; dual Schur domain decomposition method

1. INTRODUCTION

Explicit time integration for transient problems discretized in space using �nite elements is
very widespread, particularly for contact or impact problems, or when wave propagation e�ects
are important [1; 2]. Explicit methods allow the implementation of complex models with a
limited calculation cost, and the conditional stability of these algorithms is not a problem
if the time step necessary for the required precision is in the order of the critical time step
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[3; 4]. However, if the meshes have widely di�erent element sizes (or material properties), the
smallest element in the structure sets the time step for the whole structure. This situation arises,
for example, in coupled uid=structure problems or in h-type adaptive meshing techniques.
In 1977, Belytschko and Mullen [5] proposed a multi-time-step (or subcycling) integration
method involving di�erent time steps in di�erent zones of the model. This approach di�ers
from the mixed methods in time [6–8] which consist of de�ning zones where di�erent time
integration techniques apply, but with a single time step de�ned for the whole structure. One
can also attempt to couple two approaches, ‘mixed method’ and ‘subcycling’ [9].
Mixed method in time: Three types of methods are generally found—‘explicit=explicit’,

‘explicit=implicit’ and ‘implicit=implicit’ algorithms [10; 11]. In all three cases, one distin-
guishes element-partitioning methods from node-partitioning methods. Thus, for example, one
may consider two subdomains laid out according to the nodes or according to the elements.
This distinction is important for the interface because each of the methods is speci�c in the
way the interface is treated. Besides, in the three cases E=E, E=I and I=I, the numeric scheme
in time is constructed as follows: we assume a Newmark numeric scheme with two charac-
teristic parameters �,  identical for all subdomains. The distinction between ‘explicit’ and
‘implicit’ thus refers to regions where we have considered, respectively, a diagonal (explicit)
or a consistent (implicit) mass matrix [9]. ‘Explicit=implicit’ methods with the same time step
are used primarily for hyperbolic problems. One of the �rst algorithms with nodal partitioning
was proposed in [12] and its stability with a non-symmetric ampli�cation matrix was studied
in [6]. A �rst method with element partitioning was proposed in [7], and the study of its sta-
bility with a symmetric ampli�cation matrix using an energy method was done in Reference
[8]. Non-linear applications can be found especially in References [13; 14]. There is also an
extension to the HHT method in Reference [15] along with a proof of stability by Fourier’s
method with a displacement, velocity and acceleration state vector. Furthermore, a variation
on these methods was proposed in Reference [16] whereby, the inside of the subdomains is
implicit and the boundary explicit.
Multi-time-step methods in time (subcycling): Again, two main classes of algorithms apply

to these methods: element partitioning and nodal partitioning. If we disregard mixed meth-
ods in time with subcycling at this stage, these methods have been used mainly for implicit
cases. But, this time, the numeric scheme considered for the whole structure is ‘explicit’ in
the sense that �=0 in the Newmark numeric scheme (with a diagonal mass matrix). The
�rst method with multi-time-step was proposed in Reference [17], with nodal partitioning for
second-order explicit=implicit systems and linearly interpolated displacements at the interface,
but with no general stability proof. A �rst proof of stability for �rst-order systems using
the energy method can be found in Reference [18], but with highly restrictive assumptions
which limit applications. Subsequently, stability conditions were proposed [19] for explicit
�rst-order systems with element partitioning. A generalization of the previous study to the
implicit case was developed in Reference [20] for �rst-order systems. Then, one can �nd
for the �rst time in Reference [21] a rigorous and general stability analysis of subcycling
with nodal partitioning for parabolic systems. One can also �nd an explicit multi-time-step
integration algorithm for the element-free Galerkin method for di�usion problems in [22].
The stability analysis of multi-time-step integration schemes for second-order systems creates
much greater di�culties because the ampli�cation matrix in the case of nodal partitioning
is not symmetric. A proof of the stability of such schemes in the explicit case was pro-
posed in [23] with nodal partitioning and a modi�ed explicit scheme [24]. This proof uses
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Figure 1. Coupling of arbitrary numeric schemes of the Newmark family with di�erent time steps.

both spectral approach and energy approach. One can �nd in Reference [25] a variation on
these methods for the explicit case, where the adjustment from the coarse time scale to the
�ne time scale is no longer performed at constant velocity, but at constant acceleration,
which seems to help improve the convergence of the algorithm. So far, for second-order
systems other than explicit=explicit, there has been no proof of stability of the subcycling
techniques [25].
Mixed- and multi-time-step methods [20]: Under this de�nition, we consider ‘explicit=implicit’

methods in the sense of mixed methods in time, i.e. with a single pair of parameters �,  for
the whole structure and a diagonal mass matrix for the explicit part. These algorithms are used
for �rst-order systems in [19] and for second-order systems in References [17; 19]. In the �rst
case, a stability study of the algorithm with subcycling is proposed for the explicit=explicit
case, but no extension to the explicit=implicit case with element partitioning is proposed. For
second-order systems, as indicated in References [9; 25], there is, at this point, no general
stability analysis in the explicit=implicit case with subcycling.
In this presentation, another direction has been considered to couple arbitrary numeric

schemes of the Newmark family in each subdomain with di�erent time steps [26; 27] (Figure 1).
To achieve this objective, a dual Schur domain decomposition method was chosen [28–38].

In Section 2, we describe the algorithm in the linear case; then, we perform a numerical
stability study using an energy method [8]. In Section 3, we propose an extension of the
method to the non-linear case; then, we validate the algorithm through di�erent examples,
both linear and non-linear, with large time-step ratios.

2. STUDY OF SUBCYCLING IN HYBRID FORMULATION=LINEAR CASE

2.1. Case of the Newmark family of numeric schemes

The objective of this article is to present a method which, in the context of a dual Schur
domain decomposition approach for a dynamic problem, allows one to take into account the
speci�c properties of the di�erent parts of the structure in the time domain. The subdomains
considered can have non-linear constitutive relations and large displacements. Thus, generally
speaking, the subdomains can be chosen according to the physical phenomena occurring in
di�erent parts of the structure. First, we consider a continuous domain 
 with prescribed
displacements on @1
 and prescribed loads on @2
. We assume small perturbations. The
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�nite element discretization of the continuous problem leads to the following equations:

∀t ∈ [0; T ]; M �U+ Fint=Fext (1)

where M represents the symmetric, positive-de�nite mass matrix, �U the discretized accelera-
tion �eld, Fint the discretized internal forces and Fext the applied external forces. The following
initial conditions and constraints complete the above di�erential system:

U|t=0=U0
and U|@1
=Ud

U̇|t=0=V0
(2)

This type of problem, in general, involves banded sparse matrices because of the �nite element
discretization. Thus, the bandwidth represents the coupling between the degrees of freedom of
the di�erential system: in this sense, the equilibrium equation is global in space. In order to
take advantage of the properties of the explicit and implicit schemes [39], we perform a time
discretization using the Newmark family of numeric time schemes [3; 40–44], which allow
us to chose either one of the methods depending on two parameters � and ,

Un+1=
p
Un + ��t

2 �Un+1

U̇n+1=
p
U̇n + �t �Un+1

(3)

with

p
Un=Un +�tU̇n +�t

2
(

1
2
−

)

�Un

p
U̇n= U̇n +�t(1− ) �Un

(4)

where the time interval [0; T ] is discretized as follows: t0¡t1¡ · · ·¡tr with r ∈N∗,
n∈{1; : : : ; r}, t0=0, tr =T , r being the number of time intervals �t assumed constant. Un+1,
U̇n+1 and �Un+1 represent the unknown displacements, velocities and accelerations at time tn+1,
pUn and

pU̇n represent the predictors of the numeric scheme, i.e. the known quantities from
the previous time step. We perform the decomposition of the structure into s subdomains fol-
lowing a dual Schur formulation. Thus, the equilibrium of the interface forces is automatically
veri�ed through the Lagrange multipliers. Regarding the kinematic quantities, three cases can
be envisaged [45]: we can prescribe continuity of displacements, or continuity of velocities,
or continuity of accelerations at the interface. Indeed, from a discretized point of view, we
cannot enforce the continuity of all kinematic quantities at the interface. Later on, we will
show that continuity of the velocities at the interface enables us to address the coupling of
arbitrary numeric schemes of the Newmark family with di�erent time steps for each subdo-
main. The decomposition into subdomains of the di�erential system (1) can be written as
follows:

M
k �Uk + Fkint = F

k
ext + F

k
link ; ∀k ∈{1; : : : ; s}

p
∑

k=1

C
k
U̇
k =0

∀t ∈ [0; T ] (5)

with the connecting forces at the interface between subdomains

F
k
link=C

kT
� (6)
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Figure 2. Di�erent time scales for each subdomain A and B.

where U̇k represents the discretized velocity �eld, C k the Boolean connectivity matrices for
perfect connection between compatible meshes and � the vector of Lagrange multipliers. In
this �rst study, we consider a structure made of a linear elastic, homogeneous and isotropic
material. Thus,

F
k
int=K

k
U
k ∀k ∈{1; : : : ; s} (7)

To simplify the problem, let us �rst consider two subdomains A and B. For example, we can
consider an implicit scheme on subdomain A and an explicit scheme on subdomain B. Let us
assume that subdomain A is associated with a coarse time scale (time step �T ) and subdomain
B with a �ne time scale (time step �t). We will assume that �T =m�t (Figure 2).
Then, Equations (3)–(6) enable us to write the system of discretized equations in space

and in time for our problem on a time step �T of the coarse time scale:

M̃
A �UAm =F

A
extm

−KA
(

p
U
A
0

)

+CA
T

�m (8)

M̃
B �UBj =F

B
extj

−KB
(

p
U
B
j−1

)

+CB
T

�j (9)

with

C
A
U̇
A
j +C

B
U̇
B
j =0 (10)

M̃
A=MA + �A�T

2
K
A and M̃

B=MB + �B�t
2
K
B (11)

We can immediately note that the continuity of velocities (10) on the �ne time scale requires
that the velocity at the edge of subdomain A be evaluated at time tj. Similarly, Equations (8)
and (9) are coupled through the Lagrange multipliers and require that the dual quantities of
the edge velocities, i.e. the Lagrange multipliers on the �ne time scale, be evaluated. For this
purpose, we propose the following transition operators from the �ne time scale to the coarse
time scale (along the edges of the subdomains):

C
A
U̇
A
j =

(

1−
j

m

)

C
A
U̇
A
0 +

j

m
C
A
U̇
A
m (12)

�j =

(

1−
j

m

)

�0 +
j

m
�m (13)

An interesting way to present the system of Equations (8)–(10) is to divide all unknowns
of the problem into an ‘constrained’ group and a ‘constrained’ group. The �rst category
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corresponds to the solution of the equilibrium subdomain by subdomain without taking into
account the interface forces. The second category corresponds to correcting terms for the
interface forces between subdomains. Thus, the Newmark scheme (3) becomes

Un+1free =
p
Un + �t2 �Un+1free Un+1link = ��t

2 �Un+1link

U̇n+1free =
p
U̇n + �t �Un+1free U̇n+1link = �t

�Un+1link

(14)

Therefore, we can write for each subdomain an ‘unconstrained’ problem and a ‘constrained’
problem:

M̃
A �UAmfree = F

A
extm

−KApUA0 (15)

(

�AM̃A −�ACA
T

−�ACA 0

)(

�UAmlink
�m

)

=

(

0

C
A
U̇
A
mfree

+CBU̇Bmfree +C
B
U̇
B
mlink

)

(16)

M̃
B �UBjfree = F

B
extj

−KBpUBj−1 (17)

(

�BM̃B −�BCB
T

−�BCB 0

)(

�UBjlink
�j

)

=

(

0

C
A
U̇
A
jfree
+CAU̇Ajlink +C

B
U̇
B
jfree

)

(18)

with

�A= A�T and �B= B�t (19)

The last step consists of expressing the problem condensed on the interface on the �ne time
scale. This also requires that we decouple the scale change operator (12). Thus, we obtain

C
A
U̇
A
jfree
=

(

1−
j

m

)

C
A
U̇
A
0free
+
j

m
C
A
U̇
A
mfree

C
A
U̇
A
jlink
=

(

1−
j

m

)

C
A
U̇
A
0link
+
j

m
C
A
U̇
A
mlink

(20)

From (20b) and (16), we get

C
A
U̇
A
jlink
=

(

1−
j

m

)

�ACAM̃A−1
C
AT
�0 +

j

m
�ACAM̃A−1

C
AT
�m (21)

Finally, Equation (13) leads to

C
A
U̇
A
jlink
= �ACAM̃A−1

C
AT
�j (22)

This enables us to reformulate the matrix system (18) expressed on the �ne scale:
(

�BM̃B −�BCB
T

−�BCB −�ACAM̃A−1
C
AT

) (

�UBjlink
�j

)

=

(

0

C
A
U̇
A
jfree
+CBU̇Bjfree

)

(23)

This leads to the problem condensed at the interfaces on the �ne time scale

H�j= −
(

C
A
U̇
A
jfree
+CBU̇Bjfree

)

(24)
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Figure 3. Flow-chart of the new mixed- and multi-time-step method.

Figure 4. Flow-chart of the new mixed- and multi-time-step method with s subdomains.

with

H=
(

�ACAM̃A−1
C
AT + �BCBM̃B−1

C
BT
)

(25)

Finally, we can present the method for a time step �T in the form of the following algorithm
(Figure 3):
The method can be generalized to s subdomains with the assumption

�t1=�t

�t2=m2�t

: : :
�ts=ms�t

with {m2; : : : ; ms} ∈ N∗s−1 (26)

The generalized algorithm takes the following form (Figure 4):

Conclusions: The condensation operator on the interfaces depends on the di�erent time
steps associated with each subdomain. However, if these are constant (which is generally the
case in linear analysis), the condensation operator (25) remains constant during the analysis
throughout the time interval [0; T ]. Therefore, it can be factorized only once at the onset of
the dynamic calculation.
This algorithm enables the coupling of any Newmark numeric scheme with a di�erent time

step in each subdomain. The continuity of velocities plays a fundamental role in this approach,
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and the linear interpolation of velocities (12) allows us to preserve the global stability of the
algorithm. The proof is done in the next section.

2.2. Stability and convergence study

The purpose of this study is to show that continuity of the velocities at the interface results
in a stable algorithm which makes possible the coupling of numeric schemes of the Newmark
family with di�erent time steps. The stability study is performed using an energy method [8].
Thereafter, we will use the following notations:

〈Xj〉 = (Xj +Xj+1)=2 and ⌊Xj⌋ = (Xj+1 −Xj) (27)

〈〈X0〉〉 = (X0 +Xm)=2 and <X0==(Xm −X0) (28)

The energy expression associated with subdomain A is de�ned by

<TA( �UA0 )=+ <V
A(U̇A0 )==−DA

(

< �UA=
)

+ EAinterface
(

<U̇A0 =; <�0=
)

(29)

with

• T ( �U)= 1
2
�UTA �U; term associated with the kinetic energy

• V (U̇)= 1
2
U̇TKU̇; term associated with the internal energy

• D( �U)=
(

− 1
2

)

�UTA �U; term associated with the numerical damping

• EAinterface(U̇;�)=
1
�t
U̇TCT�; term associated with the work of connecting forces

where matrix A is de�ned by

A=M+
�t2

2
(2� − )K (30)

Remark. We do not take the term associated with the work of external forces into account,
since this term does not a�ect the stability of the numeric scheme [9].
Similarly, let us recall expression (29) applied to subdomain B on the time interval [t0; tm]

<TB( �UB0 )=+ <V
B
(

U̇
B
0

)

==−
m
∑

j=1

DB
([

�UBj−1
])

+
m
∑

j=1

1

�t

[

U̇
B
j−1

]T
C
BT[�j−1] (31)

with the notation

m
∑

j=1

[Aj−1]= <A0= (32)

Finally, in order to study the stability of the algorithm, we can apply the energy method to
the complete structure, i.e. to both subdomains A and B and to their interface:

(

<TA=+ <TB=
)

+
(

<VA=+ <V B=
)

= −DA−
m
∑

j=1

DB
([

�UBj−1
])

+ Elink (33)

with the interface term

Einterface=E
A
interface + E

B
interface=

1

m�t
<U̇A0 =

T
C
AT <�0=+

m
∑

j=1

1

�t
[U̇Bj−1]

T
C
BT
[

�j−1

]

(34)
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Then, we try to achieve the condition

Einterface60 (35)

which expresses the fact that the stability of the di�erent schemes is not a�ected by the
interface. We also need an adapted form of the linear interpolation of the velocities without
constraints obtained from expression (20a)

[

U̇
A
j−1sl

]

=
1

m
<U̇A0sl = (36)

We �rst separate the velocities without constraints from the velocities with constraints:

Einterface =
1

m�t
<U̇A0al =

T
C
AT <�0=+

m
∑

j=1

1

�t

[

U̇
B
j−1al

]T
C
BT
[

�j−1

]

+
1

m�t
<U̇A0sl =

T
C
AT <�0=+

m
∑

j=1

1

�t

[

U̇
B
j−1sl

]T
C
BT
[

�j−1

]

(37)

Then, we can modify the terms without constraints using expression (32) applied to the
Lagrange multipliers together with expression (36)

Einterface =
1

m�t
<U̇A0al =

T
C
AT <�0=+

m
∑

j=1

1

�t

[

U̇
B
j−1al

]T
C
BT
[

�j−1

]

+
m
∑

j=1

1

�t

(

C
A[U̇Aj−1sl] +C

B
[

U̇
B
j−1sl

])T
[�j−1] (38)

The continuity of velocities (10) allows us to express the unconstrained terms as functions of
the constrained terms

Einterface =
1

m�t
<U̇A0al =

T
C
AT <�0=+

m
∑

j=1

1

�t

[

U̇
B
j−1al

]T
C
BT
[

�j−1

]

−
m
∑

j=1

1

�t

(

C
A
[

U̇
A
j−1al

]

+CB
[

U̇
B
j−1al

])T[
�j−1

]

(39)

Thus, we obtain

Einterface=
1

m�t
<U̇A0al =

T
C
AT <�0=−

m
∑

j=1

1

�t

[

U̇
A
j−1al

]T
C
AT
[

�j−1

]

(40)

Furthermore, expression (22) yields

C
AT
�j=

1

�A
M̃

A
U̇
A
jal

(41)

i.e.

Einterface=
1

A

(

<U̇A0al =
T

m�t
M̃

A
<U̇A0al =

m�t
−
1

m

m
∑

j=1

[

U̇Aj−1al

]T

�t
M̃

A

[

U̇Aj−1al

]

�t

)

(42)

9



In order to conclude, concerning the stability of this algorithm, we study the sign of expression
(42). For this purpose, we will study a scalar expression equivalent to matrix expression (42)

Ẽminterface=(�n+m − �n)
2 −m

m
∑

j=1

(�n+j − �n+j−1)
2 (43)

When m=2:

Ẽ2interface=(�n+2 − �n)
2 − 2

2
∑

j=1

(�n+j − �n+j−1)
2 (44)

we obtain

Ẽ2interface= − ((�n+2 − �n+1)− (�n+1 − �n))
2 (45)

When m=3:

Ẽ3interface=(�n+3 − �n)
2 − 3

3
∑

j=1

(�n+j − �n+j−1)
2 (46)

we obtain

Ẽ3interface =−((�n+3 − �n+2)− (�n+2 − �n+1))
2 − ((�n+3 − �n+2)− (�n+1 − �n))

2

− ((�n+2 − �n+1)− (�n+1 − �n))
2 (47)

Finally, one can show that for any non-zero integer m we have

Ẽminterface =−((�n+m−�n+m−1)− (�n+m−1 − �n+m−2))
2 − ((�n+m−�n+m−1)− (�n+m−2−�n+m−3))

2

− · · · − ((�n+m−�n+m−1)− (�n+1−�n))
2 − ((�n+m−1−�n+m−2)− (�n+m−2−�n+m−3))

2

− · · · − ((�n+m−1 − �n+m−2)− (�n+1 − �n))
2

...
...

− ((�n+2 − �n+1)− (�n+1 − �n))
2 (48)

where expression (48) has m(m− 1)=2 terms.
Therefore, we conclude that expression (42) is a sum of negative squares de�ned by

Einterface =−
1

A

m−1
∑

i=1

m−1
∑

j=i

(
((

U̇Am−i+1al
− U̇Am−ial

)

−
(

U̇Am−jal − U̇
A
m−j−1al

))T

2�t
M̃

A

×

((

U̇Am−i+1al
− U̇Am−ial

)

−
(

U̇Am−jal − U̇
A
m−j−1al

))

2�t

)

60 (49)

Theorem 1. If, for each subdomain, k¿
1
2
, then matrix A is positive de�nite, and if M̃ is

positive de�nite, then �U and U̇ are bounded (proof identical to that proposed in Reference [8]).

(50)
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The advantage of this formulation and this theorem is that one can study the stability of the
Newmark numeric scheme directly from A because, on the one hand, M̃ is positive de�nite
by de�nition and, on the other hand, if we use the eigenmodes to diagonalize matrix A, we
get a second-degree inequality in �t expressing that the latter is positive de�nite

1 +
(

−
2

)

(!�t)2¿0 (51)

where ! are the eigenvalues of matrix A. Thus, we end up with the classical stability
conditions of Newmark’s numeric scheme [46]:

1
2
662�; unconditionally stable method (52)

1
2
6 and 2�6; conditionally stable method; �t6

1

!max
√

=2−
(53)

with the de�nition !max= sup{!}.
According to Equation (24), if theorem 1 is veri�ed and if H is invertible, then the Lagrange

multipliers are bounded. Furthermore, if K−1 exists, then from (8) Un+1 is bounded in each
subdomain. The numerical damping term (see (29)) also allows us to conclude that, if = 1

2
in

a subdomain, the associated numeric scheme does not dissipate energy (second-order scheme);
conversely, if ¿ 1

2
, the scheme dissipates energy (�rst-order scheme). This is in complete

agreement with the de�nition of the algorithmic damping rate of the Newmark family of
numeric schemes [47]:

�num=�

(

−
1

2

)

�t

T
+O

(

(

�t

T

)2
)

(54)

Remarks. It is possible to take the mechanical damping into account. In such a case,
Equation (29) contains an additional term related to the mechanical damping and di�erent
from the numerical damping term. In this case, the same method leads to the stability equations
for Newmark schemes with mechanical damping [46].
The stability of the global problem depends on the stability conditions of the Newmark

numeric schemes considered in each subdomain. Thus, the convergence rate of the Newmark
numeric schemes is de�ned by expression (54). Consequently, the global convergence rate is
de�ned as the minimum of the convergence rates for each subdomain. Thus, if, for example,
we use parameters B=

1
2
; �B=0; A=

1
2
; �A=

1
4
to couple explicit and implicit numeric

schemes each with a second-order convergence rate, and if the term associated with the
interfacial energy is zero, then the scheme is globally of the second order.
The algorithm studied is stable, but can present numerical dissipation at the interface (see

(49)). Expression (49) shows that if the velocity of subdomain A is constant on the coarse
time scale, then the numerical dissipation equals zero; otherwise, energy dissipates at the
interface. In other terms, when the displacement of subdomain A is not linear with time, the
smaller the local radius of curvature, the higher the numerical dissipation.

Finally, with this approach, the coupling of di�erent numeric schemes of the Newmark
family has no inuence on the stability of these schemes. Thus, implicit subdomains remain
unconditionally stable and explicit subdomains remain conditionally stable with the same
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stability limits. One can conclude from this result that the ratio of the time step in subdomain
A to the time step in subdomain B has no direct e�ect on the stability of the algorithm;
however, this parameter conditions, the quality of the interpolation of the kinematic quantities
of subdomain A, which the method’s numerical damping depends on directly.

3. STUDY OF THE NON-LINEAR CASE

3.1. Treatment of non-linearities

3.1.1. Material non-linearities. Let us assume that the constitutive law associated with some
subdomains is non-linear, for example elastic–plastic with kinematic hardening. For certain
problems where the non-linearities are localized within a structure, they can be associated
with an explicit subdomain with a non-linear constitutive law and a �ne time scale de�ned
by the critical time step, whereas implicit subdomains with a linear constitutive law and a
coarse time scale are used in the rest of the structure. In this case, the algorithm in Section 2
remains the same, but the unconstrained problem of the explicit subdomain becomes

M
B �UBjfree =F

B
extj

− FBintj
(

p
U
B
j−1

)

(55)

with

M
B: diagonal mass matrix (56)

Similarly, the algorithm can be immediately generalized to the explicit non-linear=explicit non-
linear case with di�erent time steps in the two subdomains. In this case, the unconstrained
equations associated with each subdomain are of form (55). One can also note that if the two
subdomains are explicit, whether linear or non-linear, the interface operator (25) is diagonal.
We are now concerned with the implicit non-linear=explicit non-linear case where the �ne time
scale is associated with the explicit domain (designated by E), and the coarse time scale with
the implicit subdomain (designated by I). In the following, we keep the general formalism of
the Newmark schemes, yet with the condition

�E=0 (57)

In this case, equilibrium Equations (8) and (9) become

M
I �UIm + F

I
int

(

U
I
m

)

= FIextm +C
IT
�m (58)

M
E �UEj + F

E
intj

(

p
U
E
j−1

)

= FEextj +C
ET
�j (59)

Concerning the calculation of the internal forces of the explicit subdomain, they can simply
be calculated using the plastically admissible stresses. To calculate the internal forces of the
implicit subdomain, we perform, on the one hand, a plastic projection of the stresses and,
on the other hand, iterations on the equilibrium (58) which we call ‘external iterations’.
The plastic projection uses a radial return method on the threshold [48]. The implementation
of external iterations starting from the Newton method requires more care because of the

Lagrange multipliers and the two time discretizations [49]. First, the residuals R
(i−1)
m at the
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equilibrium for iteration (i− 1) and the linearized expression R∗(i)m at iteration (i) are de�ned

R
(i−1)
m = FIextm +C

IT
�
(i−1)
m −MI

(

UI
(i−1)

m − pUIn

�I(m�t)2

)

− FI
(i−1)

intm
(60)

R
∗(i)
m =R(i−1)m +A1��U

I(i)

m +A2���
I(i)

m (61)

with

A1≡

[

@R

@U

]

UI
(i−1)
m

=−

(

K
I
t +

1

�I(m�t)2
M

I

)

and A2≡

[

@R

@�

]

�I
(i−1)

m

=CI
T

(62)

In the �rst stage, we assume that matrix KIt remains constant during the equilibrium iterations.
Then, we apply the Newton–Raphson method with the assumption that the linearized equation
(61) is veri�ed, i.e. the linearized residual (61) equals zero. This leads to the equilibrium
equation on the coarse time scale

K̃
I
t��U

I(i)

m =R
(i−1)
m +CI

T

���
(i)
m (63)

with

K̃
I
t =K

I
t +

1

�I(m�t)2
M

I (64)

�UIm =
r
∑

i=1

��UI
(i)

m ; ��m=
r
∑

i=1

���
(i)
m (65)

U
I
m =U

I
0 +�U

I
m; �m=�0 +��m (66)

and r the index at the convergence. We will show that we can perform the external iterations
on the coarse time scale only. For this purpose, let us show that the increment in the Lagrange
multipliers can be calculated from the unconstrained problem in the coarse time scale. Let
us write the linearized equations for the continuity of velocities at the interface (10), the
transition operators from the coarse to the �ne time scale (12) (13) and the equilibrium
equation on the �ne time scale (59) which, added to Equation (63), determine the increment
in the multipliers

M
E�� �UE

(i)

j =CE
T

���
(i)
j (67)

C
I��U̇I

(i)

j +C
E��U̇E

(i)

j =0 (68)

C
I��U̇I

(i)

j =
j

m
C
I��U̇I

(i)

m (69)

���
(i)
j =

j

m
���

(i)
j (70)
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Moreover, we have the linearized Newmark equations

��U̇I
(i)

m = I(m�t)�� �U
I(i)

m (71)

��UI
(i)

m = �I(m�t)
2�� �UI

(i)

m (72)

��U̇E
(i)

j = E�t�� �U
E(i)

j (73)

Then, we can write the problem in matrix form












I(j�t)M̃
I
t 0 − I(m�t)C

IT

0 E�tM
E − E�tC

ET

− I(j�t)C
I −E�tC

E 0























�� �UI
(i)

m

�� �UE
(i)

j

���
(i)
j











=









I(j�t)R
(i−1)
m

0

0









(74)

As in the linear case, we can decompose the global problem into the �rst, unconstrained
problem and the second, constrained one. The unconstrained equilibrium is









M̃
I
t 0 0

0 M
E 0

0 0 0

















�� �UI
(i)

mfree

�� �UE
(i)

jfree

0









=









R
(i−1)
m

0

0









(75)

From the second line of Equation (75), we get

�� �UE
(i)

jfree
=0 (76)

The equations of the constrained problem are given by













I(j�t)M̃
I
t 0 − I(m�t)C

IT

0 E�tM
E − E�tC

ET

0 0 Ht























�� �UI
(i)

mlink

�� �UE
(i)

jlink

���
(i)
j











=









I(j�t)R
(i−1)
m

0

−(CI��U̇I
(i)

jfree
+CE��U̇E

(i)

jfree
)









(77)

where Ht is the condensation operator associated with the constant matrix K
I
t .

From Equations (73), (76) and (77), we see that the increment in Lagrange multipliers
depends only on the increment in implicit unconstrained velocity

Ht���
(i)
j =−CI��U̇I

(i)

jfree
(78)

This shows that the corrections applied at each iteration on the condensed problem at the

interfaces depend only on the coarse time scale, because the quantity ��U̇I
(i)

jfree
is interpolated

from the unconstrained velocities of the coarse time scale. Thus, the external iterations on the
equilibrium of implicit subdomain I can be performed directly on the coarse time scale as
opposed to the �ne time scale.
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Figure 5. Flow-chart of the new mixed- and multi-time step method in the non-linear case.

3.1.2. Geometric non-linearities The previous algorithm can also be generalized to the case
of large displacements. It su�ces to try to write the equilibrium of the Cauchy stresses
on the deformed geometry, and, therefore, reactualize the con�guration when calculating the
internal forces, both on the implicit and explicit subdomains. Thus, the calculation of the
internal forces proceeds as follows: �rst, the internal iterations yield a stress increment which
is used to calculate the associated Piola–Kircho� stresses. Finally, these are used to express
the internal forces and the corresponding residuals

F
I(i)

intm
=

∫


I
(i)
m

B
I(i)

T

m �I
(i)

m d
 (79)

R
I(i)

m =
1

�(m�t)2
M

I
(

U
I(i)

m − p
U
1
0

)

+ FI
(i)

intm
− FI

(i)

extm
(80)

F
E
intm
=

∫

E
m

B
ET

m �
E
m d
 (81)

where � and FI
(i)

extm
designate, respectively, the Cauchy stress and the external forces on the

deformed geometry. Once these calculations have been performed, one must go back to the
previous con�guration if external iterations on the implicit subdomain are needed.

3.2. Implementation—algorithm

This result can be expressed in the form of an algorithm (Figure 5):
This algorithm is presented in the case of two subdomains with two di�erent time scales.

One can generalize the method to the case of s subdomains with s di�erent time scales. One
uses a double termination criterion

‖RI
(i)

m ‖

‖FI
(i)

intm
‖
6�1 and ‖��UI

(i)

m ‖6�2 (82)
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This algorithm must also be adjusted, for example, depending on the type of �nite elements
considered: thus, in the case of structures modeled with shell elements, one must distinguish
between membrane forces and bending moments in the calculation of the residuals [50].

3.3. Stability

Concerning the stability and global convergence of the algorithm in the non-linear case, we
can make the following remarks: the concept of stability used in Section 2.2 de�nes only
necessary conditions for stability in the non-linear case [13]. (In the linear case, they are
necessary and su�cient.) However, we can make the following observations: the condition
on the explicit time step is su�cient; if the non-linear response is carefully discretized by
the chosen time step, the stability conditions are su�cient for the implicit subdomains; if the
non-linear response is not discretized with su�cient precision, cumulative roundo� errors may
dominate and degrade, or even amplify slightly, the numerical solution. In the geometric non-
linear case, the time step � t often varies because the size of the elements changes at each time
step. The same type of approach can be followed with a variable time step. The end result is
that the term associated with the energy dissipated at the interface is bounded by (see (49))

−
1

A� t
2
min

m−1
∑

i=1

m−1
∑

j=i

(((

U̇Am−i+1al
− U̇Am−ial

)

−
(

U̇Am−jal
− U̇Am−j−1al

))T

2
M̃

A

×

((

U̇Am−i+1al
− U̇Am−ial

)

−
(

U̇Am−jal
− U̇Am−j−1al

))

2

)

6Einterface (83)

Einterface6−
1

A� t2max

m−1
∑

i=1

m−1
∑

j=i

(((

U̇Am−i+1al
− U̇Am−ial

)

−
(

U̇Am−jal
− U̇Am−j−1al

))T

2
M̃

A

×

((

U̇Am−i+1al
− U̇Am−ial

)

−
(

U̇Am−jal
− U̇Am−j−1al

))

2

)

6 0

(84)

where � tmin and � tmax correspond, respectively, to the smallest and the largest time step
on the interval �T . Consequently, the method chosen to couple the subdomains does not
a�ect the stability of the numeric scheme of each subdomain. The known results for a single
subdomain in non-linear dynamics are thus applicable. The dissipation at the interface may,
however, a�ect the convergence rate of the calculation schemes.

4. EXAMPLES

The examples considered below were calculated on the CASTEM 2000 programme developed
at the Commissariat �a l’Energie Atomique [51]. Subsequently, we will assume the explicit
numeric scheme to be the central di�erence scheme E=

1
2
and �E=0 and the implicit numeric

scheme to be the mean acceleration scheme I=
1
2
and �I=

1
4
.
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Figure 6. Bending load applied at the end of the beam.

Figure 7. Continuous model and discretized model of the beam.

4.1. Case of a beam in bending

We �rst consider the case of the �xed=free beam subject to the following load as shown in
Figure 6.
This example is treated with a mesh made of three subdomains where the interfaces are

reduced to a single node with six degrees of freedom. The objective is to apply to each
subdomain an integration scheme which can be explicit or implicit thanks to the unique
formalism of Newmark’s numeric scheme. The characteristics of the beam are shown in
Figure 7.
Characteristics of the subdomains:

LI1 =LI2 =
15
32
m

EI1 =EI2 =210× 10
9Nm−2

SI1 = SI2 =0:01× 0:01m
2

nI1 = nI2 =10

�I1 =�I2 =7800 kgm
−3

LE3 =
1
16
m

EE3 =210:10
9Nm−2

SE3 =0:01× 0:01m
2

nE3 =15

�E3 =7800 kgm
−3
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Figure 8. Vertical displacement of the end point and vertical velocity of the end point.

where L designates the length of the subdomain, E its Young’s modulus, S its section, n the
number of elements of the discretized subdomain and � the mass density.
This �rst example allows us to validate in a one-dimensional case the di�erent con�gura-

tions presented earlier. The di�erent curves shown below correspond to the displacement and
velocity of node M5. We use as reference subdomain E3 with the critical time step de�ned
by the Courant condition in the case of the central di�erence explicit scheme

� texp=2:84× 10
−7 s:

4.2. Analysis of the example with a linear elastic constitutive law (m=10000)

We assume small displacements and � timp=m� texp. In addition, we consider that the whole
beam is made of a linear elastic, homogeneous, isotropic material. In this case, the maximum
bending load is chosen equal to 10 Newtons. In this example, we compare the vertical ve-
locity and displacement of the beam calculated by the method with subcycling to the results
obtained with the mean acceleration implicit numeric scheme applied to the structure with no
decomposition into subdomains.
Figure 8 represents, respectively, the vertical displacement and velocity of the end point

of the beam (continuous line) compared with the reference method (discontinuous line). For
this calculation, we chose a ratio of 10 000 between the time steps for the explicit and
the implicit parts. The calculation was performed over 0.5 s and requires 1 800 000 explicit
time steps. However, the problem has very few degrees of freedom and can be solved in
a reasonable amount of time. In order to compare the subcycling method, we calculate an
energy balance (see [46]) which reveals that the dissipation at the interface is 1.3 per cent
at the end of the calculation (Figure 9). The latter is practically indistinguishable from the
abscissa and the total energy of the problem. Thus, this con�rms that large time step ratios
are acceptable as long as the energy dissipated at the interface between subdomains remains
small. One can conclude from these �rst results that one can envisage large time step ratios
between the explicit and implicit schemes with a linear elastic constitutive law assuming small
perturbation, without degradation of the displacement and velocity responses.
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Figure 9. Energy balance.

Figure 10. Vertical displacement of the end point and vertical velocity of the end point.

4.3. Analysis of the example with a non-linear constitutive law (m=1000)

Again we assume small perturbations. However, we now consider that the whole beam is made
of a homogeneous, isotropic material with an elastic–plastic non-linear constitutive law with
strain hardening (yield stress 400Mpa and tangent modulus equal to 1 per cent of Young’s
modulus). The maximum bending moment in this case is chosen to be equal to 25N. We
compare the vertical velocity and displacement of the beam calculated by the method with
subcycling to the results obtained by a Newton method coupled to the mean acceleration
implicit numeric scheme applied to the structure with no decomposition into subdomains.
As in the previous case, we calculate an energy balance of the analysis in order to verify

that the energy dissipated at the interfaces is negligible compared to the other energy quan-
tities. The vertical displacement of the end of the beam illustrated on the left-hand curve
in Figure 10 reveals a slightly smaller displacement with the subcycling method (continuous
line); nevertheless, the comparison is very good. This can be explained by the large time
step ratio we considered. The numerical dissipation through the interface between the explicit
and implicit subdomains can be seen in Figure 11, but it is very small (0.4 per cent). One
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Figure 11. Energy balance.

Figure 12. Horizontal displacement of the end point and horizontal velocity of the end point.

can conclude from this second study that one may consider large time step ratios between
the explicit and implicit schemes with a elastic–plastic constitutive law and assuming small
perturbations, without excessive degradation of the displacement and velocity responses.

4.4. Case of a bar in traction

In this section, we try to compare the method using the validation example proposed in
Reference [9]. The problem concerns a �xed-free bar with a length of 540, subjected to
an initial horizontal, uniform velocity �eld equal to 0.1. The bar is decomposed into three
subdomains, respectively, explicit, implicit and explicit, with lengths of 180, 300 and 180;
furthermore, each subdomain is made of 18, 10 and 18 bar elements, respectively. The area
of the section and the density are both equal to 1. In an initial study, the implicit subdomain
is de�ned with a Young’s modulus equal to 107 and the explicit subdomains with a Young’s
modulus equal to 104. In this case, the critical time step of the explicit subdomains equals
0.1. The calculation is performed with an explicit time step equal to the critical time step and
a time step ratio of three between implicit and explicit.
Figure 12 represents, respectively, the horizontal displacement and the velocity of beam’s

end point. The method with subcycling (continuous line) is compared with the mean accel-
eration Newmark scheme (discontinuous line). In either case, the time step of the reference
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Figure 13. Horizontal displacement of the end point and horizontal velocity of the end point.

implicit method equals the implicit time step of the method with subcycling. The second case
study is considered, this time with the same Young’s modulus, equal to 104, for the three sub-
domains. The critical time step associated with the elements of the implicit subdomain is 0.3.
Figure 13 also shows the horizontal displacement and velocity of the end point of the

beam. The method with subcycling is used in the three cases explicit=explicit (continuous
line), implicit=explicit (normal discontinuous line), implicit=implicit (short discontinuous line)
and is compared with the mean acceleration Newmark scheme (long discontinuous line). The
results obtained compare very well with those of the explicit–implicit subcycling method
proposed in Reference [9]. However, the stability of this last method is inuenced by the size
of the explicit elements near the implicit subdomain. Thus, if we call R the ratio between the
size of these transition elements and the explicit elements with length 10, one shows that the
method is stable only for R¿10 in the case of a time step ratio of 10 between implicit and
explicit. For some values of R less than 10, one also obtains stable cases in the two examples
above in the presence of numerical damping. But the algorithm is unstable in all cases when
the critical value R equals 1. We use the new explicit–implicit subcycling method in the two
cases above for R equals 1 and a time step ratio of 10 between implicit and explicit.
Figure 14 corresponds to the same study as in Figure 12 with a time step ratio of 10

between implicit and explicit and a ratio of 1 between the explicit interface element and the
other explicit elements. The continuous line corresponds to the new method with subcycling
and the discontinuous line to the reference method.
Figure 15 corresponds to the same study as in Figure 13 with a time step ratio of 10 be-

tween implicit and explicit and a ratio of 1 between the explicit interface element and the other
explicit elements. The curves correspond to the new method with subcycling implicit=explicit
(normal discontinuous line), implicit=implicit (short discontinuous line) and the reference
method (long discontinuous line). The explicit=explicit case is detailed later since, in this
case, the time step associated with the coarse time scale does not verify the CFL condition.
The results lead to the following remarks:

The size of the interface �nite elements is independent of the time step ratio (even without
numeric damping) in all numeric scheme coupling cases (E=E; E=I; I=I). Thus, only the CFL
condition needs to be veri�ed for all explicit elements.
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Figure 14. Horizontal displacement of the end point and horizontal velocity of the end point.

Figure 15. Horizontal displacement of the end point and horizontal velocity of the end point.

The results are identical to the reference solution for Figure 14 and the results are always
better in amplitude and phase compared to the reference method in the case of Figure 15.

In the case of explicit=explicit coupling with the same Young’s modulus for the three sub-
domains and a time step ratio of 10, we modify the test case by discretizing the central
subdomain with only three �nite elements. Thus, the ratio between the critical time steps
is exactly equal to 10. Therefore, this test case enables us to study the coupling between
explicit=explicit subdomains with subcycling when the CFL condition is veri�ed exactly for
each subdomain: the closer the time step is to the critical time step, the more precise the
explicit methods will be in amplitude and phase. In the case of a beam in traction, one can
show that the central di�erence scheme allows one to �nd the analytic solution exactly. The
new subcycling method enables us again to �nd the analytical solution in displacement and
velocity (see Figure 16), with the understanding that the time step is �nite.
It was absolutely not obvious a priori that subcycling would also yield the analytical

solution in this case, even though the CFL condition is veri�ed exactly in each subdomain.
Thus, the linear interpolation of velocities which allows to go from the �ne time scale to
the coarse time scale turns out to be exact in the case of coupling between explicit/explicit
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Figure 16. Horizontal displacement of the end point and horizontal velocity of the end point.

Figure 17. Structural mesh.

schemes because, in the case of the central di�erence numeric scheme, one can show that the
acceleration is constant and the velocity linear between the discrete times. This enables us
to corroborate the numerical results obtained in the case of the �xed-free beam subjected to
uniform velocity. Furthermore, this remarkable result con�rms the theoretical approach used
in order to develop this new subcycling method.

4.5. Case of a reinforced pipe �xed at both ends and subjected to bending

In this example, we consider a pipe which is 8m long, with 1m radius and 5mm thickness.
This pipe also has axial and radial reinforcements (5mm thick and 0:1m high). The �nite
element model for the structure is made with DKT shell elements. The prescribed boundary
conditions consist of zero displacements at both ends of the pipe and a vertical non-zero load
near the edge (F =−2 × 105N). The inner circular sti�eners are located 1m from the end
for the �rst one, then every 2m. The inner longitudinal sti�eners are placed 90◦ from one
another (Figure 17).
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Figure 18. Exploded view showing three of the six subdomains.

Figure 19. Vertical displacement under the loaded zone and vertical velocity under
the loaded zone and energy balance.

The complete structure is decomposed into 6 subdomains of the following shapes (Figure 18):
Four out of the six subdomains are calculated with an implicit numeric scheme and the

other two (including the subdomain with the loaded zone) with an explicit numeric scheme.
The mesh of the complete structure consists of 8664 degrees of freedom. In this example,
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Figure 20. Time comparison between the di�erent cases.

we consider for the whole structure an elastic–plastic non-linear constitutive law with strain
hardening (the mass density, Young’s modulus and tangent modulus are the same as in Sec-
tion 4.3, and yield stress 200MPa). The material is standard, homogeneous isotropic steel.
Furthermore, the calculation is performed taking into account large displacements. Thus, we
are able to compare the vertical velocity and displacement of the structure under the loaded
zone. As before, the results are compared with those of a calculation on the structure without
subdomains using the Newton method coupled with the mean acceleration implicit numeric
scheme. Also, we consider two time step ratios in order to study the inuence of this factor
on the response with time.
On the curves in Figure 19, we compare the vertical velocity and displacement obtained with

time step ratios m=10 (continuous line) and m=100 (discontinuous line) to the reference
results (short discontinuous line). The reference solution is the mean acceleration implicit
scheme, which presents spurious oscillations at the beginning of the calculation. In the two
cases with subcycling, these oscillations disappear because we use an explicit method with a
�ne time scale on the loaded zone. In the last case, the number of time steps of the implicit
scheme is relatively small (35), but it allows us to obtain a satisfactory solution in amplitude
as well as in phase. Figure 19 shows the energy balance of the method with subcycling in
the case m=100. In this case, the dissipation at the interface is 1.9 per cent. In Figure 20,
the calculation times measured on the same workstation show a gain in time on the order of
5 per cent compared to the reference method.

5. CONCLUSION

We have presented a method with di�erent time discretizations in each subdomain which al-
lows us to couple explicit non-linear=implicit non-linear numeric schemes with time step ratios
of the order of 100. The non-linearities considered are of two types: non-linear constitutive
laws and geometric non-linearities (taking large displacements into account). The method was
�rst studied and validated through two examples. Then, we showed, in the case of a �xed–
�xed structure in which the non-linearities are concentrated in a de�ned area of the structure
(explicit numeric schemes), that a gain in computation time on the order of 5 compared to
a reference solution using a classical method can be achieved. This type of method is fully
compatible with parallel processing, to be implemented at a later stage.
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