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We present a method with domain decomposition to solve time-dependent non-linear problems. This method enables arbitrary numeric schemes of the Newmark family to be coupled with different time steps in each subdomain: this coupling is achieved by prescribing continuity of velocities at the interface. We are more specifically interested in the coupling of implicit=explicit numeric schemes taking into account material and geometric non-linearities. The interfaces are modelled using a dual Schur formulation where the Lagrange multipliers represent the interfacial forces. Unlike the continuous formulation, the discretized formulation of the dynamic problem is unable to verify simultaneously the continuity of displacements, velocities and accelerations at the interfaces. We show that, within the framework of the Newmark family of numeric schemes, continuity of velocities at the interfaces enables the definition of an algorithm which is stable for all cases envisaged. To prove this stability, we use an energy method, i.e. a global method over the whole time interval, in order to verify the algorithms properties. Then, we propose to extend this to non-linear situations in the following cases: implicit linear=explicit non-linear, explicit non-linear=explicit non-linear and implicit non-linear=explicit non-linear. Finally, we present some examples showing the feasibility of the method.

INTRODUCTION

Explicit time integration for transient problems discretized in space using nite elements is very widespread, particularly for contact or impact problems, or when wave propagation eects are important [1; 2]. Explicit methods allow the implementation of complex models with a limited calculation cost, and the conditional stability of these algorithms is not a problem if the time step necessary for the required precision is in the order of the critical time step both spectral approach and energy approach. One can nd in Reference [START_REF] Daniel | Analysis and implementation of a new constant acceleration subcycling algorithm[END_REF] a variation on these methods for the explicit case, where the adjustment from the coarse time scale to the ne time scale is no longer performed at constant velocity, but at constant acceleration, which seems to help improve the convergence of the algorithm. So far, for second-order systems other than explicit=explicit, there has been no proof of stability of the subcycling techniques [START_REF] Daniel | Analysis and implementation of a new constant acceleration subcycling algorithm[END_REF].

Mixed-and multi-time-step methods [START_REF] Belytschko | Stability of multi-time step partitioned integrators for rst-order nite element systems[END_REF]: Under this denition, we consider 'explicit=implicit' methods in the sense of mixed methods in time, i.e. with a single pair of parameters , for the whole structure and a diagonal mass matrix for the explicit part. These algorithms are used for rst-order systems in [START_REF] Belytschko | Multi-stepping implicit-explicit procedures in transient analysis[END_REF] and for second-order systems in References [17; 19]. In the rst case, a stability study of the algorithm with subcycling is proposed for the explicit=explicit case, but no extension to the explicit=implicit case with element partitioning is proposed. For second-order systems, as indicated in References [9; 25], there is, at this point, no general stability analysis in the explicit=implicit case with subcycling.

In this presentation, another direction has been considered to couple arbitrary numeric schemes of the Newmark family in each subdomain with dierent time steps [26; 27] (Figure 1).

To achieve this objective, a dual Schur domain decomposition method was chosen [START_REF] Roux | M ethodes de r esolution par sous-domaines en statique[END_REF][START_REF] Farhat | A scalable Lagrange multiplier based domain decomposition method for time-dependent problems[END_REF][START_REF] Felippa | A direct exibility method[END_REF][START_REF] Farhat | On the spectral stability of time integration algorithms for a class of constrained dynamics problems[END_REF][START_REF] Ladev | Algorithmes adapt es aux calculs vectoriels et parall eles pour des m ethodes de d ecomposition de domaine[END_REF][START_REF] Ladev | M ecanique non-lin eaire des structures-Nouvelle approche et m ethodes de calcul non incr ementales[END_REF][START_REF] Ladev Eze | A large time increment approach with domain decomposition technique for mechanical non-linear problems[END_REF][START_REF] Ladev Eze | Comparison of multi-level approaches in domain decomposition for structural analysis[END_REF][START_REF] Kaveh | Domain decomposition for nite element analysis[END_REF][START_REF] Meynen | Domain decomposition methods for the solution of non-linear problems in solid mechanics[END_REF][START_REF] Park | A variational principle for the formulation of partitioned structural systems[END_REF]. In Section 2, we describe the algorithm in the linear case; then, we perform a numerical stability study using an energy method [START_REF] Hughes | Implicit-explicit nite elements in transient analysis: stability theory[END_REF]. In Section 3, we propose an extension of the method to the non-linear case; then, we validate the algorithm through dierent examples, both linear and non-linear, with large time-step ratios.

STUDY OF SUBCYCLING IN HYBRID FORMULATION=LINEAR CASE

Case of the Newmark family of numeric schemes

The objective of this article is to present a method which, in the context of a dual Schur domain decomposition approach for a dynamic problem, allows one to take into account the specic properties of the dierent parts of the structure in the time domain. The subdomains considered can have non-linear constitutive relations and large displacements. Thus, generally speaking, the subdomains can be chosen according to the physical phenomena occurring in dierent parts of the structure. First, we consider a continuous domain with prescribed displacements on @ 1 and prescribed loads on @ 2 . We assume small perturbations. The nite element discretization of the continuous problem leads to the following equations: ∀t ∈ [0;T]; M U + F int = F ext [START_REF] Bonini | Modelisation des probl emes de contact-impact avec frottement en explicite par la m ethode des multiplicateurs de Lagrange. 3 eme Colloque National en Calcul des Structures[END_REF] where M represents the symmetric, positive-denite mass matrix, U the discretized acceleration eld, F int the discretized internal forces and F ext the applied external forces. The following initial conditions and constraints complete the above dierential system:

U |t=0 = U 0 and U |@1 = U d U|t=0 = V 0 (2)
This type of problem, in general, involves banded sparse matrices because of the nite element discretization. Thus, the bandwidth represents the coupling between the degrees of freedom of the dierential system: in this sense, the equilibrium equation is global in space. In order to take advantage of the properties of the explicit and implicit schemes [START_REF] Belytschko | A Review of Recent Developments in Time Integration[END_REF], we perform a time discretization using the Newmark family of numeric time schemes [3; 40-44], which allow us to chose either one of the methods depending on two parameters and ,

U n+1 = p U n + t 2 U n+1 Un+1 = p Un + t U n+1 (3) 
with p U n = U n +t Un +t 2 1 2 - U n p Un = Un +t(1 -) U n (4) 
where the time interval [0;T] is discretized as follows: t 0 ¡t 1 ¡ •••¡t r with r ∈ N * , n ∈{1;:::;r}, t 0 =0, t r = T , r being the number of time intervals t assumed constant. U n+1 , Un+1 and U n+1 represent the unknown displacements, velocities and accelerations at time t n+1 , p U n and p Un represent the predictors of the numeric scheme, i.e. the known quantities from the previous time step. We perform the decomposition of the structure into s subdomains following a dual Schur formulation. Thus, the equilibrium of the interface forces is automatically veried through the Lagrange multipliers. Regarding the kinematic quantities, three cases can be envisaged [START_REF] Farhat | On a component mode synthesis method and its application to incompatible substructures[END_REF]: we can prescribe continuity of displacements, or continuity of velocities, or continuity of accelerations at the interface. Indeed, from a discretized point of view, we cannot enforce the continuity of all kinematic quantities at the interface. Later on, we will show that continuity of the velocities at the interface enables us to address the coupling of arbitrary numeric schemes of the Newmark family with dierent time steps for each subdomain. The decomposition into subdomains of the dierential system (1) can be written as follows:

M k U k + F k int = F k ext + F k link ; ∀k ∈{1;:::;s} p k=1 C k Uk =0 ∀t ∈ [0;T] (5) 
with the connecting forces at the interface between subdomains where Uk represents the discretized velocity eld, C k the Boolean connectivity matrices for perfect connection between compatible meshes and the vector of Lagrange multipliers. In this rst study, we consider a structure made of a linear elastic, homogeneous and isotropic material. Thus,

F k link = C k T (6)
F k int = K k U k ∀k ∈{1;:::;s} (7) 
To simplify the problem, let us rst consider two subdomains A and B. For example, we can consider an implicit scheme on subdomain A and an explicit scheme on subdomain B. Let us assume that subdomain A is associated with a coarse time scale (time step T ) and subdomain B with a ne time scale (time step t). We will assume that T = mt (Figure 2). Then, Equations ( 3)-( 6) enable us to write the system of discretized equations in space and in time for our problem on a time step T of the coarse time scale:

MA U A m = F A extm -K A p U A 0 + C A T m (8) MB U B j = F B extj -K B p U B j-1 + C B T j (9) 
with

C A UA j + C B UB j = 0 ( 10 
) MA = M A + A T 2 K A and MB = M B + B t 2 K B (11) 
We can immediately note that the continuity of velocities [START_REF] Muller | Mixed nite element methods and iterative solutions: an algorithm for structural nite element analysis[END_REF] on the ne time scale requires that the velocity at the edge of subdomain A be evaluated at time t j . Similarly, Equations ( 8) and ( 9) are coupled through the Lagrange multipliers and require that the dual quantities of the edge velocities, i.e. the Lagrange multipliers on the ne time scale, be evaluated. For this purpose, we propose the following transition operators from the ne time scale to the coarse time scale (along the edges of the subdomains):

C A UA j = 1 - j m C A UA 0 + j m C A UA m ( 12 
) j = 1 - j m 0 + j m m (13) 
An interesting way to present the system of Equations ( 8)- [START_REF] Muller | Mixed nite element methods and iterative solutions: an algorithm for structural nite element analysis[END_REF] is to divide all unknowns of the problem into an 'constrained' group and a 'constrained' group. The rst category corresponds to the solution of the equilibrium subdomain by subdomain without taking into account the interface forces. The second category corresponds to correcting terms for the interface forces between subdomains. Thus, the Newmark scheme (3) becomes

U n+1 free = p U n + t 2 U n+1 free U n+1 link = t 2 U n+1 link Un+1 free = p Un + t U n+1 free Un+1 link = t U n+1 link (14) 
Therefore, we can write for each subdomain an 'unconstrained' problem and a 'constrained' problem:

MA U A m free = F A extm -K Ap U A 0 ( 15 
) A MA -A C A T -A C A 0 U A m link m = 0 C A UA m free + C B UB m free + C B UB m link (16) MB U B j free = F B extj -K Bp U B j-1 (17) 
B MB -B C B T -B C B 0 U B j link j = 0 C A UA j free + C A UA j link + C B UB j free (18) 
with

A = A T and B = B t (19) 
The last step consists of expressing the problem condensed on the interface on the ne time scale. This also requires that we decouple the scale change operator [START_REF] Belytschko | Mesh partitions of explicit-implicit time integration[END_REF]. Thus, we obtain

C A UA j free = 1 - j m C A UA 0 free + j m C A UA m free C A UA j link = 1 - j m C A UA 0 link + j m C A UA m link (20) 
From (20b) and ( 16), we get

C A UA j link = 1 - j m A C A MA -1 C A T 0 + j m A C A MA -1 C A T m (21) 
Finally, Equation (13) leads to

C A UA j link = A C A MA -1 C A T j (22) 
This enables us to reformulate the matrix system (18) expressed on the ne scale:

B MB -B C B T -B C B -A C A MA -1 C A T U B j link j = 0 C A UA j free + C B UB j free (23) 
This leads to the problem condensed at the interfaces on the ne time scale with

H j = -C A UA j free + C B UB j free (24) 
H = A C A MA -1 C A T + B C B MB -1 C B T (25)
Finally, we can present the method for a time step T in the form of the following algorithm (Figure 3):

The method can be generalized to s subdomains with the assumption t 1 =t t 2 = m 2 t ::: t s = m s t with {m 2 ;:::;m s }∈N * s-1

The generalized algorithm takes the following form (Figure 4):

Conclusions: The condensation operator on the interfaces depends on the dierent time steps associated with each subdomain. However, if these are constant (which is generally the case in linear analysis), the condensation operator [START_REF] Daniel | Analysis and implementation of a new constant acceleration subcycling algorithm[END_REF] remains constant during the analysis throughout the time interval [0;T]. Therefore, it can be factorized only once at the onset of the dynamic calculation.

This algorithm enables the coupling of any Newmark numeric scheme with a dierent time step in each subdomain. The continuity of velocities plays a fundamental role in this approach, and the linear interpolation of velocities [START_REF] Belytschko | Mesh partitions of explicit-implicit time integration[END_REF] allows us to preserve the global stability of the algorithm. The proof is done in the next section.

Stability and convergence study

The purpose of this study is to show that continuity of the velocities at the interface results in a stable algorithm which makes possible the coupling of numeric schemes of the Newmark family with dierent time steps. The stability study is performed using an energy method [START_REF] Hughes | Implicit-explicit nite elements in transient analysis: stability theory[END_REF]. Thereafter, we will use the following notations:

X j =(X j + X j+1 )=2 and ⌊X j ⌋ =(X j+1 -X j ) (27) 
X 0 =(X 0 + X m )=2 and <X 0 = =(X m -X 0 ) (28) 
The energy expression associated with subdomain A is dened by

<T A ( U A 0 )= + <V A ( UA 0 )= = -D A < U A = + E A interface < UA 0 =; < 0 = (29) 
with

• T ( U)= 1 2 U T A U; term associated with the kinetic energy • V ( U)= 1 2 UT K U; term associated with the internal energy • D( U)= -1 2 U T A U; term associated with the numerical damping • E A interface ( U; )= 1 t UT C T ; term

associated with the work of connecting forces

where matrix A is dened by

A = M + t 2 2 (2 -)K (30) 
Remark. We do not take the term associated with the work of external forces into account, since this term does not aect the stability of the numeric scheme [START_REF] Liu | Mixed-time implicit-explicit nite elements for transient analysis[END_REF].

Similarly, let us recall expression (29) applied to subdomain B on the time interval [t 0 ;t m ] <T B (

U B 0 )= + <V B UB 0 = = - m j=1 D B U B j-1 + m j=1 1 t UB j-1 T C B T [ j-1 ] (31) 
with the notation

m j=1 [A j-1 ]=<A 0 = (32) 
Finally, in order to study the stability of the algorithm, we can apply the energy method to the complete structure, i.e. to both subdomains A and B and to their interface:

<T A = + <T B = + <V A = + <V B = = -D A - m j=1 D B U B j-1 + E link ( 33 
)
with the interface term

E interface = E A interface + E B interface = 1 mt < UA 0 = T C A T < 0 = + m j=1 1 t [ UB j-1 ] T C B T j-1 (34) 
Then, we try to achieve the condition

E interface 60 (35) 
which expresses the fact that the stability of the dierent schemes is not aected by the interface. We also need an adapted form of the linear interpolation of the velocities without constraints obtained from expression (20a)

UA j-1 sl = 1 m < UA 0 sl = (36) 
We rst separate the velocities without constraints from the velocities with constraints:

E interface = 1 mt < UA 0 al = T C A T < 0 = + m j=1 1 t UB j-1 al T C B T j-1 + 1 mt < UA 0 sl = T C A T < 0 = + m j=1 1 t UB j-1 sl T C B T j-1 (37) 
Then, we can modify the terms without constraints using expression (32) applied to the Lagrange multipliers together with expression ( 36)

E interface = 1 mt < UA 0 al = T C A T < 0 = + m j=1 1 t UB j-1 al T C B T j-1 + m j=1 1 t C A [ UA j-1 sl ]+C B UB j-1 sl T [ j-1 ] (38) 
The continuity of velocities [START_REF] Muller | Mixed nite element methods and iterative solutions: an algorithm for structural nite element analysis[END_REF] allows us to express the unconstrained terms as functions of the constrained terms

E interface = 1 mt < UA 0 al = T C A T < 0 = + m j=1 1 t UB j-1 al T C B T j-1 - m j=1 1 t C A UA j-1 al + C B UB j-1 al T j-1 (39) 
Thus, we obtain

E interface = 1 mt < UA 0 al = T C A T < 0 = - m j=1 1 t UA j-1 al T C A T j-1 (40) 
Furthermore, expression [START_REF] Smolinski | Procedures for multi-time step integration of element-free Galerkin methods for diusion problems[END_REF] yields

C A T j = 1 A MA UA j al (41) 
i.e.

E interface = 1 A < UA 0 al = T mt MA < UA 0 al = mt - 1 m m j=1 UA j-1 al T t MA UA j-1 al t (42) 
In order to conclude, concerning the stability of this algorithm, we study the sign of expression [START_REF] Zienkiewicz | A new look at the Newmark, Houbolt and other time stepping formulas. A weighted residual approach[END_REF]. For this purpose, we will study a scalar expression equivalent to matrix expression ( 42)

Ẽm interface =( n+m -n ) 2 -m m j=1 ( n+j -n+j-1 ) 2 (43) 
When m =2:

Ẽ2 interface =( n+2 -n ) 2 -2 2 j=1 ( n+j -n+j-1 ) 2 (44) 
we obtain

Ẽ2 interface = -(( n+2 -n+1 ) -( n+1 -n )) 2 (45) 
When m =3:

Ẽ3 interface =( n+3 -n ) 2 -3 3 j=1 ( n+j -n+j-1 ) 2 (46) 
we obtain

Ẽ3 interface = -(( n+3 -n+2 ) -( n+2 -n+1 )) 2 -(( n+3 -n+2 ) -( n+1 -n )) 2 -(( n+2 -n+1 ) -( n+1 -n )) 2 (47) 
Finally, one can show that for any non-zero integer m we have

Ẽm interface = -(( n+m -n+m-1 ) -( n+m-1 -n+m-2 )) 2 -(( n+m -n+m-1 ) -( n+m-2 -n+m-3 )) 2 -•••-(( n+m -n+m-1 ) -( n+1 -n )) 2 -(( n+m-1 -n+m-2 ) -( n+m-2 -n+m-3 )) 2 -•••-(( n+m-1 -n+m-2 ) -( n+1 -n )) 2 . . . . . . -(( n+2 -n+1 ) -( n+1 -n )) 2 (48) 
where expression [START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF] has m(m -1)=2 terms. Therefore, we conclude that expression ( 42) is a sum of negative squares dened by

E interface = - 1 A m-1 i=1 m-1 j=i UA m-i+1 al -UA m-i al -UA m-j al -UA m-j-1 al T 2t MA × UA m-i+1 al -UA m-i al -UA m-j al -UA m-j-1 al 2t 60 (49) 
Theorem 1. If, for each subdomain, k ¿ 1 2 , then matrix A is positive denite, and if M is positive denite, then U and U are bounded (proof identical to that proposed in Reference [START_REF] Hughes | Implicit-explicit nite elements in transient analysis: stability theory[END_REF]).

(

) 50 
The advantage of this formulation and this theorem is that one can study the stability of the Newmark numeric scheme directly from A because, on the one hand, M is positive denite by denition and, on the other hand, if we use the eigenmodes to diagonalize matrix A,w e get a second-degree inequality in t expressing that the latter is positive denite

1+ -2 (!t) 2 ¿0 ( 51 
)
where ! are the eigenvalues of matrix A. Thus, we end up with the classical stability conditions of Newmark's numeric scheme [START_REF] Hughes | Nonlinear nite element analysis[END_REF]: 

with the denition ! max = sup{!}.

According to Equation ( 24), if theorem 1 is veried and if H is invertible, then the Lagrange multipliers are bounded. Furthermore, if K -1 exists, then from (8) U n+1 is bounded in each subdomain. The numerical damping term (see [START_REF] Farhat | A scalable Lagrange multiplier based domain decomposition method for time-dependent problems[END_REF]) also allows us to conclude that, if = 1 2 in a subdomain, the associated numeric scheme does not dissipate energy (second-order scheme); conversely, if ¿ 1 2 , the scheme dissipates energy (rst-order scheme). This is in complete agreement with the denition of the algorithmic damping rate of the Newmark family of numeric schemes [START_REF] Hughes | Analysis of transient algorithms with particular reference to stability behavior[END_REF]:

num = - 1 2 t T + O t T 2 (54)
Remarks. It is possible to take the mechanical damping into account. In such a case, Equation ( 29) contains an additional term related to the mechanical damping and dierent from the numerical damping term. In this case, the same method leads to the stability equations for Newmark schemes with mechanical damping [START_REF] Hughes | Nonlinear nite element analysis[END_REF].

The stability of the global problem depends on the stability conditions of the Newmark numeric schemes considered in each subdomain. Thus, the convergence rate of the Newmark numeric schemes is dened by expression (54). Consequently, the global convergence rate is dened as the minimum of the convergence rates for each subdomain. Thus, if, for example, we use parameters B = 1 2 ; B =0; A = 1 2 ; A = 1 4 to couple explicit and implicit numeric schemes each with a second-order convergence rate, and if the term associated with the interfacial energy is zero, then the scheme is globally of the second order.

The algorithm studied is stable, but can present numerical dissipation at the interface (see [START_REF] Caddemi | Convergence of the Newton-Raphson algorithm in elastic-plastic incremental analysis[END_REF]). Expression [START_REF] Caddemi | Convergence of the Newton-Raphson algorithm in elastic-plastic incremental analysis[END_REF] shows that if the velocity of subdomain A is constant on the coarse time scale, then the numerical dissipation equals zero; otherwise, energy dissipates at the interface. In other terms, when the displacement of subdomain A is not linear with time, the smaller the local radius of curvature, the higher the numerical dissipation.

Finally, with this approach, the coupling of dierent numeric schemes of the Newmark family has no inuence on the stability of these schemes. Thus, implicit subdomains remain unconditionally stable and explicit subdomains remain conditionally stable with the same stability limits. One can conclude from this result that the ratio of the time step in subdomain A to the time step in subdomain B has no direct eect on the stability of the algorithm; however, this parameter conditions, the quality of the interpolation of the kinematic quantities of subdomain A, which the method's numerical damping depends on directly.

STUDY OF THE NON-LINEAR CASE

3.1. Treatment of non-linearities 3.1.1. Material non-linearities. Let us assume that the constitutive law associated with some subdomains is non-linear, for example elastic-plastic with kinematic hardening. For certain problems where the non-linearities are localized within a structure, they can be associated with an explicit subdomain with a non-linear constitutive law and a ne time scale dened by the critical time step, whereas implicit subdomains with a linear constitutive law and a coarse time scale are used in the rest of the structure. In this case, the algorithm in Section 2 remains the same, but the unconstrained problem of the explicit subdomain becomes

M B U B j free = F B extj -F B intj p U B j-1 (55) 
with

M B : diagonal mass matrix (56) 
Similarly, the algorithm can be immediately generalized to the explicit non-linear=explicit nonlinear case with dierent time steps in the two subdomains. In this case, the unconstrained equations associated with each subdomain are of form (55). One can also note that if the two subdomains are explicit, whether linear or non-linear, the interface operator (25) is diagonal.

We are now concerned with the implicit non-linear=explicit non-linear case where the ne time scale is associated with the explicit domain (designated by E), and the coarse time scale with the implicit subdomain (designated by I). In the following, we keep the general formalism of the Newmark schemes, yet with the condition

E = 0 (57) 
In this case, equilibrium Equations ( 8) and ( 9) become

M I U I m + F I int U I m = F I extm + C I T m (58) M E U E j + F E intj p U E j-1 = F E extj + C E T j (59)
Concerning the calculation of the internal forces of the explicit subdomain, they can simply be calculated using the plastically admissible stresses. To calculate the internal forces of the implicit subdomain, we perform, on the one hand, a plastic projection of the stresses and, on the other hand, iterations on the equilibrium (58) which we call 'external iterations'.

The plastic projection uses a radial return method on the threshold [START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF]. The implementation of external iterations starting from the Newton method requires more care because of the Lagrange multipliers and the two time discretizations [START_REF] Caddemi | Convergence of the Newton-Raphson algorithm in elastic-plastic incremental analysis[END_REF]. First, the residuals R (i-1) m at the equilibrium for iteration (i -1) and the linearized expression R * (i) m at iteration (i) are dened

R (i-1) m = F I extm + C I T (i-1) m -M I U I (i-1) m -p U I n I (mt) 2 -F I (i-1) intm (60) R * (i) m = R (i-1) m + A 1 U I (i) m + A 2 I (i) m (61) 
with

A 1 ≡ @R @U U I (i-1) m = -K I t + 1 I (mt) 2 M I and A 2 ≡ @R @ I (i-1) m = C I T (62)
In the rst stage, we assume that matrix K I t remains constant during the equilibrium iterations. Then, we apply the Newton-Raphson method with the assumption that the linearized equation ( 61) is veried, i.e. the linearized residual (61) equals zero. This leads to the equilibrium equation on the coarse time scale

KI t U I (i) m = R (i-1) m + C I T (i) m ( 63 
)
with

KI t = K I t + 1 I (mt) 2 M I (64) U I m = r i=1 U I (i) m ; m = r i=1 (i) m ( 65 
)
U I m = U I 0 +U I m ; m = 0 + m (66)
and r the index at the convergence. We will show that we can perform the external iterations on the coarse time scale only. For this purpose, let us show that the increment in the Lagrange multipliers can be calculated from the unconstrained problem in the coarse time scale. Let us write the linearized equations for the continuity of velocities at the interface [START_REF] Muller | Mixed nite element methods and iterative solutions: an algorithm for structural nite element analysis[END_REF], the transition operators from the coarse to the ne time scale (12) (13) and the equilibrium equation on the ne time scale (59) which, added to Equation (63), determine the increment in the multipliers

M E U E (i) j = C E T (i) j ( 67 
)
C I UI (i) j + C E UE (i) j = 0 (68) C I UI (i) j = j m C I UI (i) m ( 69 
) (i) j = j m (i) j (70)
Moreover, we have the linearized Newmark equations

UI (i) m = I (mt) U I (i) m (71) U I (i) m = I (mt) 2 U I (i) m (72) UE (i) j = E t U E (i) j (73) 
Then, we can write the problem in matrix form

      I (jt) MI t 0 -I (mt)C I T 0 E tM E -E tC E T -I (jt)C I -E tC E 0            U I (i) m U E (i) j (i) j      =     I (jt)R (i-1) m 0 0     (74)
As in the linear case, we can decompose the global problem into the rst, unconstrained problem and the second, constrained one. The unconstrained equilibrium is

    MI t 00 0 M E 0 00 0         U I (i) m free U E (i) j free 0     =     R (i-1) m 0 0     (75) 
From the second line of Equation ( 75), we get U E (i) j free = 0 (76)

The equations of the constrained problem are given by

      I (jt) MI t 0 -I (mt)C I T 0 E tM E -E tC E T 00 H t            U I (i) m link U E (i) j link (i) j      =     I (jt)R (i-1) m 0 -(C I UI (i) j free + C E UE (i) j free )     (77) 
where H t is the condensation operator associated with the constant matrix K I t . From Equations (73), ( 76) and (77), we see that the increment in Lagrange multipliers depends only on the increment in implicit unconstrained velocity

H t (i) j = -C I UI (i) j free (78)
This shows that the corrections applied at each iteration on the condensed problem at the interfaces depend only on the coarse time scale, because the quantity UI (i) j free is interpolated from the unconstrained velocities of the coarse time scale. Thus, the external iterations on the equilibrium of implicit subdomain I can be performed directly on the coarse time scale as opposed to the ne time scale. 

Geometric non-linearities

The previous algorithm can also be generalized to the case of large displacements. It suces to try to write the equilibrium of the Cauchy stresses on the deformed geometry, and, therefore, reactualize the conguration when calculating the internal forces, both on the implicit and explicit subdomains. Thus, the calculation of the internal forces proceeds as follows: rst, the internal iterations yield a stress increment which is used to calculate the associated Piola-Kircho stresses. Finally, these are used to express the internal forces and the corresponding residuals

F I (i) intm = I (i) m B I (i) T m I (i) m d (79) R I (i) m = 1 (mt) 2 M I U I (i) m -p U 1 0 + F I (i) intm -F I (i)
extm ( 80)

F E intm = E m B E T m E m d ( 81 
)
where and F I (i) extm designate, respectively, the Cauchy stress and the external forces on the deformed geometry. Once these calculations have been performed, one must go back to the previous conguration if external iterations on the implicit subdomain are needed.

Implementation-algorithm

This result can be expressed in the form of an algorithm (Figure 5):

This algorithm is presented in the case of two subdomains with two dierent time scales. One can generalize the method to the case of s subdomains with s dierent time scales. One uses a double termination criterion

R I (i) m F I (i) intm 6 1 and U I (i) m 6 2 (82)
This algorithm must also be adjusted, for example, depending on the type of nite elements considered: thus, in the case of structures modeled with shell elements, one must distinguish between membrane forces and bending moments in the calculation of the residuals [START_REF] Combescure | Calcul lin eaire et non-lin eaire des coques. Cours eectu e a l'ipsi[END_REF].

Stability

Concerning the stability and global convergence of the algorithm in the non-linear case, we can make the following remarks: the concept of stability used in Section 2.2 denes only necessary conditions for stability in the non-linear case [START_REF] Hughes | Implicit-explicit nite elements in non-linear transient analysis[END_REF]. (In the linear case, they are necessary and sucient.) However, we can make the following observations: the condition on the explicit time step is sucient; if the non-linear response is carefully discretized by the chosen time step, the stability conditions are sucient for the implicit subdomains; if the non-linear response is not discretized with sucient precision, cumulative roundo errors may dominate and degrade, or even amplify slightly, the numerical solution. In the geometric nonlinear case, the time step t often varies because the size of the elements changes at each time step. The same type of approach can be followed with a variable time step. The end result is that the term associated with the energy dissipated at the interface is bounded by (see ( 49))

- 1 A t 2 min m-1 i=1 m-1 j=i UA m-i+1 al -UA m-i al -UA m-j al -UA m-j-1 al T 2 MA × UA m-i+1 al -UA m-i al -UA m-j al -UA m-j-1 al 2 6E interface ( 83 
)
E interface 6 - 1 A t 2 max m-1 i=1 m-1 j=i UA m-i+1 al -UA m-i al -UA m-j al -UA m-j-1 al T 2 MA × UA m-i+1 al -UA m-i al -UA m-j al -UA m-j-1 al 2 6 0 ( 84 
)
where t min and t max correspond, respectively, to the smallest and the largest time step on the interval T . Consequently, the method chosen to couple the subdomains does not aect the stability of the numeric scheme of each subdomain. The known results for a single subdomain in non-linear dynamics are thus applicable. The dissipation at the interface may, however, aect the convergence rate of the calculation schemes.

EXAMPLES

The examples considered below were calculated on the CASTEM 2000 programme developed at the Commissariat al 'Energie Atomique [START_REF] Verpeaux | CASTEM 2000 une approche moderne du calcul des structures[END_REF]. Subsequently, we will assume the explicit numeric scheme to be the central dierence scheme E = 1 2 and E = 0 and the implicit numeric scheme to be the mean acceleration scheme I = 1 2 and I = 1 4 .

Figure 6. Bending load applied at the end of the beam. 

Case of a beam in bending

We rst consider the case of the xed=free beam subject to the following load as shown in Figure 6. This example is treated with a mesh made of three subdomains where the interfaces are reduced to a single node with six degrees of freedom. The objective is to apply to each subdomain an integration scheme which can be explicit or implicit thanks to the unique formalism of Newmark's numeric scheme. The characteristics of the beam are shown in Figure 7.

Characteristics of the subdomains: where L designates the length of the subdomain, E its Young's modulus, S its section, n the number of elements of the discretized subdomain and the mass density. This rst example allows us to validate in a one-dimensional case the dierent congurations presented earlier. The dierent curves shown below correspond to the displacement and velocity of node M 5 . We use as reference subdomain E 3 with the critical time step dened by the Courant condition in the case of the central dierence explicit scheme t exp =2:84 × 10 -7 s: 4.2. Analysis of the example with a linear elastic constitutive law (m = 10 000)

L I1 = L I2 = 15 32 m E I1 = E I2 = 210 × 10 9 Nm -2 S I1 = S I2 =0:01 × 0:01 m 2 n I1 = n I2 =10 I1 = I2 = 7800 kg m -3 L E3 = 1 16 m E E3 = 210:10 9 Nm -2 S E3 =0:01 × 0:01m 2 n E3 =15 E3 = 7800 kg m -3
We assume small displacements and t imp = mt exp . In addition, we consider that the whole beam is made of a linear elastic, homogeneous, isotropic material. In this case, the maximum bending load is chosen equal to 10 Newtons. In this example, we compare the vertical velocity and displacement of the beam calculated by the method with subcycling to the results obtained with the mean acceleration implicit numeric scheme applied to the structure with no decomposition into subdomains.

Figure 8 represents, respectively, the vertical displacement and velocity of the end point of the beam (continuous line) compared with the reference method (discontinuous line). For this calculation, we chose a ratio of 10 000 between the time steps for the explicit and the implicit parts. The calculation was performed over 0.5 s and requires 1 800 000 explicit time steps. However, the problem has very few degrees of freedom and can be solved in a reasonable amount of time. In order to compare the subcycling method, we calculate an energy balance (see [START_REF] Hughes | Nonlinear nite element analysis[END_REF]) which reveals that the dissipation at the interface is 1.3 per cent at the end of the calculation (Figure 9). The latter is practically indistinguishable from the abscissa and the total energy of the problem. Thus, this conrms that large time step ratios are acceptable as long as the energy dissipated at the interface between subdomains remains small. One can conclude from these rst results that one can envisage large time step ratios between the explicit and implicit schemes with a linear elastic constitutive law assuming small perturbation, without degradation of the displacement and velocity responses. Again we assume small perturbations. However, we now consider that the whole beam is made of a homogeneous, isotropic material with an elastic-plastic non-linear constitutive law with strain hardening (yield stress 400 Mpa and tangent modulus equal to 1 per cent of Young's modulus). The maximum bending moment in this case is chosen to be equal to 25 N. We compare the vertical velocity and displacement of the beam calculated by the method with subcycling to the results obtained by a Newton method coupled to the mean acceleration implicit numeric scheme applied to the structure with no decomposition into subdomains.

As in the previous case, we calculate an energy balance of the analysis in order to verify that the energy dissipated at the interfaces is negligible compared to the other energy quantities. The vertical displacement of the end of the beam illustrated on the left-hand curve in Figure 10 reveals a slightly smaller displacement with the subcycling method (continuous line); nevertheless, the comparison is very good. This can be explained by the large time step ratio we considered. The numerical dissipation through the interface between the explicit and implicit subdomains can be seen in Figure 11, but it is very small (0.4 per cent). One can conclude from this second study that one may consider large time step ratios between the explicit and implicit schemes with a elastic-plastic constitutive law and assuming small perturbations, without excessive degradation of the displacement and velocity responses.

Case of a bar in traction

In this section, we try to compare the method using the validation example proposed in Reference [START_REF] Liu | Mixed-time implicit-explicit nite elements for transient analysis[END_REF]. The problem concerns a xed-free bar with a length of 540, subjected to an initial horizontal, uniform velocity eld equal to 0.1. The bar is decomposed into three subdomains, respectively, explicit, implicit and explicit, with lengths of 180, 300 and 180; furthermore, each subdomain is made of 18, 10 and 18 bar elements, respectively. The area of the section and the density are both equal to 1. In an initial study, the implicit subdomain is dened with a Young's modulus equal to 10 7 and the explicit subdomains with a Young's modulus equal to 10 4 . In this case, the critical time step of the explicit subdomains equals 0.1. The calculation is performed with an explicit time step equal to the critical time step and a time step ratio of three between implicit and explicit.

Figure 12 represents, respectively, the horizontal displacement and the velocity of beam's end point. The method with subcycling (continuous line) is compared with the mean acceleration Newmark scheme (discontinuous line). In either case, the time step of the reference implicit method equals the implicit time step of the method with subcycling. The second case study is considered, this time with the same Young's modulus, equal to 10 4 , for the three subdomains. The critical time step associated with the elements of the implicit subdomain is 0.3.

Figure 13 also shows the horizontal displacement and velocity of the end point of the beam. The method with subcycling is used in the three cases explicit=explicit (continuous line), implicit=explicit (normal discontinuous line), implicit=implicit (short discontinuous line) and is compared with the mean acceleration Newmark scheme (long discontinuous line). The results obtained compare very well with those of the explicit-implicit subcycling method proposed in Reference [START_REF] Liu | Mixed-time implicit-explicit nite elements for transient analysis[END_REF]. However, the stability of this last method is inuenced by the size of the explicit elements near the implicit subdomain. Thus, if we call R the ratio between the size of these transition elements and the explicit elements with length 10, one shows that the method is stable only for R¿10 in the case of a time step ratio of 10 between implicit and explicit. For some values of R less than 10, one also obtains stable cases in the two examples above in the presence of numerical damping. But the algorithm is unstable in all cases when the critical value R equals 1. We use the new explicit-implicit subcycling method in the two cases above for R equals 1 and a time step ratio of 10 between implicit and explicit.

Figure 14 corresponds to the same study as in Figure 12 with a time step ratio of 10 between implicit and explicit and a ratio of 1 between the explicit interface element and the other explicit elements. The continuous line corresponds to the new method with subcycling and the discontinuous line to the reference method.

Figure 15 corresponds to the same study as in Figure 13 with a time step ratio of 10 between implicit and explicit and a ratio of 1 between the explicit interface element and the other explicit elements. The curves correspond to the new method with subcycling implicit=explicit (normal discontinuous line), implicit=implicit (short discontinuous line) and the reference method (long discontinuous line). The explicit=explicit case is detailed later since, in this case, the time step associated with the coarse time scale does not verify the CFL condition. The results lead to the following remarks:

The size of the interface nite elements is independent of the time step ratio (even without numeric damping) in all numeric scheme coupling cases (E=E; E=I; I=I). Thus, only the CFL condition needs to be veried for all explicit elements. The results are identical to the reference solution for Figure 14 and the results are always better in amplitude and phase compared to the reference method in the case of Figure 15.

In the case of explicit=explicit coupling with the same Young's modulus for the three subdomains and a time step ratio of 10, we modify the test case by discretizing the central subdomain with only three nite elements. Thus, the ratio between the critical time steps is exactly equal to 10. Therefore, this test case enables us to study the coupling between explicit=explicit subdomains with subcycling when the CFL condition is veried exactly for each subdomain: the closer the time step is to the critical time step, the more precise the explicit methods will be in amplitude and phase. In the case of a beam in traction, one can show that the central dierence scheme allows one to nd the analytic solution exactly. The new subcycling method enables us again to nd the analytical solution in displacement and velocity (see Figure 16), with the understanding that the time step is nite.

It was absolutely not obvious a priori that subcycling would also yield the analytical solution in this case, even though the CFL condition is veried exactly in each subdomain. Thus, the linear interpolation of velocities which allows to go from the ne time scale to the coarse time scale turns out to be exact in the case of coupling between explicit/explicit schemes because, in the case of the central dierence numeric scheme, one can show that the acceleration is constant and the velocity linear between the discrete times. This enables us to corroborate the numerical results obtained in the case of the xed-free beam subjected to uniform velocity. Furthermore, this remarkable result conrms the theoretical approach used in order to develop this new subcycling method.

Case of a reinforced pipe xed at both ends and subjected to bending

In this example, we consider a pipe which is 8 m long, with 1 m radius and 5 mm thickness. This pipe also has axial and radial reinforcements (5 mm thick and 0:1 m high). The nite element model for the structure is made with DKT shell elements. The prescribed boundary conditions consist of zero displacements at both ends of the pipe and a vertical non-zero load near the edge (F = -2 × 10 5 N). The inner circular stieners are located 1 m from the end for the rst one, then every 2 m. The inner longitudinal stieners are placed 90 • from one another (Figure 17). The complete structure is decomposed into 6 subdomains of the following shapes (Figure 18): Four out of the six subdomains are calculated with an implicit numeric scheme and the other two (including the subdomain with the loaded zone) with an explicit numeric scheme. The mesh of the complete structure consists of 8664 degrees of freedom. In this example, we consider for the whole structure an elastic-plastic non-linear constitutive law with strain hardening (the mass density, Young's modulus and tangent modulus are the same as in Section 4.3, and yield stress 200 MPa). The material is standard, homogeneous isotropic steel. Furthermore, the calculation is performed taking into account large displacements. Thus, we are able to compare the vertical velocity and displacement of the structure under the loaded zone. As before, the results are compared with those of a calculation on the structure without subdomains using the Newton method coupled with the mean acceleration implicit numeric scheme. Also, we consider two time step ratios in order to study the inuence of this factor on the response with time.

On the curves in Figure 19, we compare the vertical velocity and displacement obtained with time step ratios m = 10 (continuous line) and m = 100 (discontinuous line) to the reference results (short discontinuous line). The reference solution is the mean acceleration implicit scheme, which presents spurious oscillations at the beginning of the calculation. In the two cases with subcycling, these oscillations disappear because we use an explicit method with a ne time scale on the loaded zone. In the last case, the number of time steps of the implicit scheme is relatively small [START_REF] Ladev Eze | Comparison of multi-level approaches in domain decomposition for structural analysis[END_REF], but it allows us to obtain a satisfactory solution in amplitude as well as in phase. Figure 19 shows the energy balance of the method with subcycling in the case m = 100. In this case, the dissipation at the interface is 1.9 per cent. In Figure 20, the calculation times measured on the same workstation show a gain in time on the order of 5 per cent compared to the reference method.

CONCLUSION

We have presented a method with dierent time discretizations in each subdomain which allows us to couple explicit non-linear=implicit non-linear numeric schemes with time step ratios of the order of 100. The non-linearities considered are of two types: non-linear constitutive laws and geometric non-linearities (taking large displacements into account). The method was rst studied and validated through two examples. Then, we showed, in the case of a xedxed structure in which the non-linearities are concentrated in a dened area of the structure (explicit numeric schemes), that a gain in computation time on the order of 5 compared to a reference solution using a classical method can be achieved. This type of method is fully compatible with parallel processing, to be implemented at a later stage.
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