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Abstract

Despite the advantage of being quieter than traditional internal combustion en-
gine vehicles, electric vehicles are often distinguished by high-frequency tonal
components, which can be perceived as unpleasant to the occupants and the
environment. To ensure optimal acoustic comfort in electric vehicles, it is im-
portant to analyze the NVH behavior of e-powertrains during the early stages of
the design process which poses inherent uncertainties, such as varying operating
conditions, partial knowledge of design parameters, dispersion in measurement-
based data, etc. To effectively address these uncertainties, it is necessary to use
fast and comprehensive stochastic models during the design phase.

In this work, a probabilistic framework is presented to estimate the elec-
tric powertrain’s interior whining noises considering the structure-borne contri-
bution. Hence, two different stochastic metamodels are developed for efficient
quantification and propagation of uncertainties from electric motor stage to pow-
ertrain mounting system. Multivariate Bayesian regression models help to incor-
porate prior knowledge on the uncertain parameters and generate the respective
posterior distributions using Markov chains Monte Carlo (MCMC) techniques.
For this particular application, the data is generated through weakly-coupled
multi-physical domains estimated using semi-analytical approaches and com-
bined with measured vehicle transfer functions. Importantly, the validation of
each domain is conducted separately to ensure accurate representation. The re-
sults obtained from the developed probabilistic framework will aid in the early
design stages by guiding engineers in making informed decisions to optimize
NVH performance.
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NVH Noise, vibration and harshness

ICE Internal combustion engine

FEM Finite element method

SPL Sound pressure level

PDF Probability density function

MC Monte Carlo

MCMC Markov chain Monte Carlo

NTF Noise transfer function

VTF Vibration transfer function

IPMSM Interior permanent magnet synchronomous motor

OC Operating condition

EM Electromagnetic

AGSF Air-gap surface force

CV Cross-validation

NUTS No U-turn sampler

RMS Root mean square

dof Degree of freedom

PCA Principal component analysis

PC Principal components

BPCR Bayesian principal component regression

1. Introduction

In the mobility sector, Battery Electric Vehicles (BEVs) have emerged as
a promising solution in transitioning towards sustainable future utilizing clean
energy, eliminating the need of fossil fuels and reducing greenhouse gas emis-
sions. Moreover, the ever increasing imposition of stringent policies and global5

pressure to go net zero-emission have propelled vehicle manufacturers to expand
their EV fleets at a rapid pace, as per [3]. As a result, automakers are pivoting
their focus on enhancing various attributes of EVs to fulfill customer’s needs
and comfort.

Among various characteristics, Noise, Vibration and Harshness (NVH) is a10

crucial aspect that significantly influences the customer’s perception of quality
and overall image of the vehicle. The absence of an Internal Combustion Engine
(ICE) in EVs results in reduced noise levels, but introduces a distinct acoustic
signature. The interior noise contribution is characterized by high-frequency
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components, commonly referred to as whining noise, which are often perceived15

as intrusive and causes discomfort to the occupants, see [36]. Additionally, the
noises that were previously masked by the ICE are now far more audible. From
a broader perspective, the major sources of noise in EVs (see Fig. (1)) can
be classified under three categories, namely tire-road interaction noise, aero-
dynamic wind noise, and e-powertrain noise. The first two sources form the20

background (or masking) noise and the primary source of tonal noise is from
electrified powertrains. Further classification is possible for noises originating
from electric powertrains: noises of mechanical origins, such as gear meshing
and shaft misalignment, aerodynamic origins from air flow through and over
the motor, and electromagnetic origins from electromagnetic interaction, refer25

to [19].
During vehicle design phase, computer simulations are often used to estimate

the vibration response and acoustic levels using detailed full-vehicle structural-
acoustic computational (refined 3D finite element) models, which are generally
time-consuming. However, during early stages of the design process, when quick30

assessments of different design alternatives is desired, such detailed 3D design-
based simulations are not feasible due to their time-intensive nature. Some other
challenges during early-stage BEV design process include the limited (or par-
tial) knowledge of unknown design parameter space, lack of simulated/measured
data, and variable driving conditions. The outcome of this is a substantial lack35

of credibility in the deterministically estimated dynamic responses due to un-
certainties originating from multiple sub-systems. Therefore, in order to have
more informative predictions, it becomes necessary to quantify such uncertain-
ties early in the design phase and assess the influence of the key design pa-
rameters on the resulting outputs. This is achieved using surrogate models (or40

metamodels) which are simpler approximations of a complex model depicting
the functional relationship between the inputs and the corresponding outputs
[4].

In automotive NVH domain, different metamodels have been employed to
achieve minimal engine noise, optimal vehicle mass, learning an aerodynamic45

wind-noise model, etc [45]. Nowadays, such surrogates are commonly needed
for performing optimization studies. With respect to the noise generated from
electrical machines, neural network based surrogate was built to predict the
natural frequencies of the stator, refer [43]. Likewise, Mohammadi et al. [31]
used three neural networks to predict the average torque, the torque ripple50

and the sound pressure level (SPL) for multi-objective optimization. In another
study by Ibrahim et al. [21], multiple surrogate models were compared to predict
the acoustic noise. As the electromagnetic excitations in e-machines can be
sensitive to even slight variations of the geometric and control parameters of the
active magnetic parts, it is important to consider such variations in the output55

predictions. In this regard, Jeannerot et al. [23] conducted a time-consuming
FEM-based probabilistic robust optimization of an e-machine to reduce SPL,
taking into account the variability of random parameters. Pulido et al. [2], on
the other hand, developed a Gaussian process surrogate model of an e-machine
using nonlinear FEM to account for uncertainty in torque, flux linkage, and60

3



core loss. Almost all prior studies have only evaluated SPL from e-machine
without taking into account the various transfer paths contributing to interior
cabin noise. As a result, a “global” perspective of metamodels with uncertain
parameters in BEVs global acoustic response was missing. This paper addresses
this gap.65

Probabilistic modelling provides flexibility to evaluate design alternatives
by yielding a probability density function (PDF) of the output responses. To
accomplish this, Monte Carlo (MC) simulation techniques have been primarily
used by researchers for the probabilistic quantification of uncertainties. In auto-
motive context, for instance, Durand et al. [13] built a non-parametric model to70

capture the variability in the booming noise prediction through random matri-
ces, see [39], quantified the variability in booming noise and body in-white, also
refer [1], and recently, Brogna et al. [8, 9] used Bayesian approaches with Gibbs
sampling to model global vibro-acoustic behaviours. When partial objective
knowledge/data about the system is available, the Bayesian approach is par-75

ticularly useful as it allows the incorporation of prior-knowledge (coming from
domain expertise/literature/measurement database, etc) in the form of PDF on
the uncertain parameters, making it a reasonable choice to be investigated. The
work presented here builds upon the ideas and research established in [9].

In the Bayesian framework, the learning process involves modifying the ini-80

tial probability statements/assumptions about the parameters before observing
the data to updated or posterior probabilities that combine both the prior-
knowledge and the data available. However, the posterior distribution can not
always be represented in a closed form and is difficult to compute due to in-
tractability issues. Therefore, sampling methods such as MC are used to sample85

from the unscaled posterior distribution which approximates the true distribu-
tion when the sample size is large enough, refer to [5, 17]. Also, it is important
to build models where the parameters have physical sense and are interpretable,
which in turn allows more control and flexibility over the output responses and
allows design loops (from an optimization-problem point of view). Therefore,90

a parametric surrogate modelling approach is investigated here, characterized
by a fixed number of physically pertinent key parameters that do not grow
with the size of the input data set. Such parametric models make stronger as-
sumptions on the nature of the data distribution and are generally faster than
the non-parametric models which are more flexible but often computationally95

intractable, refer to [32].
The SPL perceived inside a BEV is, indeed, dependent on many parame-

ters, for instance the operating speed of the e-machine, thereby defining the
vehicle’s wheel speed, environmental factors (e.g., road conditions), EV body
type (e.g., sedan, hatchback), etc. As can be seen from the global scheme in100

Fig. (1), all three major categories of sources of noise are dependent on the op-
erating conditions and when combined, different key performance indicators can
be estimated, like the prominence ratio, which results in the prominent tones
in the SPL spectra. In a recent article, Prakash et al. [35] developed Bayesian
surrogates to consider such background noises (dashed blue box in Fig. (1))105

using measurement databases. Hence, the focus of this article is on develop-
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Figure 1: Global scheme summarizing the perceived interior cabin noise due to three major
sources in a typical BEV

ing surrogate models for the electromagnetic whining noise originating from
e-powertrains, as depicted in the dashed red box in Fig. (1). As can be seen,
whining noise is a combination of airborne and structure-borne contributions.
In terms of SPL, it is given by their quadratic average as110

Lp(ω) = 10log10

〈
∣∣[HNTF(ω)QS(ω)]⊕ [HVTF(ω)FB(ω)]

∣∣2〉
p2

ref

, (1)

where ⊕ denotes the complex addition of airborne and structure-borne con-
tributions, Lp is the SPL in dB(A) inside the cabin as a complex function of

frequency ω in Hz, HNTF corresponds to the measured noise transfer function
(NTF) in Pa/(m3/s2), QS is the volume acceleration at the source location in
m3/s2, HVTF the measured vibration transfer function (VTF) in Pa/N, FB

115

the excitation force applied on the car-body side in N, and pref is the reference
sound pressure equal to 20 µPa.

Due to the complexity of global noise assessment involving the interaction
between different weakly-coupled physical mechanisms and design parameters,
a certain level of assumptions/simplifications is necessary. They are as follows:120

(1) The work considers an interior PMSM (IPMSM) in which the permanent
magnets are embedded in the rotor core. IPMSMs have been widely used in
EVs for traction application due to their high torque to inertia and volume
ratio and high efficiency [11]. Skewing and the magnetic saturation effects
are not taken into account for this early stage study.125

(2) The mechanical (e.g., gear whine) and aerodynamic noises in the power-
train are neglected and the focus of this article is only on the noise due to
electromagnetic origins.

(3) Assessment of airborne noise contribution involves the computation of the
radiated acoustic power, the equations for which are readily available in130
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the literature, for instance, refer [19]. Therefore, this study focuses on
assessing the interior SPL considering only the structure-borne path i.e, on
estimating F (ω) in Eqn. (1) and its dispersion. Nevertheless, the developed
methodology can be applied to airborne noise contribution as well.

The subsequent sections of this paper are structured as follows. Sec. (2)135

describes the physical problem and the modelling approach chosen for deter-
ministic evaluation of output responses. The methodology encompassing in-
put parameter sampling, simulated data generation, and the Bayesian-driven
metamodelling procedure is explained in Sec. (3). Within Sec. (4), the meta-
modelling strategy for the electric powertrain suspension is explained, wherein140

the Bayesian framework harmonizes with a dimensionality reduction technique.
The uncertainties from electric motor stage and eletric powertrain suspension
stage are coupled together to produce uncertain interior SPL, as described in
Sec. (5). The paper concludes with the validation of each physical block.

2. Physical problem description and modelling145

In this paper, a lower-case character denotes a scalar variable, a lower-case
bold character represents a vector, and a matrix is expressed as an upper-case
bold character. Later in the paper, random variables are introduced which are
expressed as upper-case characters.

2.1. Input parameters150

The noise perceived inside the cabin due to electric powertrain is assumed
to be largely dependent on three sets of parameters:

(1) parameters related to the operating conditions (OC) belonging to the set
POC ⊆ R2 which are typical client usage profiles collected during real driving
conditions (from existing similar vehicles). They are represented by the pair155

{Ω, τ}, where Ω is the speed in RPM and τ the torque generated by the
e-motor in Nm.

(2) geometrical parameters of IPMSM such as stator length, rotor outer diam-
eter, etc. belonging to the set Pgeo ⊆ Rngeo , where ngeo is the total number
of geometrical parameters considered.160

(3) control parameters that define the information related to the three-phase
sinusoidal current excitation, Pcontrol ⊆ R2. They consist of the pair {I, φ}
where, I is the root-mean-square (RMS) amplitude of the current in A and
φ is its phase angle in electrical degrees.

2.2. Multiphysical nature of electric powertrain noise assessment165

In IPMSMs, the input current harmonics, combined with the motor’s geome-
try and the winding pattern, result in the harmonic distribution of the magnetic
flux density in the airgap, thereby exerting electromagnetic (EM) forces on the
stator core and frame of the machine. As a consequence, the stator and the
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Figure 2: Overview of the multi-physical mechanism involved in the generation of whining
noise in BEVs. NTF and VTF are the measured noise transfer function and vibration transfer
function, respectively. The sections containing the details of each block are shown in paren-
theses.

frame vibrates at the corresponding excitation frequencies, generating magnetic170

noise and vibration.
The noise assessment of electric powertrains involves an interplay among

different weakly-coupled physical mechanisms, as shown in Fig. (2). Generally,
the methods used for noise assessment are categorized under numerical, semi-
analytical, and analytical methods. The computation of magnetic flux densities175

in the airgap is performed in the EM domain. In the structural domain, the ex-
citations coming from the EM-domain are first transformed from time-domain
to frequency domain and are then mapped onto the structural mesh. This can
easily be achieved using commercially available FE solvers as was done in many
previous studies, see for example, [23, 12]. Despite being more accurate than180

analytical or semi-analytical methods, such purely-numerical methods are time
consuming and prediction on wide-speed range becomes a challenge, as men-
tioned in [11]. Therefore, a common technique is to resort to semi-analytical
methods by calculating the EM force through a simplified 2D-FE model and
then obtain vibration and acoustic predictions using analytical approaches, as185

shown in [18, 14]. Indeed, the magnetic flux densities in the airgap can also
be estimated analytically using a magnetomotive force function and a perme-

7



ance function [19]. However, the precision of such purely-analytical models are
usually limited due to their simplification. Therefore, in this study, a more infor-
mative nominal model (using FEM) is preferred for computing the EM-domain.190

2.3. Semi-analytical nominal model for e-motor stage

The vector potential approach is utilized to solve the magnetic problem.
The use of the magnetic vector potential in 2D-FEM has a well-established
theoretical foundation, as described in, see for instance [25]. A 2D analysis of the
IPMSM is generally preferred since only the magnetic flux densities need to be195

estimated, neglecting thermal and time-dependent effects (which are generally
observed in 3D analyses). Also, under magnetostatic assumption, eddy current
and temperature dependent effects are not considered. The radial and tangential
Maxwell pressure, also referred to as the Airgap Surface Force (AGSF) in N/m2

applying on the stator core along the airgap δ, are given by ([33, 34]):200

Prad(Rδ, θ, t) = − 1

2µ0

(
B2

rad(Rδ, θ, t)−B2
tan(Rδ, θ, t)

)
, (2)

Ptan(Rδ, θ, t) = − 1

2µ0

(
Brad(Rδ, θ, t)Btan(Rδ, θ, t)

)
, (3)

where Rδ is the radius at which the pressure components are computed, usually
corresponding to the middle of the airgap, B is the magnetic flux density in T,
µ0 is the magnetic permeability of vacuum, θ ∈ [0, 2π) is the angular position,
and t is time. Taking the Fourier transform in both time and space, one gets
([33]):205

Prad(Rδ, θ, t) =

+∞∑
r=0,s=−∞

P̂ rad
r,s exp(rθ ± sωet+ φrad

r,s ), (4)

Ptan(Rδ, θ, t) =

+∞∑
r=0,s=−∞

P̂ tan
r,s exp(rθ ± sωet+ φtan

r,s ). (5)

where r is the spatial order of the force (also referred to as the angular “wavenum-
ber”) with respect to the angular position θ which determines the periodic shape
of the force distribution, s is the temporal order with respect to the mechanical
frequency ωe, and φr,s is the phase information associated with each harmonic.
The angular velocity of rotor in electrical degree is given by ωe = 2πfe, where210

fe is the fundamental stator winding electrical frequency. With Npp being the
number of pole-pairs and Ω the rotational speed in RPM, the electrical frequency
is given by

fe =
Ω

60
Npp, (6)

where fmech = Ω
60 is the mechanical frequency of rotation.

In this article, a progressive wave of spatial order r and frequency f is215

denoted by a pair (r, f), where r is an integral multiple of the greatest common
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divisor of (2Npp, Zs) with Zs being the number of stator slots, and can be given
by ([19, 48, 50]),

r = −2νNpp ± νZs. (7)

It corresponds to the slotting effect in PMSMs and mainly occurs at

f = sfe, s = 2ν, (8)

with ν ∈ {0, 1, 2, ...}. It is also worth noting that the mechanical order, given220

by kmech, and the electrical orders are related by the equation

kmech = sNpp. (9)

In the structural domain, the dynamic response of the stator is calculated by
the modal frequency response. To estimate the natural frequencies analytically,
the stator system is simplified by considering the stator core with teeth, winding
and the frame which are modelled separately. Then, the natural frequencies of225

the stator system can be approximated as (see [19])

f stat
mn ≈

1

2π

√
Kcore
m +Kframe

mn +Kwinding
m

M core +M frame +Mwinding
, (10)

wherem ∈ {0, 1, 2, ..., Nm} and n ∈ {1, 2, 3.., Nn} denote the circumferential and
axial nodes of the simplified subsystems, respectively, and K,M represent the
calculated stiffness in N/m and mass in kg of each subsystem, respectively. As
explained by Jean Le Besnerais in [27], the radial displacements of the stator-230

system depends on the ratio of the mean yoke radius and mean thickness as
well as on the spatial order r. The vibration amplitude is inversely proportional
to the fourth power of the spatial order and therefore, low spatial orders i.e.,
r ∈ {0,±8} are of interest and used for further investigation in this study.

3. Metamodelling for electromagnetic domain235

3.1. Problem statement

Metamodelling is a process that involves creating a simplified representation
of a complex system. In principle, it involves three main steps: first step is
the Design of Experiments (DOE), where the most important input features
are selected and sampled as per prior-knowledge; second step is to collect the240

data using measurements or simulations using the sampled input features from
the first step; and the final step is the metamodel development by choosing
an appropriate functional mapping that relates input features and the output
responses using statistical techniques, followed by metamodel validation and
exploitation [15]. In the context of this work, these steps are explained in the245

subsequent subsections.

9



3.2. Sampling of input parameters

The parameters defined by POC, Pgeo and Pcontrol are uncertain and their
uncertainty can be taken into account by modelling them as random variables.
In this study, real-life client driving profiles are made available a-priori which250

is represented as a joint-PDF of {Ω, τ}. This prior-knowledge is used to con-
sider uncertainty in the OCs by drawing samples from the available joint-PDF.
This can be achieved using marginal probability law and since the problem is
not high-dimensional, the required number of samples can be drawn with a
simple-inverse transform sampling technique. Note that the AGSF is primarily255

determined by the magnetic field distribution within the airgap, which, in turn,
is determined by the geometry of the motor, the magnetic properties of the rotor
and stator materials, and the current flowing through the stator windings. These
factors are not directly dependent on the rotational speed Ω, and therefore the
magnitude of the AGSF should remain constant under steady-state operating260

conditions. However, several other factors do depend on Ω such as the electrical
frequency of the stator current and thereby influencing the frequency at which
AGSF acts. Therefore, in this article, a total of NΩ,τ = 300 samples are drawn
from the available client-profiles and the kernel density estimated joint-PDF of
the drawn samples can be seen in Fig. (3). Here, the number of geometrical

Figure 3: Joint distribution of the sampled OCs {Ω, τ}. The two shaded curves at the edges
represent the marginal distributions of the respective variables

265

parameters considered is ngeo = 9, which corresponds to the macro-parameters
of the stator, the magnets and the frame of the IPMSM under consideration.
To incorporate randomness in Pgeo, each of geometrical parameters is assumed
to follow a reference-distribution. Note that the hyper-parameters (shape and
scale) of the reference distribution is chosen in such a way that it reflects some270

prior knowledge and is broad enough to accommodate various possible designs.
The required samples Nsp are then drawn and used as inputs to perform EM
computation. The reference distribution for each geometrical parameter is as-
sumed to be inverse-gamma with support (0,∞), which justifies its choice for
physical parameters lying in R+. The same argument is applicable for the pa-275
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rameters in Pcontrol; this can be collectively written as

xi ∼ InvGamma(ai, bi), ∀x ∈ Pgeo ∪ Pcontrol, (11)

where, a and b are the hyper-parameters controlling the shape and scale of
the distribution. The mean (µi) and the variance (σ2

i ) for an inverse-gamma
distribution allows the analyst to control the sampling range of random variables
and is given by:

µi =
b

a− 1
,∀a > 1; σ2

i =
b2

(a− 1)2(a− 2)
,∀a > 2.

A nominal IPMSM is considered with the same parameters as used for the study
in [48]. The architectural details along with the macro-design parameters are
presented in Tab. (1) and Tab. (2), respectively. The mean of the distribution for
each parameter in Pgeo and Pcontrol is set to the nominal value and the variance280

can be assigned as per analyst’s knowledge. For instance, the input parameters
can be drawn from a distribution with large variance, if precise information is not
available about the uncertainty of the input parameters. As mentioned, under
steady-state condition, the AGSF can be computed at a specific Ω using the
simplified 2D FE model (described in Sec. (2.2)), as AGSF remains constant for285

all rotational speed samples. For instance, in Fig. (4), the radial and tangential
components of the AGSF for the nominal design are plotted along the dominant
spatial and mechanical orders for Ω = 463 RPM, which gives fe = 30.87 Hz and
fmech = 7.72 Hz. Therefore, as per Eqn. (8), the resulting frequency follows the
integral multiples of f = 62 Hz. In this study, Nsp = 500 is considered and the290

EM computations are performed using an open-source electromagnetic solver
FEMM [30] coupled with Python-based open-source package Pyleecan [6].

3.3. Simulated data generation for EM forces

For the set of input parameters Pgeo ⊆ RNsp×ngeo and Pcontrol ⊆ RNsp×2 at
the first sampled speed, Ω = 463 RPM, the resulting AGSF at the dominant295

spatial frequencies is given by Y ∈ RNsp×Nf , where Nf is the number of fre-
quency bins. Since the combined effect of both radial and tangential pressure
components is considered, at each spatial order r ∈ {−8, 0,+8}, the magnitude
of AGSF is considered as

AGSFr =
√
|P̂ rad
r,s |2 + |P̂ tan

r,s |2. (12)

Fig. (5) depicts the AGSF at different spatial orders along the first ten frequen-300

cies. Each frequency bin corresponds to a specific mechanical or electrical order.
For simplicity, only the data at r = 0 (i.e., the data depicted in Fig. (5b)) is
considered first for further analysis, but the same approach holds true for other
spatial orders as well.
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Parameters Value

Number of pairs of poles (Npp) 4
Number of slots (Zs) 48
Stator phase number 3

I 250 A
φ 140°

Table 1: IPMSM architectural details

Parameter Value in mm

Stator
Outer radius (Ros) 134.62
Inner radius (Ris) 80.95
Stack length (Ls) 83.82

Frame
Outer radius (Rof) 144
Inner radius (Rif) 136

Length (Lf) 150

Magnet
Height (Hm) 6.5
Length (Lm) 18.9

Distance (Dm) 14

Table 2: IPMSM macro-design parameters for the e-machine considered here as an example

3.4. Multivariate multi-target parametric metamodel305

In the case of stochastic setting, let Xi, i = 1, ..., Np denote the random
input parameters (from {POC ∪ Pgeo ∪ Pcontrol}) and X = (X1, X2, .., XNp)T

be the random vector corresponding to such uncertain inputs defined on the
probability space ($,A ,P) with $ the underlying sample space, A the σ-
algebra, and P : A 7→ [0, 1] the probability measure, such that X : $ 7→ RNp .310

A realization of X is denoted by x := X(ξ) ∈ RNp , for ξ ∈ $. Under the
assumption that parameters are statistically independent, the joint-PDF of the
random input vector is given by

pX(x) =

Np∏
i=1

pXi(x). (13)

With the random input vector X, the simulation model returns random output
response Y = (Y1, Y2, ..., YNf )T and can be written as315

M(X) : $ 7→ RNf+ . (14)

A realization of M(X) is denoted by y := M
(
X(ξ)

)
resulting in a sample

of the form (x,y). Let D , {(xi,yi)}
Nsp

i=1 denote the data consisting of Nsp

samples with the input parameters xi ∈ RNp and the corresponding output

12



(a)

(b)

Figure 4: Air-gap surface force [N/m2] along dominant spatial and mechanical orders, com-

puted for Ω = 463 RPM. (a) shows the radial component of AGSF |P̂ rad
r,s |, and (b) shows the

tangential component of AGSF |P̂ tan
r,s |

responses yi ∈ RNf+ generated from the randomized simulation model as stated
in Eqn. (14). SinceM is computationally expensive, the goal here is to find the320

unknown forward functional mapping or metamodel

M̃ : RNp 7→ RNf+ (15)

x 7→ y

which is a simplified parametric approximation of the simulation model de-
scribed in Eqn. (14), that predicts y for any future value of x. In this particular
case, it becomes a multi-target multivariate regression problem, where the vector
valued input predictors are mapped to vector valued output responses. Multi-325

target regression problem considers each target (or output response, for instance
in this work, AGSF value at a particular frequency point corresponds to a single
target) as a separate regression problem. This is analogous to obtaining a typi-
cal response from multiple-input multiple-output (MIMO) system in structural
dynamics. Several different approaches have been proposed in the past for pa-330

rameterizing M̃(X), see [32, 40, 44]. Specifically, in the context of multi-target
regression, a broad classification of methods is presented in [7]. From a wide

13



(a)

(b)

(c)

Figure 5: Air-gap surface force [N/m2] samples generated for different spatial orders at Ω =
463 RPM for three different spatial orders (a) shows AGSF for r = −8, (b) for r = 0 and (c)
for r = +8

plethora of methods available in the literature, problem transformation method
based on single-target method is exploited in this work, where a multi-target

model M̃ is transformed into several single-target problems. Since the problem335

is not high-dimensional, polynomial basis functions can be used to represent the
observed output responses.

For the given D, the multi-target model M̃ comprises of Nf single-target
models given by

M̃k : RNp 7→ R+, k ∈ {1, 2, .., Nf} (16)

where each model M̃k is trained on Dk , {(xi, yi(k))}
Nsp

i=1 to predict the value340

of the single target variable Yk. Considering polynomial basis functions, each
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output variable can then be written as ([16])

Yk = M̃k(X,θ) + εk, (17)

M̃k(X,θ) = θ0,k +

Np∑
j=1

Nl∑
l=1

X l
jθj,l,k, (18)

where Nl is the degree of the polynomial, θ0,k the intercept term, θj,l,k represent
the unknown coefficients, and εk the fitting error consisting of modelling error
and is assumed to be a zero mean Gaussian noise with variance σ2

y.345

3.5. Deterministic check for multi-target regression model

Before proceeding with the stochastic analysis using Bayesian approach, a
fundamental practice is to perform the deterministic model evaluation to check
the generalization error of the model developed. As discussed in [35], k-fold
cross-validation (CV) technique can be used to validate the model with suf-350

ficient accuracy. Note that, the number of folds depends on the amount of
data available, so that each training set is representative of the entire available
dataset. The CV process is repeated multiple times to consider the shuffling of
the original dataset which allows the model to learn from a more representa-
tive data sample in the CV-training batch which leads to better performance355

and generalization property of the model. Considering the available simulated
dataset D and formulating a linear regression problem, as shown in Eqn. (14),
the mean value of the coefficient of determination R2-score is close to 94% and
the root-mean-squared-error (RMSE) ≈ 0.6. Some other metrics, for instance,
the relative-RMSE, can also be evaluated (see e.g., [7]).360

Once the deterministic model is validated with sufficient accuracy, stochas-
ticity in the model can be induced using Bayesian modelling approach, which is
described in the next subsection.

3.6. Bayesian hierarchical model for forward analysis

Bayesian networks are probabilistic directed acyclic graphical models used365

to represent the relationships between random variables. It consists of nodes
representing random variables and directed edges between them representing
the probabilistic dependencies between those variables [32]. The main goal of
performing the Bayesian analysis is to combine the prior knowledge with the
available data to quantify the uncertainties in the output responses. In prin-370

ciple, the wide-range of input parameters used to generate the simulated data
through model M (i.e. the simplified 2D-FE model) for the training process
(using reference distribution) can be different from the ones that would poten-
tially be generated by the analyst intending to use the metamodel for answering
particular questions. In this regard, a two-stage Bayesian network is developed375

in which the first-stage represents the classical metamodel training stage with
reference distributions along with Bayesian model evaluation checks, and the
second-stage deals in generating the posterior samples from the learned uncer-
tain parameters, thereby propagating the uncertainties to other domains.
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3.6.1. Metamodel training stage380

The available simulated data D is first divided into training and validation

datasets. Consider D† to be the training data with X † ∈ RN
†
sp×Np the input

training matrix of predictor variables, Y† ∈ RN
†
sp×Nf the corresponding output

training matrix, and N†sp the training samples. Following Eqn. (18), the multi-
target model for the output training matrix can be written as385

Y† = M̃(X †,Θ) + E, (19)

M̃(X †,Θ) = XΘ, (20)

where, X =
[
1X †X †�2 ...X †�Nl

]
∈ RNsp×(NlNp+1) is the augmented predictor

matrix, Θ =
[
θ0 θ1 θ2 ...θNl

]
∈ R(NlNp+1)×Nf is the matrix containing the

unknown coefficients, and E ∈ RN
†
sp×Nf is the matrix of errors.

Let the “prior” PDF of the parameters Θ be given by p(Θ), f(Y†|Θ,X †)
denote the “likelihood” of observing the data given the parameters, and p(Θ|D†)390

denote the “full posterior distribution” of the parameters conditional on the
observed (simulated) training data D†. Using Bayes’ theorem, the posterior
distribution p(Θ|D†) can be approximated from the unscaled distribution given
by ([5, 17])

p(Θ|D†) ∝ f(Y†|Θ,X †)p(Θ). (21)

Markov Chain Monte Carlo (MCMC) methods are used to sample from this395

unscaled distribution which approximates the true distribution provided that
the sample size is large enough.

During the training stage, the following steps are followed which are also
described as a hierarchical model in Fig. (7).

(1) Firstly, the training data is log-transformed in order to reduce the skew-400

ness and then it is standardized as shown in Fig. (6). It is assumed that
this transformed training data is distributed as per the Normal distribution
with mean given by the model shown in Eqn. (20), and variance σ2

y. Indeed,
even after transformation, the data shows slight skewness (see Fig. (6b)) and
could be modelled using a skew-Normal distribution, which is a generaliza-405

tion of the Normal distribution that allows for non-zero skewness. However,
for the sake of simplicity and without the loss of generality, the normality as-
sumption is considered in this work. Furthermore, several normality checks
exist in the literature that can be evaluated and necessary transformations
can be applied [10].410

(2) Formulate the function M̃(X †,Θ) as a linear model withNl = 1 in Eqn. (20).
It is the vector-valued mean of the model output given the parameters and
the training data X †. Each unknown coefficient is modelled as a random
variable following a prior-PDF characterized by its own hyper-parameters
controlling the shape of the distribution. In this study, the unknown model415

coefficients (the intercept term is ignored as the data are centered before
performing the analysis) are assumed to follow a Normal distribution, where
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(a) (b)

Figure 6: Data transformation to better represent the assumption of Bayesian modelling ap-
proach. (a) shows the occurrences of the original output training data, and (b) the occurrences
of the output training data after their standardized transformation

the hyper-parameters are denoted by {a, b}, representing the mean and vari-
ance of each distribution. Hyper-priors are also considered, for instance, µα
in Fig. (7), depicting the level of uncertainty on the mean of the hyper-420

parameters. Likelihood and the prior-distributions are written as

Y†|Θ,X † ∼ N (M̃(X †,Θ),σ2
y), (22)

θj,k ∼ N (µθ, bθ), (23)

µθ ∼ N (aµθ , bµθ ), (24)

∀j ∈ {1, .., Np}, k ∈ {1, .., Nf}

(3) The model considers heteroscedasticity1 in the observations and therefore,
the variance is distributed accordingly along the input frequency range and
follows the inverse-gamma distribution:

σ2
y,k ∼ InvGamma(aσ, bσ),∀k ∈ {1, .., Nf} (25)

(4) Compute the posterior distribution of each random parameter using Hamil-425

tonian Monte Carlo approach, specifically NUTS algorithm [20], modelled
using an open-source library PyMC3 [37]. A total of 4 different MCMC
chains were simulated resulting in 10,000 samples from which first 500 sam-
ples from each chain were discarded (commonly referred to as the “burn-
in” process) to let the chain converge to its stationary distribution. The430

marginalized posterior distribution of each random parameter in the model

1Heteroscedasticity refers to the property of a dataset where the dispersion of the depen-
dent variable (output response) around its mean is not constant along the space of independent
variables.
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is shown in Fig. (8). Due to the high-dimensionality and random nature
of the coefficient matrix θ ∈ R(Np×Nf ), where each variable represents a
random parameter, presenting all PDFs on a single plot may lead to po-
tential confusion. Consequently, in order to enhance comprehension, the435

box-plots of the PDFs associated with the predictor variables are consid-
ered at each frequency point, as illustrated in Fig. (8b). This also provides
an estimate on the degree of influence each parameter has on the output at
each frequency point.

Figure 7: Bayesian hierarchical model. Key: rectangular boxes for deterministic data, random
variables are shown in circles, diamonds represent the hyper-parameters of prior-distributions,
and rounded boxes represent the replication of variables following the plate notation

3.6.2. Bayesian metamodel validation440

The trained Bayesian model must be validated on the basis of the approx-
imated posterior distribution of each unknown random parameter and its pre-
dictive capability on the validation dataset given by D‡ , (X ‡,Y‡) such that
D = D† ∪ D‡, with X ‡,Y‡ being the input/output validation matrices, respec-
tively. There are several numerical and visual tools available in the literature to445

diagnose the MCMC sampling process (refer to [17]). For the current developed
model, the Gelman-Rubin statistic [17] R̂ = 1.0, indicating that all chains are
sampling from the same posterior distribution with the effective sample size [42]
of more than 5000 (out of 10,000 samples) for each random variable, thereby
indicating low level of autocorrelation among the posterior samples. Model val-450

idation by considering the uncertainty about the parameter values as well as
the data generating process is also performed using posterior predictive checks,
where the idea is to draw the samples from the posterior distribution of param-
eters, generate the replicated data (with X †) and compare it with the observed
data. The posterior predictive distribution of the replicated data (Yrep) is given455

by

p(Yrep|D†) =

∫
p(Yrep|Θ,X †)p(Θ|D†)dΘ (26)
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(a)

(b)

Figure 8: Posterior distributions of random variables in the Bayesian hierarchical model. (a)
depicts the posterior distribution of 1000 posterior samples of the random variables σ2

y and
µθ, and (b) shows the box-and-whiskers plot of posterior samples of all predictor variables at
each frequency point (only first eight dominant targets are shown) contained in the random
variable θ

The distribution of replicated data is compared against the distribution of origi-
nal data, both for the overall marginalized distribution and also for the marginal-
ized distribution at each frequency bin (or target), as shown in Fig. (9). It is
noticed that the model is able to capture the pattern in the training data. How-460

ever, when the data distribution exhibits bimodality, for instance at 0 Hz and
185 Hz, such a simple model may not be able to capture different modes. In
such cases, mixture models [41] are more suitable. Nevertheless, the assumed
model is sufficiently accurate for the application in this work. Indeed, Bayesian
p-values can also be used by specifying a test statistic (e.g., difference between465

true and predicted values) to check if the replicated data is more extreme than
the observed data [17].
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(a)

(b)

Figure 9: Posterior predictive check. (a) shows the marginalized distributions of the overall
training data and the overall replicated data, and (b) shows the marginalized distributions of
the training data and the replicated data at each frequency bin

3.6.3. Exploitation of Bayesian metamodel

Conditioning on the observed training data D†, Bayesian approach results in
the posterior distribution of unknown random parameters in the model p(Θ|D†),470

which is then used to determine the posterior predictive distribution (a refor-
mulation of Eqn. (26)):

p(Ỹ |X̃ ,D†) =

∫
p(Ỹ |Θ, X̃ )p(Θ|D†)dΘ (27)

where, X̃ is the newly generated input parameters (depending on the analyst’s
prior-knowledge about the physical parameters) and Ỹ are the corresponding
predicted samples. This exploitation stage of the metamodel is shown as a rather475

“light” Bayesian scheme in Fig. (10), where the hyper-parameters describing the
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uncertainty on the physical parameters are denoted by ãγ , b̃γ ,∀γ ∈ {1, 2, ..., Np}.
As an example, considering the validation data set D‡, and letting X̃ = X ‡, then
Ñsp samples can be drawn from the posterior predictive distribution as shown
in Fig. (11). The uncertainty estimates using box-and-whiskers are plotted and480

it is clear that the inter-quartile range varies across the spatial frequencies and
the prediction follow the pattern, for instance high AGSF at 0 Hz for r = 0, as
observed in the labelled validation data Y‡ (shown as blue dots in Fig. (11)).

On the basis of these posterior predictive samples Ỹ and the uncertain in-
put parameters generated in X̃ , the uncertainties can be propagated to the485

dynamic displacement of the machine under consideration, which is discussed
in the following subsection.

Figure 10: Scheme depicting the exploitation phase of Bayesian metamodel (Key to identify
different elements and relationships remains same as used in Fig. (7))

Figure 11: Posterior predictive samples for the validation dataset D‡ at r = 0. Blue dots
are the AGSF values retained in Y‡. Box and whiskers represent the extent of samples with
quantiles. The axes shown on top of the figure depict the dominant orders (both mechanical
and electrical) as a pair (r, sfe) or (r, kmechfmech) at the corresponding frequency
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3.7. Propagation of uncertainties in electric motor stage

The dynamic vibration displacement of the IPMSM surface is directly de-
pendent on the harmonic characteristics of magnetic excitation and the nat-490

ural frequencies and mode shapes of the stator-system (refer to Eqn. (10)).
The uncertainties in the magnetic excitation is captured through the Bayesian
metamodel developed in the previous subsection. The uncertain geometrical
parameters Pgeo directly influences the natural frequency of the system. Since
a semi-analytical approach is exploited here, a simplified homogenized stator-495

system is assumed as a finite length cylindrical shell clamped at both ends and
then the root-mean-square (RMS) vibration displacement at frequency ω = 2πf
can be estimated analytically as

URMS
k (ω) =

√
1

3

∑
i

(
|Ui,k(ω)|2

)
, ∀k ∈ Nf , (28)

where URMS
k ∈ R+ is the RMS vibration displacement at each mechanical order

indexed by k, Nf is the number of mechanical orders considered, and Ui,k(ω)500

is the vibration displacement in axial, circumferential and radial directions,
indexed by i ∈ {u, v, w}, respectively as per, see [19, 28]. For NΩ sampled

speeds, URMS(ω) is stacked in a matrix URMS(ω) ∈ RNΩ×Nf
+ . These vibration

displacements are transmitted to the car-body through powertrain mounting
system as described in the next section.505

4. Metamodelling for electric powertrain suspension

4.1. Problem statement

In order to mitigate the vibrational energy transmitting from the e-powertrain
to the vehicle body side, powertrain mounts are generally installed between
them. The primary function of the engine mounts is to reduce the transmis-510

sion of dynamic forces at lower frequencies and provide a static support to the
powertrain weight. In the literature, the analysis of vibration characteristics
of powertrain mount systems focused mostly on internal combustion engines
(ICE), see [38]. However, the vibrations transmitted from e-powertrain is quite
different from the classical ICE powered drivetrains as e-motors have lower iner-515

tia, vibrates at higher frequencies and lower amplitudes along with the reverse
torque. Nevertheless, globally for e-powertrains, some design considerations re-
garding the mounting architecture remains the same with certain modifications
to adapt the electrification. Different models have been realized in the litera-
ture to study the dynamic behavior of e-powertrain mount resonances with its520

dynamic mass participation and with different mounting architectures, refer to
[49, 47, 26].

As the scope of this paper is rather global, a few degrees of freedom (dof) lin-
earized model is sufficient to model the forces transmitting from the e-powertrain
to the mounts on the vehicle body. In this context, an internal Stellantis tool525
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has been used to estimate these forces by considering a three-point suspen-
sion architecture, consisting of three mounts each with three translational dofs
(x, y, z directions), thereby accounting for a total of 9 input dofs, hereafter
denoted as Nd. As shown in Fig. (12), for this typical 3-point architecture,
the vibrational energy from the surface of the e-motor is first transmitted to530

the powertrain mounts {Mi : i ∈ {1, 2, 3}} through the respective lumped
stiffnesses given by {K̄i : i ∈ {1, 2, 3}} and then to the car-body interface
through the mount stiffnesses {Ki, i ∈ {1, 2, 3}}. Let {K̄i = 1 : ∀i ∈ {1, 2, 3}}
to consider zero-loss transmission from e-motor to its respective mounts and
assume a unit excitation being imposed on each dof. The model acts as a535

transfer function for each dof, whose output is to be multiplied by the true
vibration displacements computed (semi-analytically) using Eqn. (28). Let

3

3

Figure 12: A simplified schematic of a typical 3-point e-powertrain suspension architecture
showing three mounts (M1: Left mount, M2: Right mount, and M3: Cradle point)

HMB
d,k (ω) ∈ CNΩ×1, ∀d ∈ {1, 2, .., Nd},∀k ∈ {1, 2, .., Nf} be a frequency de-

pendent transfer function that maps the RMS vibration displacements given by
URMS
k (ω) := URMS

[:,k] ∈ RNΩ×1
+ to the output car-body forces FB

d,k(ω) ∈ CNΩ×1
540

for each dof and each spatial order such that

FB
d,k(ω) = |HMB

d,k (ω)| �URMS
k (ω), (29)

where � represents the Hadamard product for element-wise multiplication.
To account for the uncertainties in the mounting behavior through the trans-

fer function model HMB
d,k (ω), the spatial coordinates and stiffness parameters of

the rubber mounts Mi are assumed random and distributed as per their respec-545

tive reference distributions as

cd ∼ N (gc
d, h

c
d), (30)

kd ∼ InvGamma(gk
d , h

k
d), (31)

∀d ∈ {1, ..., Nd}, (32)

where “c” and “k” represents the position coordinate and the stiffness parame-
ter of the rubber mount, respectively characterized with their hyper-parameters.
Then, Latin hypercube sampling [29], a widely used stratified sampling tech-
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nique, is employed to sample from these distributions once the values for the550

hyperparameters are decided.
A similar Bayesian framework is applied as the one used for training and

validating the electromagnetic forces in e-motor stage. However, the output
space for EM-domain depends on the number of mechanical orders Nf , which
is usually low while dealing with electromagnetic NVH issues. In the case of555

e-powertrain suspension, the dimensions of the output space is directly propor-
tional to the number of sampled speed profiles NΩ in POC, which in turn defines
the frequency resolution of the transfer function spectra. Hence, to efficiently
compute the training phase, data reduction techniques are needed to be applied
to the response; then Bayesian training will be performed on the transformed560

components.

4.2. Bayesian principal component regression with data reduction
Bayesian principal component regression (BPCR) essentially involves two

steps: First, the principal component analysis (PCA) [46] is performed on the
output training matrix to obtain the orthogonal principal components (PCs).565

Then, a small subset of PCs containing most of the “information” is chosen
(resulting in dimensionality reduction) to perform Bayesian regression to predict
the response variable. To determine the number of PCs to retain, multiple
methods have been proposed in the literature and grouped under subjective
(e.g., scree plots), distribution-based (e.g., Barlett’s test), and computational570

procedures (e.g., cross-validation), see [24]. In this article, percentage of total
variance explained by a subset S of PCs is used as a measure to retain the
number of components.

Let the complex-valued output training data (transfer function) be defined

as Y†d,∀d ∈ {1, 2, .., Nd}. Applying PCA and retaining q = |S| < NΩ PCs such575

that
Y†d ∈ CN†sp×NΩ 7→ Ȳ†d ∈ CN†sp×q, (33)

where Ȳ†d denotes the column-stacking of PCs and N†sp the total number of
training samples. For a given PC, the proportion of total variance it accounts
for is given by:

Cj =
λj∑q
i=1 λi

, λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λNΩ
, (34)

where λj is the corresponding eigenvalue. The percentage of total variance580

explained by the PCs in S is given by,
∑
j∈S Cj ×100% and q is selected as per

q = arg min
|S|

∣∣∑
j∈S

Cj − Vthresh

∣∣, (35)

where Vthresh is the specified threshold value for the total variance explained by
the subset.

The same approach is followed for the metamodel training as presented in
Sec. (3.6.1) with the difference that, it is now trained on PCs. The Bayesian585
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model for each dof reads

Ȳ†d|Θ̄, X̄† ∼ N (M̃(X̄†, Θ̄), σ̄2
y), (36)

θ̄0,k ∼ N (ā0, b̄0), (37)

θ̄i,ν,κ ∼ N (āi, b̄i), (38)

σ̄2
y,κ ∼ InvGamma(āσ, b̄σ) (39)

∀i ∈ {1, .., Nl}, ν ∈ {1, .., 2Nd}, κ ∈ {1, .., q},

where X̄† ∈ RN†sp×2Nd is the predictor matrix (different from e-motor stage meta-
model), •̄ denotes that the parameters involved in this training stage is related
to the PCs and not to the real training data, and the surrogate function is
formulated using the same basis expansion as used in Sec. (3.6.1),590

M̃(X̄†, Θ̄) = ˆ̄X†Θ̄, (40)

where the augmented predictor matrix is given by ˆ̄X† ∈ RN†sp×(2NlNd+1) and
Θ̄ =

[
θ̄0 θ̄1 θ̄2 ... θ̄Nl

]
∈ R(2NlNd+1)×q is the matrix containing the unknown

coefficients.
The predictive distribution of the transformed posterior samples is as per

Eqn. (26). However, these samples are needed to be transformed back to obtain595

the true predictions. Let V ∈ CNΩ×q be the matrix of q PCs, then the reduced
transformed data are given by

Ȳ†d = Y†dV (41)

Consider Npost samples are drawn from the posterior distribution p(Ȳ†d|Θ̄, X̄†)
such that a particular sample is given by Ȳd ∈ Cq, then the true prediction for
a particular dof is obtained using600

Ỹd = ȲdVT. (42)

4.3. Application of BPCR on a typical e-powertrain architecture

In this article, Vthresh = 97.5% and a Scree plot for a particular dof is shown
in Fig. (13), taking this as a criterion to select the number of PCs to retain.

The magnitude of the posterior samples drawn from the posterior predictive
distribution through the left mount (M1) to the vehicle-body at mechanical or-605

der k = 8, under unit displacement imposition, can be seen in Fig. (14). This
metamodel helps in understanding how the forces acting on the car-body change
with varying frequencies. It can be observed that the model is able to predict
the peaks due to resonance along with the uncertainty bands, as confirmed by
the pattern observed in validation data. It is worth noting that this transfor-610

mation introduces an inherent reconstruction error. However, considering that
the selected PCs effectively account for 97.5% of the cumulative data variance,
the inference drawn is that the reconstruction quality is deemed acceptable.
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Figure 13: Scree plot depicting the total variance explained by each PC. The highlighted
star-marked point indicates that 97.5% of the total variation is explained by the first 6 PCs

5. Interior sound pressure level through coupled stochastic metamod-
els615

In this section, an example use-case is considered where low prior-knowledge
is assumed on the physical parameters. Let X̃ , X̃ be the random input realiza-
tions from their respective input PDFs in e-motor and vehicle stage respectively,
then the two stochastic metamodels developed in this work are

M̃ : X̃ ∈ RNp 7→ Ỹ ∈ RNf , (43)

M̃ : X̃ ∈ R2Nd 7→ Ỹ ∈ CNΩ , (44)

where Ỹ, Ỹ are the corresponding random responses. The model in Eqn. (43)620

results in random EM-forces which in turn produces uncertain vibration dis-
placements (refer to Sec. (3)), and the model in Eqn. (44) captures the un-
certainties in the transfer function from powertrain mounting system to the
vehicle-body through BPCR framework including the inverse PCA map. Using
Eqn. (29), the posterior samples from each of the metamodels are combined to625

obtain the uncertain forces acting on the vehicle-body, which when multiplied
with the measured transfer function data gives the SPL inside the cabin due to
structure-borne contribution, as shown in Fig. (15). The frequency range for
the measurement was [20, 2048] Hz and the response was recorded for multiple
locations inside the cabin (two front left seat, two back left seat, etc.). The630

mean of front left seat measurements is considered here.
At each dof, the e-powertrain suspension metamodel has been trained and

the acoustic levels are predicted at each specific mechanical order. The frequency
resolution depends on the number of sampled speed profiles and therefore, NΩ =
300 is chosen which provides sufficient resolution and the BPCR framework635

can train models efficiently, which would have been time-consuming otherwise.
The total contribution from a particular mount can be computed by taking
the quadratic average of contributions in all three directions as a global NVH
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Figure 14: Magnitude of posterior predicted samples of the transfer function HMB
d,k from the

left mount to the vehicle body in all three directions for the mechanical order k = 8

estimator.

6. Validation640

The validation of the developed stochastic scheme for the structure-borne
whining noise can be done by employing two distinct approaches: first, direct
validation by measuring the SPL inside the cabin and then overlaying the mea-
sured data on the estimated dispersed data; second approach is, a block-wise
validation scheme considering the electromagnetic, structural, and coupling do-645

mains separately, for the different domains shown in Fig. (2). Despite serving
as a crucial benchmark for method evaluation, with direct validation approach,
the measured SPL data must be readily available for specific e-machine config-
urations, which is usually limited or nonexistent in the early stages of design.
On the other hand, block-wise validation approach can be used in the absence650

of measured data and in identifying any limitations or discrepancies in each
domain, allowing for targeted improvements or adjustments to the method de-
veloped.

6.1. Validation of EM-domain

The EM-domain is validated by comparing the average EM torque (see, see655

[34] for more details on EM torque computation using Maxwell Stress Tensor
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(a) (b)

(c) (d)

Figure 15: Interior SPL through left mount (M1) for a particular mechanical order k = 8. (a)
Interior SPL contribution in x direction, (b) for y direction, (c) for z direction, and (d) shows
the total contribution considering all three directions

method) from the simulated data using Pyleecan and the measured data used
in the reference article by Yang et al. [48], in which the measurement was done
on the same e-machine configuration as used in this study (refer to the nominal
parameters in Tab. (2)). Fig. (16) shows that the simulated EM torque values660

and thereby the AGSF agree well with the measured data at different OCs.

6.2. Validation of structural domain

In structural domain, the analytical estimation of natural frequencies f stat
mn

in Eqn. (10) and mode shapes of the simplified stator-system follow the classical
thin-cylindrical shell theory equations as used in [28, 19]. Fig. (17) shows good665

correlation, especially for n = 1, of the estimated natural frequencies with the
referenced data available in [19]. Some deviation from the reference data is
expected as the e-machine is modeled using the open-source tool, where the
micro-geometrical parameters are assumed to be fixed at a certain value. The
estimation of RMS vibration displacement through modal expansion follows the670

classical approach of using the modal functions for a finite length cylindrical
shell clamped at both ends. In the literature, such analytical estimations have
been validated by using 2D/3D-finite element analyses (see for instance, [22]).
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Figure 16: Comparison of average electromagnetic torque from simulated data using the open-
source tool and the reference data (measured in [48]) at Ω = 1000 RPM for 13 OCs

Figure 17: Comparison of natural frequencies of the stator system (design parameters same
as the one used in [18], [page 117]) between the referenced data and the estimated data for
different (m,n) pairs
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6.3. Validation of the in-house developed e-powertrain suspension model

For the validation of the in-house developed model for transmitting vibra-675

tions from e-motor to the mounts on the car-body side, the calculated vibration
accelerations at each dof is compared against the measured data for each spa-
tial order. The measurement is done for a speed ramp-up [600 − 13000] RPM,
considering an in-house IPMSM (under mass-production) with 48 slots and 8
poles but with different dimensions than the one used in Sec. (3). In Fig. (18),680

the vibration acceleration plots for an order of 8.86 are presented. It is evident
from the analysis that the simulated (assumed deterministic) responses align
closely with the measured data for each dof. Similar plots have been studied for
different mechanical and spatial orders.

Figure 18: Comparison of vibration accelerations on 3 mounts at a specific mechanical order
8.86. (a) shows the vibration acceleration on mount M1, (b) for mount M2 and (c) for mount
M3

7. Conclusions685

In this article, stochastic predictive metamodels are developed within the
Bayesian paradigm to efficiently incorporate a-priori domain knowledge along
with the available data. The developed framework considers Bayesian model
training, validation, and exploitation through multivariate-regression along with
the objective engineering based assessment of the hyper-parameters. Multiple690

metamodels allow the quantification and propagation of uncertainties from the
EM-domain to the structural domain and then through the e-powertrain mount-
ing system to the vehicle-body. The data used for modeling are generated using
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a semi-analytical approach. Due to the time-efficient sampling from the poste-
rior distribution using MCMC process, further accelerated by BPCR framework,695

NVH risks can be assessed during the early stages of the design process. The
knowledge gained could facilitate in prioritizing suitable noise mitigation tech-
niques that can be implemented, as well as state of the art methodologies for
addressing technical requirements.

For perspectives, uncertainties coming from the available measured data700

could be considered along with efficient data reduction techniques improving
further the performance of the metamodel training stage. A comprehensive
“global” metamodel would then include not just the estimates from structure-
borne contribution but also from airborne contribution. Moreover, such meta-
models would allow, as a straight forward usage of the stochastic metamodel,705

performing efficient sensitivity analysis to infer information about the most in-
fluential design parameters.
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