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Abstract

We consider the Ising model on a supercritical Galton–Watson tree Tn of depth n
with a sparse random external field, given by a collection of i.i.d. Bernouilli random
variables with vanishing parameter pn. This may me viewed as a toy model for the
Ising model on a configuration model with a few interfering external vertices carrying
a plus spin: the question is to know how many (or how few) interfering vertices
are enough to influence the whole graph. Our main result consists in providing a
necessary and sufficient condition on the parameters (pn)n⩾0 for the root of Tn to
remain magnetized in the large n limit. Our model is closely related to the Ising
model on a (random) pruned sub-tree T∗

n with plus boundary condition; one key
result is that this pruned tree turns out to be an inhomogeneous, n-dependent,
Branching Process. We then use standard tools such as tree recursions and non-
linear capacities to study the Ising model on this sequence of Galton–Watson trees;
one difficulty is that the offspring distributions of T∗

n, in addition to vary along the
generations 0 ⩽ k ⩽ n− 1, also depend on n.

Keywords: Ising model, random graphs, random external field, phase transition.
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Figure 1: A tree of depth n = 15 and its pruned version by a Bernoulli process on its leaves.
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1 Introduction of the model and main results

The Ising model is a celebrated model, studied in depths for over 100 years. It was
first introduced by Wilhelm Lenz and Ernst Ising as a model for magnetism, and was
originally defined on regular lattices; we refer for instance to the books [4, 15] for a
general introduction. Later, the Ising model was also studied on different types of
graphs, starting with regular structures such as the Bethe lattice or Cayley tree, see [28]
for an extensive summary on the subject. The seminal article [19], in which Lyons
identifies the critical temperature of the model on an arbitrary infinite tree, opened the
way to the study of the Ising model and other statistical mechanics models on tree-like
graphs, and, more generally, on random graphs (see for instance [22]).

Motivated by the interest of the model to describe complex networks (see [13] for
a review), the literature on the Ising model on random graphs has grown considerably
in recent years. Let us mention a few relevant results on the subject. First, for the
Ising model on quenched random graphs, the thermodynamic limit of has been studied
in [10, 9, 11] as well as its critical behavior in [12, 17]. Thereafter, the annealed Ising
model has also gotten some attention, see for instance [5, 6] references therein. More
recently, the local weak limit of the Ising model on locally tree-like random graphs was
considered in [1, 23].

However, most of the literature on the Ising model on random graphs considers free
or plus boundary conditions or a homogeneous external field, but there does not seem
to be many results when the boundary conditions or the external field are random (and
depend on the size of the graph). In the present paper, we consider the Ising model
on the simplest random graph possible, a Galton–Watson tree of depth n, but with a
sparse random external field (which may be restricted to the boundary, which is close
to being a boundary condition) whose distribution depends on n. We see our results as
a first step towards the study of the Ising model on a random graph with a few external
interfering vertices.
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1.1 General setting of the paper

For a finite graph G = (V,E), we consider the following Gibbs (ferromagnetic) Ising
measure on spins σ ∈ {−1,+1}|V |, with inverse temperature β and external field h =
(hv)v∈V :

Ph
G,β(σ) :=

1

Zh
G,β

exp

(
β
( ∑

u,v∈V
u∼v

σuσv +
∑
v∈V

hvσv

))
, (1.1)

where we denoted u ∼ v if {u, v} ∈ E. To simplify the statements and without loss of
generality, we have assumed here that the coupling parameter is J = 1.

In many cases, a natural boundary of V , denoted ∂V ⊂ V , can be identified1. Then,
we can consider the Ising model on the graph G with boundary condition ξ ∈ {+1,−1}∂V
by considering the Gibbs measure

Pξ
G,β(σ) :=

1

Zh
G,β

exp

(
β
( ∑

u,v∈V \∂V
u∼v

σuσv +
∑

u∈V \∂V,v∈∂V
u∼v

ξvσv

))
. (1.2)

For the Ising model with external field (1.1), in the case where hv = 0 for all v ∈ V \∂V ,
we will say that the Ising model has boundary external field.

Remark 1.1 (Exterior boundary). It might also be natural to consider an exterior bound-
ary of G, denoted ∂exG = (∂exV, ∂exE), where ∂exV is a set of external vertices (disjoint
from V ) and ∂exE is a set of boundary edges {x, y} with x ∈ V , y ∈ ∂exV . We can
then consider the Ising model on G with exterior boundary condition ξ ∈ {−1,+1}∂exV

by considering the Gibbs measure (1.2) on the graph Ḡ = (V̄ , Ē) with V̄ = V ∪ ∂exV ,
Ē = E ∪ ∂exE and with boundary condition ξ on ∂V̄ = ∂exV .

Notice that, in the definition (1.1), if the external field has value hv ∈ Z, we may
interpret the external field as some exterior boundary condition, where the set {v, hv ̸= 0}
can be interpreted as the boundary. Indeed, it corresponds to adding |hv| extra edges
to v, all leading to vertices with assigned value sign(hv).

Setting of the paper. In the following, we focus on the Ising model (1.1) with external
field with hv ∈ {0, 1}; in fact, we will consider a random external field with either (hv)v∈V
or (hv)v∈∂V given by i.i.d. Bernoulli random variables of parameter p ∈ (0, 1). With an
abuse of terminology, this corresponds to adding a plus (exterior) boundary condition to
the vertices v ∈ V with hv = +1; it indeed corresponds to adding exactly one extra edge
to v, with a plus on the other side of the edge. We refer to Figure 2 for an illustration.

1For instance, if G is a subgraph of a graph Ĝ = (V̂ , Ê), the natural boundary is ∂V = {v ∈ V, ∃u ∈
V̂ \ V s.t. u ∼̂ v}. If G is a finite tree, one usually takes ∂V as the set of leaves; if V = {−n, . . . , n}d,
one usually takes ∂V = {(v1, . . . , vd) ∈ V ,∃i |vi| = n}.
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Figure 2: Representation of graphs with external fields hv ∈ {0, 1}. On each graph, we have circled
the vertices where hv = +1. The graph on the left has no natural boundary: we can think of the vertices
with hv = +1 as the boundary, each vertex being connected to a ‘+’ through an extra edge. On the right,
the graph is a subset of Z2 and hv = +1 for all v ∈ ∂V : this is our boundary external field and in the
present case it does not exactly correspond to the Ising model with (exterior) plus boundary condition,
because the corner vertices are connected to a ‘+’ through only one extra edge (to obtain plus boundary
condition one should take hv = +2 for the corner vertices).

One key physical quantity that we are going to study is the magnetization of a
vertex v ∈ V :

mh
G,β(v) := Eh

G,β[σv] .

A closely related quantity is the probability that a given spin is in the plus state, namely
Ph
G,β(σv = +1) = 1

2(1 +mh
G,β(v)) and the following log-likelihood ratio

rhG,β(v) = log

(
Ph
G,β(σv = +1)

Ph
G,β(σv = −1)

)
= log

(
1 +mh

G,β(v)

1−mh
G,β(v)

)
.

Considering a sequence of growing graphs (Gn)n⩾1 with associated non-negative exter-
nal fields (that may depend on n), we say that there is spontaneous magnetization at
inverse temperature β if, choosing for each n a vertex vn uniformly at random in the
graph,the magnetization mh

Gn,β
(vn) (or equivalently the log-likelihood ratio rhGn,β

(vn))
remains bounded away from 0 as n→∞ (either almost surely or in probability).

1.2 Ising model on the Configuration Model with interfering vertices

Let us now introduce one of our main motivation for considering a random sparse ex-
ternal field on a Galton–Watson tree: the Ising model on a random graph given by the
configuration model, with a small proportion of additional interfering individuals.

The Configuration Model is a random graph in which edges are places randomly
between vertices whose degrees are fixed beforehand. We refer to [29, Ch. 7] for a
complete introduction but let us briefly present the construction. Let N be the number
of vertices of the graph, and let d = (di)i∈JNK be a sequence of degrees, verifying di ⩾ 1;
we also use the notation JNK = {1, . . . , N}. Then, the configuration model, noted
CMN (d) is an undirected random (multi)graph such that each vertex i ∈ JNK has
degree di (self-loops and multiple edges between pairs of vertices are allowed). It is
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constructed inductively as follows. As a preliminary to the construction, attach di half-
edges to each vertex vertex i ∈ JNK, so that there is a collection C0 of ℓN :=

∑N
i=1 di

available half-edges. Then, construct the first edge of the graph by choosing two half-
edges uniformly at random from C0 and by pairing them; afterwards, remove these two
half-edges from the set C0. After this first step, the new set C1 of available half-edges
contains ℓN − 2 elements. This procedure is iterated 1

2ℓN times, until there are no more
half-edges available; notice that ℓN must be even.

Let us stress that the Configuration Model has no natural boundary, but one may
think of having a few additional external vertices that are “interfering” with the graph.
To model this, add MN vertices to the initial N vertices of the model (we think of having
MN ≪ N), all with degree 1, and call these extra vertices interfering. One can then
proceed to construct the graph as described above, i.e. a configuration model with both
original and interfering vertices2. Notice that, even if interfering vertices have degree one,
an original vertex might have more than one interfering vertex attached to it. The MN

interfering vertices may also be interpreted as some (external) boundary of the graph:
in the context of the Ising model, one may consider the model where interfering vertices
all have a plus spin, and try to determine a condition whether there is spontaneous
magnetization on a sequence of configuration models, depending on MN , N and the
degree sequence d.

In the case where MN ⩽ N , another natural (and closely related) way of adding
interfering external vertices is to consider the graph CMN (d) and, to each vertex i ∈ JNK,
attach an extra (interfering) vertex of degree one, with probability pN := MN/N . One
obvious difference from the previous construction is that each vertex has at most one
interfering vertex attached; also, in the first construction, interfering vertices change the
distribution of the original configuration model. Indeed, an interfering vertex is taking
over from an original one in the first construction, instead of just being added afterwards,
as in the second construction. In the context of the Ising model, this version corresponds
to having a (random) external field given by the spin of interfering vertices, say i.i.d.
Bernoulli. Here again, one may ask whether there is spontaneous magnetization on a
sequence of configuration models, depending on pN , N and the degree sequence d.

To summarize, the general question is to determine how many (or how few) inter-
fering vertices are enough to have some influence on a random individual. Since the
configuration model rooted at some randomly chosen vertex o locally behaves like a
branching process see [31, Sec. 4.2] (and also Section 1.5.4 below), we consider in the
present paper, as a toy model, the Ising model on a Galton–Watson tree with randomly
attached interfering vertices, i.e. a sparse external Bernoulli field.

1.3 Ising model on a Galton–Watson tree: main results

Let µ be a distribution on N and consider Tn a random tree of depth n ∈ N generated
by a Branching Process with offspring distribution µ, stopped at generation n; we will

2The fact that interfering vertices have degree 1 ensures that these vertices cannot interfere with each
other; but one could naturally consider a degree sequence (d̃i)i∈JMN K for these vertices.
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write T = Tn if there is no confusion possible. We will denote by ρ its root and by ∂T
the set of its leaves. Also, we denote by P the law of T, and we make the following
assumption, which ensures in particular that the tree is super-critical.

Assumption 1. The offspring distribution µ satisfy µ(0) = 0 and µ(1) < 1. In partic-
ular, ν :=

∑∞
d=1 dµ(d) > 1.

The condition µ(0) = 0 ensures that a.s. there is no extinction, so the tree Tn a.s.
reaches depth n; additionally, it has no leaves except at generation n. We could weaken
this assumption and work conditionally on having no extinction, using for instance [21,
§5.7], but we work with Assumption 1 for technical simplicity.

We consider the Ising model (1.1) on a tree T with different possibilities for the
external field or boundary condition:

(a) With ‘+’ boundary condition, meaning that σv = +1 (corresponding to an external
field hv = +∞) if v ∈ ∂T; the results are well-known since the work of Lyons [19],
see Theorem 1.3 below. We denote the Ising Gibbs measure P+

n,β in this case.

(b) With (sparse) Bernoulli external field, in which (hv)v∈T are i.i.d. Bernoulli random

with parameter pn, independent of T, whose law we denote by P. We denote by P
(pn)
n,β

the Ising Gibbs measure in this case.

(c) With (sparse) Bernoulli boundary external field, in which (hv)v∈T are i.i.d. Bernoulli
variables with parameter p̂n := pn1{v∈∂T}; again, we denote their law by P, by a

slight abuse of notation. We denote by P
(p̂n)
n,β the Ising Gibbs measure in this case.

Figure 3: Two Ising models on a Galton–Watson tree with Bernoulli external field hv ∈ {0, 1}: the
vertices with hv = +1 are circle and a ‘+’ has been added to them. On the left, the external field
hv ∈ {0, 1} lives inside the whole tree (model P

(pn)
n,β ); on the right, the external field hv ∈ {0, 1} lives

only on the leaves (model P
(p̂n)
n,β ).

Remark 1.2. The second model (b) mimics the Ising model on a configuration model
with sparse interfering vertices3; the third model (c) is interesting in itself and will serve
as a point of comparison. We stress that the parameter pn depends on the depth n of
the tree, but is constant among vertices in the tree (no matter their generation).

3Notice that this is not exactly how the local limit of the Ising model on the configuration model
would look like. For instance, the configuration model converges locally to an uni-modular branching
process, that is, the root has a different offspring distribution from the rest of the vertices.
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We then consider the root magnetization with external field (or boundary condition)
a ∈ {+, (pn), (p̂n)}:

ma
n,β := ma

n,β(ρ) := Ea
n,β[σρ] , (1.3)

which is a random variable that depends on the realization of the tree T and of the field
(hv)v∈T (if the latter is random). We say that the root is asymptotically (positively)
magnetized for the model a ∈ {+, (pn), (p̂n)} at inverse temperature β if

lim
ε↓0

lim inf
n→∞

P⊗ P
(
ma

n,β > ε
)
= 1 , (1.4)

whereP⊗P denotes the joint law ofT and (hv)v∈T. Conversely, the root is asymptotically
not magnetized if ma

n,β goes to 0 in P⊗P-probability. Finally, note that these statements
are equivalent if we replace the root magnetization by the log-likelihood ratio ran,β :=
ran,β(ρ) of the root.

Obviously, one can compare the three models (a), (b), (c) above, i.e. external field

or boundary condition a ∈ {+, (pn), (p̂n)}: indeed, we clearly have that m+
n,β ⩾ m

(p̂n)
n,β

and m
(pn)
n,β ⩾ m

(p̂n)
n,β . We now state our main results.

(a) With a plus boundary condition on the leaves. First of all, we recall the
seminal result from Lyons [19] about the phase transition of the Ising model on a tree;
we state here only in our simpler context of a Galton–Watson tree.

Theorem 1.3 ([19]). Consider the Ising model on a Galton–Watson tree T with plus
boundary condition. Then we have root asymptotic magnetization (1.4) (with a = +) at
inverse temperature β if and only if ν tanh(β) > 1, where we recall that ν is the mean
offspring distribution.

The general result holds for a generic infinite tree T: there is root magnetization
if and only if br(T) tanh(β) > 1, where br(T) is the branching number of the tree T;
we have br(T) = ν for branching processes. In other words, Theorem 1.3 identifies the
critical temperature for the Ising model on a tree: βc = tanh−1( 1ν ).

(b) With a sparse Bernoulli external field inside the tree. Let (pn)n⩾0 be a
sequence of parameters in [0, 1]. For each n, we let Tn be a GW tree up to generation n
and we let (hv)v∈Tn be i.i.d. Bernoulli random variables of parameter pn, independent
of Tn. Then, we have the following result, which is the main goal of this article.

Theorem 1.4. Suppose that Assumption 1 holds and that µ has a finite second moment.
Consider the Ising model on T with sparse Bernoulli external field, with limn→∞ pn = 0.
Then we have asymptotic root magnetization (1.4) (with a = (pn)) at inverse tempera-
ture β if and only if

ν tanh(β) > 1 and lim inf
n→∞

(ν tanh(β))npn > 0 .

In the case where lim infn→∞ pn > 0, the root is asymptotically magnetized.
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In other words, this theorem gives the exact speed at which (pn)n⩾0 should decrease
in order not to have root magnetization. The first condition in the theorem comes from
Lyons’ Theorem 1.3; the second condition shows that the sparsity of the Bernoulli field
may somehow shift the critical point. For instance, if pn = αn for some α < 1, then
one has root magnetization if and only if αν tanh(β) ⩾ 1, so the new critical inverse
temperature is βc = tanh−1( 1

αν ); note that in that case, the root is also magnetized at
the critical temperature, contrary to what happens in Theorem 1.3.

(c) With a sparse Bernoulli boundary external field on the leaves. We have
a similar result when we put the sparse Bernoulli field only on the leaves. As above,
for each n, we let Tn be a GW tree up to generation n and we let (hv)v∈Tn be i.i.d.
Bernoulli random variables of parameter p̂n = pn1{v∈Tn}, independent of Tn.

Theorem 1.5. Suppose that Assumption 1 holds and that µ has a finite second moment.
Consider the Ising model on T with sparse Bernoulli boundary external field , with
limn→∞ pn = 0. Then we have asymptotic root magnetization (1.4) (with a = (p̂n)) at
inverse temperature β if and only if

ν tanh(β) > 1 and lim inf
n→∞

(ν tanh(β))npn > 0 .

In the case where lim infn→∞ pn > 0, the root is asymptotically magnetized if and only
if ν tanh(β) > 1.

Remark 1.6. In Theorems 1.4-1.5, the second moment assumption on the offspring distri-
bution is actually not needed to show that if ν tanh(β) ⩽ 1 or limn→∞(ν tanh(β))npn = 0
then the root is asymptotically not magnetized.

Remark 1.7. We could obviously consider a more general sparse random external field.
For instance if (hv)v∈T are i.i.d. with distribution (1 − pn)δ0 + pnµY for some positive
random variable Y , one can easily compare this model with a Bernoulli external field
and obtain identical results (provided that E[Y ] < +∞). We have chosen to focus on
Bernoulli external fields for the simplicity of exposition.

1.4 Outline of the proof and organisation of the paper

Let us outline our strategy of proof, which relies on standard tools for the Ising model on
trees, namely Lyons’ iteration [19] for the log-likelihood ratio (we recall it in Section 2.2,
see (2.5)), and Pemantle–Peres [27] relation between the log-likelihood ratio and the
non-linear 3-capacity of the tree, see Section 6.1 for an overview.

After a few preliminaries in Section 2, we prove in Section 3 the upper bound on the
log-likelihood ratio and give the starting point of the proof of the lower bound. More
precisely, in Section 3.1 we use Lyons’ iteration to derive an upper bound on the log-
likelihood ratio of the root for the Ising model with Bernoulli external field inside the
whole tree (which dominates the case where the external field is only on the leaves).
The starting point of the lower bound is presented in Section 3.2: we show that the log-
likelihood ratio of the root for the Ising model with Bernoulli boundary external field is
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equivalent to that of the Ising model with plus boundary external field on a modified tree,
that we call pruned tree since it corresponds to removing all branches that do not lead
to some hv = +1. In other words, the Ising model with random (Bernoulli) boundary
external field on Tn corresponds to an Ising model with plus boundary condition on a
random subtree T∗n of Tn. Then, the rest of the paper consists in studying the Ising
model with plus boundary condition on the pruned tree, that we denote T∗n.

First of all, in Section 4, we show that, under P ⊗ P the pruned tree is actually an
inhomogeneous Branching Process, whose offspring distributions (µ∗k)0⩽k⩽n−1 are explicit
(see (4.2)) and depend on the generation k but also on the depth n of the tree — in
other words, we have a triangular array of offspring distributions.

Then, in Section 5 we show that the pruned tree somehow exhibits a sharp phase
transition. More precisely, there exists some k∗ := log(pnν

n)/ log ν (which depends on n
and go to +∞ if lim infn→∞ pn(ν tanhβ)

n > 0), such that:

• if k∗ − k is large, then µ∗k is very close to the original offspring distribution µ;

• if k − k∗ is large, then µ∗k is very close to being a Dirac mass at 1.

This statement is made precise (and quantitative) in Proposition 5.7. Additionally,
Section 5 contains several technical results quantifying this phase transition for various
quantities of the pruned tree (for instance the mean and variances of µ∗k), that turn out
to be important for the last part of the proof.

Finally, Section 6 concludes the proof of the lower bound on the log-likelihood ratio
in Theorem 1.5 (which implies the lower bound in Theorem 1.4). Relying on the work of
Pemantle–Peres [27], the log-likelihood ratio of the root for the Ising model on T∗n with
plus boundary condition is of the same order as the (non-linear) L3- or 3-capacity of
T∗n, see Theorem 6.4. Hence, Section 6 focuses on estimating Cap3(T

∗
n); the estimates

are collected in Proposition 6.5. Using that the L3-capacity is bounded from below by
the (linear) 2-capacity, which coincide with the usual notion of conductance for resistor
networks, Thomson’s principle enables us to obtain (after a few technical estimates) a
lower bound for Cap3(T

∗
n), which concludes the proof. For the sake of completeness,

we also provide in Proposition 6.5 an upper bound on Cap3(T
∗
n); in particular, we aim

at giving a general scheme of proof to estimate the L3-capacity of any inhomogeneous
Galton–Watson tree. As a side result of independent interest, we find for instance
that for the Ising model on a Galton–Watson tree (with offspring distribution of finite
variance) with plus boundary condition, then at the critical temperature βc = tanh−1( 1ν )

the magnetization of the root lies between n−1 and n−1/2, see Remark 6.7, which seems
to be a new result (we believe that the correct order is n−1/2, at least if the offspring
distribution admits enough moments, but we leave this to another work since it is not
the main focus of the paper).

1.5 Some further comments

Let us now conclude this section with several comments on our results, suggesting for
instances possible directions for further investigations.
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1.5.1 Comparison with a homogeneous but vanishing external field

A first natural question is to know whether the same results as in Theorems 1.4-1.5 would
hold if one replaced the random Bernoulli external field (hv)v∈T by its mean (E[hv])v∈T.
This corresponds to considering the Ising model on a tree with a homogeneous but
vanishing external field (either inside the whole tree or only on the boundary).

In particular, we want to look at the two following (sequences of) Ising models on the
tree T of depth n: (i) homogeneous external field hv ≡ pn for all v ∈ T. (ii) homogeneous
boundary external field hv ≡ pn for all v ∈ ∂T.

Using Lyons iteration as in Section 3.1 would yield that there is no root magnetization
in the first model (hence in the second model) whenever pn → 0 and pn(ν tanh(β))

n → 0.
We actually believe that if pn → 0 and lim infn→∞ pn(ν tanh(β))

n > 0, then the root is
asymptotically magnetized in the second model (hence in the first one). This does not
appear straightforward, but one should be able to adapt our proof in Section 6 to derive
such a result. Indeed in view of Lyons’ iteration (2.5), the model corresponds to some
Ising model with plus boundary condition on some modified elongated tree T̃n, where T̃n

is obtained from Tn by adding “straight branches” of length ℓ to each leaf of Tn (with ℓ
roughly chosen so that tanh(β)ℓ = pn), i.e. T̃n is an inhomogeneous Branching Process
of depth n+ ℓ with offspring distribution µk = µ for generations k ⩽ n− 1 and µk = δ1
for n ⩽ k ⩽ n + ℓ − 1. Then, thanks to Pemantle–Peres [27] comparison theorem, the
problem is reduced to estimating the 3-capacity of T̃n. For this, one may use a similar
approach as in Section 6; in particular, we believe that the same estimates obtained for
the 3-capacity of our pruned tree T∗n (cf. Proposition 6.5) hold for the elongated tree T̃n.
we do not develop further on this issue since it is not the main purpose of our paper.

1.5.2 About the moment condition on the offspring distribution

Obviously, there are a few limitations on the generality of the offspring distribution
µ that we consider on our Galton–Watson tree. The main restriction that we have is
that µ admits a finite second moment. This assumption is useful when we estimate the
effective resistance of the pruned tree T∗n via a Thomson’s principle, see Section 6.2.2;
in particular, by applying Markov’s inequality, we are reduced to estimating second
moments of the size of the tree.

Adapting our proof to the case of an infinite variance (and possibly of an infinite
mean) is an interesting question to consider. It is reasonable to expect that our main
results remain valid in the case of an infinite variance, but this seems technically demand-
ing; for instance one would need to control the tail of the random variables appearing
in (6.11).

In the same spirit, another interesting question would be to obtain sharper bounds
on the 3-capacity of the pruned tree T∗n (or even of Tn), hence of the log-likelihood
ratio of the root, for instance using a Thomson’s principle for the non-linear capacity.
We believe that this improvement would for instance show that for the Ising model
with plus boundary condition, at the critical temperature βc = tanh−1(1/ν), the log-
likelihood ratio (hence the magnetization) is of order 1/

√
n, at least in the case where
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µ admits a finite third moment (since the L3 Thomson principle should make third
moments appear). What happens when the offspring distribution µ fails to have a third
moment is an extremely interesting question.

1.5.3 Starting with an inhomogeneous, n-dependent, Galton–Watson tree

Keeping in mind our application to the Configuration Model (see Section 1.5.4 below),
let us mention that our method appear to be robust to the case where the initial Galton–
Watson tree Tn of depth n is homogeneous but with an offspring distibution µ(n) that
depends on n. In particular, we believe that our results hold simply by replacing ν with
ν(n), the mean of the offspring distibution µ(n), provided that the means (ν(n))n⩾0, resp.
the variances (σ2

µ(n))n⩾0, remain bounded away from 1, resp. 0, and +∞.

The case where one starts with a Galton–Watson tree Tn of depth n which is inho-

mogeneous with offspring distribution (µ
(n)
k )0⩽k⩽n−1 should be analogous. One would

need to replace the quantity νn with
∏n−1

k=0 ν
(n)
k , where ν

(n)
k is the mean of the offspring

distibution µ
(n)
k ; again, one should for instance assume that the means (ν

(n)
k )0⩽k⩽n−1,n⩾1,

resp. the variances (σ2

µ
(n)
k

)0⩽k⩽n−1,n⩾1, remain bounded away from 1, resp. 0, and +∞.

1.5.4 Back to the configuration model

Coming back to the configuration model, we may try to use our toy model to make some
predictions. Consider the configuration model recalled in Section 1.2, with N vertices
and degree sequence d = (di)i∈JNK. Denote Nk := |{i ∈ JNK, di = k}| the number of
vertices of degree k and let DN be a random variable whose distribution is given by
P(DN = k) = Nk/N , which corresponds to the degree of a vertex choosen uniformly at
random. A standard and natural assumption on the model, see [31, § 1.3.3], is that, as
N →∞, DN converges in distribution to some random variable D and that we also have
convergence of the first two moments of DN to those of D (assuming that E[D2] < +∞).

Then, it is known from [31, Thm. 4.1] that, choosing a vertex o uniformly at random
and rooting CM(d) at o, the rooted CM(d) locally converges (i.e. can be locally coupled
with) to a branching process with offspring distribution µ (except the root which has
offspring distribution D), where µ is the distribution of D∗−1, with D∗ is the size-biased
of D; more precisely µ(k) := k+1

E[D]P(D = k + 1).

Therefore, Assumption 1 corresponds to having P(D = 1) = 0, P(D = 2) < 1 and
also ν :=

∑∞
k=1 kµ(k) = 1

E[D]E[D(D − 1)] > 1 (note that ν < +∞ if E[D2] < +∞).
The assumption that µ admits a finite second moment translates into the requirement
that E[D3] < +∞. Then, we can try to apply our results simply by analogy, i.e.
identifying the configuration model rooted at a random vertex v with a Galton–Watson
tree Tn with offspring distribution µ (except at its root) and depth n = 1

log ν logN ; the
choice of n is such that the number of vertices in Tn is roughly νn = N . Our results
then translate into the fact that the vertex o is asymptotically magnetized if and only if
lim infn→∞ pnν

n tanh(β)n > 0, or since pn = MN/N , if and only if lim infN→∞MNNα >
0, where α := 1

log ν log tanh(β).

11



However, the approximation of the configuration model rooted at a random vertex o
with a Galton–Watson tree only works up to depth ñ = c logN for some constant c > 0,
provided that the maximal degree dmax = maxv∈JNK dv verifies dmax = O(Na) for some
a < 1. This is a reformulation of [30, Lem. 3.3 and Rem. 3.4] in our context: a coupling
can be made between the configuration model CM(d) rooted at a random vertex o and
a (N -dependent) Branching Process up to mN = o(

√
N/dmax) vertices; if dmax = No(1),

this corresponds to a depth ñ = 1
2 log ν logN for the Galton–Watson tree. The fact that

loops start to appear in the graph at some point breaks Lyons iteration’s argument and
new ideas are needed. However, one should be able to obtain at least some bounds on
the magnetization of o; in particular, the fact that our result is robust to the case of
a n-dependent Galton–Watson tree could prove useful when working with the coupling
mentioned above.

A natural (weak form of the) conjecture is the following.

Conjecture 1. For the Ising model on the configuration model CM(d) with MN in-
terfering external ‘+’ vertices, there exists some α̃ > 0, depending only on the inverse
temperature β and the mean ν, such that a randomly chosen vertex o in CM(d) is:

• asymptotically magnetized if MN ⩾ N−α̃+ε for some ε > 0;

• asymptotically not magnetized if MN ⩽ N−α̃−ε for some ε > 0.

In other words, the threshold for having asymptotic root magnetization should be at a
polynomial number of “interfering” vertices MN = N−α̃+o(1); it is natural to guess that
α̃ ⩽ α with α := 1

log ν log tanh(β), but it is not clear whether α̃ = α or not, which is an
interesting question.

1.5.5 About free boundary conditions and extremal Gibbs states

In the present paper, we focus on a non-negative (boundary) external field. Indeed, it
is natural to consider such a condition to break the +/− symmetry of the model.

Another setting, that has been extensively studied both in the physics and math-
ematics literature, is to consider the (nearest-neighbor, ferromagnetic) Ising model on
an infinite tree with zero external field and free boundary condition. One question is
then to determine whether the free measure Pf

β is equal to 1
2(P

+
β + P−β ), with P+

β , P
−
β

the measures with ‘+’ and ‘−’ boundary conditions respectively. More generally, the
question is to understand the set of extremal Gibbs measures (also called pure states),
and in particular whether this set is reduced to P+

β , P
−
β .

On a k-regular tree Tk (or more generally on hyperbolic graphs, see e.g. [33, 34]),
it has been shown that at sufficiently low temperature, there are uncountably many
extremal Gibbs states4, see [18] and [2, 16] for rigorous results (we also refer to [8] for
the case of other finite-spin models). In particular, there are multiple phase transitions;

4In [25], the authors consider a branching plane lattice Z×Tk and outline the difference between the
multiplicity of extremal Gibbs states on a tree in contrast with Zd, where all translation invariant Gibbs
states are mixtures of P+

β ,P
−
β , see [3].
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in this context, let us mention [24] which shows that the free Ising measure is a factor of
IID beyond the uniqueness regime (see also [20] for a wider introduction to the problem).

It is then reasonable to ask whether the results on k-regular trees remain valid on
random trees, or on tree-like graphs. As an example of such study, in [23], the authors
consider the free Ising measure on a growing sequence of graphs (Gn)n⩾1 that locally
converge to a k-regular tree: their main result is that the Ising measure locally weakly
converges to the mixture 1

2(P
+
β + P−β ). Our present work raises the natural question

to determine whether (and to which point) this result continues to hold if one adds a
signed sparse (boundary) random external field, i.e. if (hv)v∈T (or (hv)v∈∂T) are i.i.d.
with law P(hv = ±1) = 1

2pn, P(hv = 0) = 1 − pn, with limn→∞ pn = 0. This is in fact
related to the question of the effect of a random boundary condition on the Ising model
(in particular on the coexistence of pure states), in the spirit of [32], see also [14] for a
recent overview. We believe that such questions are natural and promising directions of
research, in continuity of the present paper.

2 A few preliminaries

2.1 Some notation for trees

Let t = (V (t), E(t), ρ) be a tree5 with root ρ; with an abuse of notation, we also write
v ∈ t as a shorthand for v ∈ V (t). The distance between two vertices in the tree is the
number of edges of the unique path connecting them.

Given two vertices v, w ∈ t, we say that w is a descendant of v, and we denote v ⩽ w,
if the vertex v is on the shortest path from the root ρ to the vertex w. For a vertex
v ∈ t, we let |v| denote the distance from v to the root ρ; note that if we have v ⩽ w,
we have |v| ⩽ |w|.

We consider a tree of depth n, that is such that maxv∈t |v| = n.

• We denote tk = {v ∈ t : |v| = k} the k-th generation of the tree t, for k ⩽ n.

• Given two vertices v, w ∈ t we say w is a (direct) successor of v, and we note v → w,
if v < w and |v| = |w| − 1.

• For a vertex v ∈ t, we denote S(v) = {w ∈ t : v → w} the set of (direct) successors
of v, and d(v) = |S(v)| its cardinal, i.e. the number of descendants of v.

• We say that a vertex v ∈ t is a leaf if it has no successor, namely if d(v) = 0, and we
denote ∂t = {v ∈ t, d(v) = 0} the set of leaves of the tree.

• For a vertex v ∈ t, we let t(v) be the subtree of t consisting of v (as a root) and all
vertices w such that v ⩽ w; if v ∈ tk is in generation k, we may also use the notation
tk(v) to make the dependence on k explicit.

In the following, thanks to Assumption 1, we only consider trees that have no leaves
except at generation n (∂t = tn), i.e. such that all vertices |v| < n have at least one
successor, d(v) ⩾ 1.

5Recall that a tree is a connected, acyclic and undirected graph, or equivalently, a graph where every
two vertices are connected by exactly one path.
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2.2 Log-likelihood ratio and Lyons iteration

One fundamental element of the proof of Theorem 1.3 is the fact that the log-likelihood
ratio of the root magnetization can be expressed recursively on the tree. In this section,
we introduce a few notation and state this recursive formula, that we call Lyons iteration;
for the sake of completeness and because we adapt the iteration in the following, we recall
how to obtain it.

Lyons iteration with plus boundary condition. Let us start by giving the defini-
tion of the log-likelihood ratio r+t,β(ρ) of the root on a tree t of depth n, with (classical)
plus boundary conditions at temperature β:

r+n,β(ρ) := log

(
P+
n,β(σρ = +1)

P+
n,β(σρ = −1)

)
We also introduce the log-likelihood ratio r+n,β(u) of a vertex u ∈ t. We define the

partition function of the Ising model on the sub-tree t(u) with plus boundary conditions
at temperature β, conditioned on the vertex u (the root of t(u)) having spin a ∈ {−1, 1}:

Z+,a
β (u) =

∑
σ∈{−1,1}|t(u)|

σu=a

exp

(
β
( ∑

v,w∈t(u)
v∼w

σvσw +
∑

v∈∂t(u)

σv

))
. (2.1)

Then, we let

r+n,β(u) = log

(
Z+,+1
β (u)

Z+,−1
β (u)

)
, (2.2)

which corresponds to the log-likelihood ratio of the root of the Ising model in the sub-
tree t(u), of depth n − |u|, with plus boundary condition (we keep the subscript n to
remember that u ∈ t with t of depth n). Let us notice that, for any vertex u ∈ t different
from the root, r+n,β(u) does not correspond to log

(
P+
n,β(σv = +1)/P+

n,β(σv = −1)
)
.

After a straightforward computation, for u ∈ t \ ∂t, we can write (Z+,a
n,β (u))a∈{−1,+1}

in terms of the partition functions (Z+,a
n,β (v)) with v successors of u: we have

Z+,a
β (u) =

∏
v,u→v

(
e+βaZ+,+1

β (v) + e−βaZ+,−1
β (v)

)
. (2.3)

We can therefore express the log-likelihood ratio r+n,β(u) in terms of partition functions:

r+n,β(u) = log

(
Z+,+1
β (u)

Z+,−1
β (u)

)
=
∑
u→v

log

(
e+βZ+,+1

n,β (v) + e−βZ+,−1
β (v)

e−βZ+,+1
β (v) + e+βZ+,−1

β (v)

)
. (2.4)

Defining gβ(x) := log
(
e2βex+1
e2β+ex

)
, we therefore end up with the following crucial recursion:

r+n,β(u) =


∑
u→v

gβ(r
+
n,β(v)) if u /∈ ∂t ,

+∞ if u ∈ ∂t .
(2.5)
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Lyons iteration with an external field. We can also define, analogously to (2.2), the
log-likelihood ratio of a vertex u ∈ t for the Ising model with external field h = (hv)v∈t.

For u ∈ t, let Zh,a
β (u) denote the partition function of the Ising model on t(u)

at temperature β with external field (hv)v∈t(u), conditioned on the root having spin
a ∈ {−1,+1}. In the same way as in (2.3), we have for u ∈ t \ ∂t

Zh,a
β (u) = eβhua

∏
v, u→v

(
e+βaZh,+1

β (v) + e−βaZh,−1
β (v)

)
.

Then, as in (2.4), the log-likelihood ratio rhn,β(u) can be expressed in terms of the condi-
tional partition functions, and we end up with the following recursion, analogous to (2.5):

rhn,β(u) =

2βhu +
∑
u→v

gβ(r
h
n,β(v)) if u /∈ ∂t ,

2βhu if u ∈ ∂t .
(2.6)

Here, we have also used that if u ∈ ∂t is a leaf, the log-likelihood ration rhn,β(u) is easily
seen to be 2βhu.

Remark 2.1. Note that the Ising model on t with a plus boundary external field h+ =
(hv)v∈∂t, i.e. hv = +1 for all v ∈ ∂t, corresponds to the Ising model with plus boundary
condition on some extended tree, obtained by adding an extra generation to t with
exactly one descendant to all v ∈ ∂t, recall Figure 2. In this setting, the log-likelihood
ratios r

h+

n,β(u) verify the same recursion as in (2.5) but with a different initial condition
on the leaves:

r
h+

n,β(v) = 2β if v ∈ ∂t . (2.7)

2.3 The case of a non-vanishing sequence (pn)n⩾0

Before we move to the proofs, let us evacuate the case of a non vanishing sequence
(pn)n⩾0 in the different models of Section 1.3.

Lemma 2.2. Let T be a branching process satisfying Assumption 1 and consider the
Ising model with sparse Bernoulli external field inside the tree, i.e. model (b) of Sec-
tion 1.3, with parameters (pn)n⩾0 in [0, 1]. If lim infn→∞ pn > 0, then the root is asymp-
totically magnetized.

Proof. To prove this, it is enough to consider the event where hρ = +1. On the event

that hρ = 1 and since we have r
(pn)
n (v) ⩾ 0 for all v ← ρ, we get that rn(ρ) ⩾ 2β. Hence,

for ε < 2β we have P⊗ P(rn(ρ) > ε) ⩾ P(hρ = 1) = pn. For such ε, we get that

lim inf
n→∞

P⊗ P(rn(ρ) > ε) > 0 ,

which concludes the proof.
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In the case of the Ising model with non-vanishing Bernoulli boundary external field,
i.e. model (c) of Section 1.3 with lim infn→∞ pn > 0, one obtains a similar result as with
plus boundary conditions, that is Theorem 1.3: the root is asymptotically magnetized
if and only if ν tanh(β) > 1. This is actually a corollary of Theorem 6.4 (from [27]) and
our bounds on the 3-capacity of the pruned tree, see Proposition 6.5 which is also valid
for a non-vanishing sequence (pn)n⩾0.

3 Upper bound and main arguments for the lower bound

In the section, we consider the Ising model with sparse external field inside the tree, i.e.
model (b) of Section 1.3. We let (pn)n⩾0 be a sequence in [0, 1] and we give an upper
bound on the log-likelihood ratio and a lower bound in terms of an Ising model on a
pruned tree with plus boundary external field.

3.1 Upper bound: Lyons argument

We show here the following proposition, using Lyons’ iteration (2.6), which gives a
sufficient condition for having no root magnetization.

Proposition 3.1. Suppose that Assumption 1 holds. Consider the Ising model on T
with sparse Bernoulli external field, with limn→∞ pn = 0.

Then if limn→∞(ν tanh(β))npn = 0, there is no asymptotic root magnetization. More
precisely, there is a constant C = Cβ,ν such that

E⊗ E
[
rpnn,β(ρ)

]
⩽ C


pn if tanh(β)ν < 1 ,
√
pn if tanh(β)ν = 1 ,

pn(ν tanh(β))
n if tanh(β)ν > 1 .

Proof. This is a simple application of the recursion formula (2.6). Let us first give a
simple bound, valid for a generic tree t and external field (hv)v∈t.

Using the easy bound gβ(x) ⩽ tanh(β)x for all x ⩾ 1 (note that tanh(β) is the
derivative of gβ at 0), we obtain from (2.6) that for any u ∈ t \ ∂t,

rhn,β(u) ⩽ 2βhu + tanh(β)
∑
u→v

rhn,β(v) .

Applying this inequality recursively we obtain the following upper bound for the log-
likelihood ratio of the root ρ:

rhn,β(ρ) ⩽
n∑

k=0

tanh(β)k
∑
u∈tk

2βhu .

In our specific setting where (hv)v∈T is an i.i.d. Bernoulli field with parameter pn,
we need to show that the upper bound goes to 0 in P⊗P probability. We simply take
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its expectation with respect to P⊗ P: we obtain

E⊗ E
[
r
(pn)
n,β (ρ)

]
⩽ 2βpn

n∑
k=0

(tanh(β)ν)k . (3.1)

• In the case tanh(β)ν < 1, the last sum is bounded by a constant and we have that
E⊗ E

[
rpnn,β(ρ)

]
⩽ cpn, which goes to 0.

• In the case tanh(β)ν > 1, we have

E⊗ E
[
r
(pn)
n,β (ρ)

]
⩽

2β

tanh(β)− 1
pn((tanh(β)ν)

n − 1) ⩽ cβ,νpn(tanh(β)ν)
n ,

which goes to 0 under the assumptions of the proposition.

• The case tanh(β)ν = 1 is a bit more subtle: taking the expectation in (3.1) gives

the upper bound E ⊗ E[r(pn)n,β (ρ)] ⩽ 2βnpn, which goes to 0 only if pn = o( 1n). In the
general case, we need some extra work. Going back to Lyons’ iteration (2.6) and using
that x 7→ gβ(x) is concave, we get by Jensen’s inequality (recalling that ν is the mean
offspring distribution) that

E⊗ E
[
r
(pn)
n,β (u)

]
⩽ 2βpn + νgβ

(
E⊗ E

[
r
(pn)
n,β (v)

])
for u /∈ ∂T ,

where u, v are generic vertices at successive generations; note that the expectation E⊗
E
[
r
(pn)
n,β (u)

]
depends only on (the distribution of) the subtree t(u) and (hv)v∈t(u), so in

fact only on |u|. Hence, setting yk := E ⊗ E[r(pn)n,β (u)] with |u| = k, we end up with the
following iteration

yk ⩽

{
fn,β(yk+1) if 0 ⩽ k < n ,

2βpn if k = n .
(3.2)

with fn,β(x) = 2βpn + νgβ(x), which is a concave increasing function. Let us denote xn
the unique solution of fn,β(xn) = xn. Then, it is clear that either the initial condition
verifies yn ⩽ xn and then yk ⩽ xn for all k ⩽ n, or it verifies yn > xn and then
yk ⩽ yn = 2βpn for all k ⩽ n. We have therefore proven that

y0 = E⊗ E[rpnn,β(ρ)] ⩽ max{2βpn, xn} ,

and it remains to show that the fixed point xn goes to 0 as n→∞. But this should be
clear, since x 7→ νgβ(x) is a strictly concave function with slope ν tanh(β) = 1 at the
origin.

In fact, let us prove that xn = O(
√
pn). First, note that νgβ(x) ⩽ x−c for any x ⩾ 1

with the constant c = 1− νgβ(1) > 0 (by concavity), so that fn,β(x) ⩽ 2βpn + x− c for
all x ⩾ 1. If n is large enough so that 2βpn < c, this inequality cannot be verified at
x = xn, so we must have xn < 1. Then, writing that there is some constant cβ > 0 such
that νgβ(x) ⩽ x− cβx

2 for all x ∈ (0, 1), we get that xn = fn,β(xn) ⩽ 2βpn + xn − cβx
2
n

for all n large enough. We conclude easily that xn ⩽ c′β
√
pn for n large, which is what

was claimed.
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3.2 Lower bound: comparison with a pruned tree

First of all, we use the Ising model with Bernoulli boundary external field (hv)v∈∂T, i.e.
model (c) in Section 1.3, to get a lower bound for the magnetization of the Ising model
with Bernoulli external field in the whole tree, since the magnetization is clearly higher
in the second case.

Now, let us show in this section that, conditionally on the realization t of the Galton–
Watson tree T and on the realization h of a Bernoulli external field (hv)v∈∂T, the mag-
netization is equal to the magnetization on a pruned (sub)-tree t∗ with plus boundary
external field h+ = (hv)v∈∂t∗ , i.e. with hv = +1 for all v ∈ ∂t∗. Informally, the pruned
tree t∗ is obtained by removing all branches in t that do not lead to a leaf with hv = +1;
we call this procedure the pruning of dead branches, see Figure 4 for an illustration.

To be more formal, given a tree t of depth n and (hv)v∈∂t an external field with value
in {0, 1}, let us define indicator variables (Yu)u∈t as follows:

Yu =

{
+1 if there exists v ⩾ u, v ∈ ∂t such that hv = +1

0 otherwise .
(3.3)

We interpret having Yu = +1 as the fact that the vertex u belongs to a living branch,
and so has “survived to the pruning”. Alternatively, we can construct (Yu)u∈t iteratively
starting from the leaves:

• for v ∈ ∂t = tn, set Xv := hv;

• iteratively, for u ∈ t \ ∂t, we set Yu = +1 if and only if there is some v ← u with
Yv = +1.

We then define the pruned tree as

t∗ = Prunedh(t) := {v ∈ t, Yv = +1} . (3.4)

Figure 4: Illustration of the pruning procedure. On the left, we have represented the tree t and the
leaves with hv = +1 with dots. The picture on the right represents how the pruning procedure proceeds:
in blue are all the “living branches” leading to a leaf with hv = +1; in red are all the “dead branches”
leading to hv = 0, that have to be pruned. The pruned tree t∗ consists in keeping only the living (blue)
branches.

Let us consider two following log-likelihood ratios, at inverse temperature β:

• For u ∈ t, rht,β(u) is the log-likelihood ratio for the Ising model on t with external

field h ∈ {0, 1}∂t on the boundary;

• For u ∈ t∗, r
h+

t∗,β(u) is the log-likelihood ratio for the Ising model on t∗ with external
field h+ ≡ 1 on the boundary ∂t (note that we have h+ = h|∂t∗).
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We now show the following lemma.

Lemma 3.2. We have rht,β(u) = 0 for any u ∈ t \ t∗ and rht,β(u) = r
h+

t∗,β(u) for any

u ∈ t∗. In particular, the log-likelihood ratio of the root verifies rht,β(ρ) = r
h+

t∗ (ρ).

Proof. We simply need to write the following Lyons recursions (see also Remark 1.1).
On the tree t, we have

rht,β(u) =


∑
u→v

gβ
(
rht,β(v)

)
, if u /∈ ∂t ,

2βhv, if v ∈ ∂t .

Since gβ(0) = 0, this readily proves that rht,β(u) = 0 if all v ∈ ∂t descendants of u verify
hv = 0, i.e. if Yu = 0 and u has been pruned (u ∈ t \ bt∗). On the tree t∗, we have

r
h+

t∗,β(u) =


∑
u→v

gβ
(
r
h+

t∗,β(v)
)
, if v /∈ ∂t∗ ,

2β, if v ∈ ∂t∗ .

With a slight abuse of notation, we can extend the definition to the tree t by setting
r
h+

t∗,β(u) = 0 if u ∈ t \ t∗. Now, this extended definition of r
h+

t∗,β yields exactly the same

recursion as rht,β(u) so r
h+

t∗,β(u) = rht,β(u) for all u ∈ t.

With Lemma 3.2, the rest of the paper then consist in studying the Ising model on
the pruned version T∗n of a Galton–Watson tree Tn, with plus boundary external field.
More precisely, we show the following.

Theorem 3.3. Let Tn be a Galton–Watson tree of depth n whose offspring distribution µ
satisfies Assumption 1 and has a finite second moment, and let (pn)n⩾0 be a vanishing
sequence. Let T∗n be the pruned version of Tn with (hv)v∈∂T given by i.i.d. Bernoulli
random variables with parameter pn, i.e. T

∗
n = Prunedh(T

∗
n). Then, for the Ising model

on T∗n with plus boundary external field on ∂T∗n, the root is asymptotically magnetized
if and only if

ν tanh(β) > 1 and lim inf
n→∞

(ν tanh(β))npn > 0 .

We proceed in several steps, which are split into the next three sections:

• First, we prove that, under P⊗P, the pruned version of a Galton–Watson tree is an
inhomogeneous branching process, whose distribution is explicit.

• Second, we study the shape of T∗n. More precisely, we observe that the pruned tree
exhibits a sort of a phase transition: we identify some k∗ = k∗(µ, pn) such that the
pruned tree looks likes the original Galton–Watson tree up k∗−O(1) and then looks
like very thin branches from k∗ +O(1) to n.

• Lastly, we use our previous observation to estimate the (non-linear) 3-capacity of T∗n,
which is known to be related to the root magnetization, see [27].
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4 Pruning the dead branches of a Galton–Watson tree

In this section, we consider Tn a random tree of depth n ∈ N, generated by a branching
process with offspring distribution µ such that µ(0) = 0. We let pn ∈ [0, 1] be a given
parameter and we let T∗n be the pruned version of T with (hv)v∈∂T given by i.i.d.
Bernoulli random variables with parameter pn, as defined above in Section 3.2. Recall
that we denote by P the law of T and by P the law of the i.i.d. Bernoulli random
variables (hv)v∈∂T.

The main result of this section is that T∗n, under P ⊗ P, is a Branching Process
with inhomogeneous n-dependent generation offspring distributions, that we denote
(µ∗k)0⩽k⩽n−1. The fact that T∗n is a branching process is a priori not obvious, since
the pruning of a dead branch in the tree depends on random variables at the leaves.

4.1 Notation, statement of the result

Before we state the main result of this section, let us introduce some notation. For
k ∈ {0, . . . , n}, we denote Tk, respectively T ∗k , the k-th generation of T, respectively T∗n.

We set, for k ∈ {0, . . . , n},

γk := P⊗ P(Yu = 0) for a generic u ∈ Tk , and δk := 1− γk , (4.1)

where Yu = 1{u∈T∗
n} is a Bernoulli random variable that indicates whether the vertex u

has survived the pruning, see (3.3).

Remark 4.1. Here, γ, δ are indexed by their generations starting from the root (i.e. from
the bottom of the tree to the top), but it is also helpful to index quantities by their
distances to the leaves (i.e. from the top of the tree to the bottom). In the rest of
the paper, we will denote with a bar quantities that are indexed by the distance to the
leaves: for instance, for k ∈ {0, . . . , n}, we set

γ̄k := γn−k , δ̄k = δn−k = 1− γ̄k .

Let G be the generating function for the offspring distribution, that is

G(s) := E[sX ] =

∞∑
d=1

µ(d)sd s ∈ [0, 1] ,

where X is a random variable of distribution µ. Then, the parameters γk can easily be
expressed iteratively in terms of the generating function G.

Lemma 4.2. The sequence (γ̄k)0⩽k⩽n is characterized by the following iteration:

γ̄0 = 1− pn and for k ∈ {1, . . . , n} , γ̄k = G(γ̄k−1) .

Equivalently, we have

γ̄k = E
[
(1− pn)

|Tk|
]
.
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Proof. First of all, we have γn = P⊗P(Yv = 0) for v a leaf, so by definition (3.3) of Yv,
we have γn = P(hv = 0) = 1− pn, i.e. γ̄0 = 1− pn.

Now, notice that for a generic u ∈ Tk with k < n, by definition of Yu we have that
Yu = 0 if and only if Yu′ = 0 for all u′ ← u. In other words, for a fixed realization of T
we have

P(Yu = 0) =
∏

u′,u→u′

P(Yu′ = 0),

since the variables (hv) are independent on the different sub-trees T(u′), u′ ← u. Taking
the expectation with respect to the tree and using the branching property we therefore
get that for k ⩽ n− 1,

γk = E
[
(γk+1)

X
]
= G(γk+1) .

Using that γ̄k = γn−k, this gives the desired iteration.
For the other formula for γ̄k, we notice that γ̄k = G◦k(1−pn), with G◦k = G◦ · · · ◦G

(k times). We obtain the desired formula since G◦k is the generating function of |Tk|.

We can now state our main result on the random pruned tree T∗n. For any k ∈
{0, . . . , n}, define µ∗k the distribution

µ∗k(d) =
1

δk

∑
ℓ⩾0

µ(d+ ℓ)

(
d+ ℓ

ℓ

)
(γk+1)

ℓ(δk+1)
d, d ∈ N , (4.2)

and note that µ∗k also depends on n, through the parameters γ and δ ( see Lemma 4.2).

Proposition 4.3. The tree T∗n = Prunedh(Tn) obtained by the pruning of the Galton–
Watson tree Tn by i.i.d. Bernoulli random variables (hv)v∈∂T is, under P⊗P, an inho-
mogeneous branching process. Its offspring distributions are (µ̃∗0, µ

∗
1, . . . , µ

∗
n−1), where µ∗k

is defined in (4.2) above and µ̃∗0(d) = δ0µ
∗
0(d) for d ⩾ 1, µ̃∗0(0) = γ0.

4.2 Preliminary observations

Before we turn to the proof of Proposition 4.3, let us comment on the offspring distri-
bution. First of all, µ̃∗0(0) is the probability that the whole tree is pruned, i.e. γ0, and
µ∗0 is the law µ̃∗0 conditioned on being non-zero. Hence, conditionally on the whole tree
not being pruned, T∗n is an inhomogeneous branching process with offspring distribu-
tion (µ∗k)0⩽k⩽n−1.

We also have some nice interpretation of the distribution µ∗k. Conditionally on the
tree not being pruned, we know that each vertex u ∈ T∗ has at least one descendant in
∂T that has not been pruned; in other words, µ∗k is supported on N. It turns out that
for u ∈ T ∗k , the number of children of vertex u in T∗ can be constructed as follows: take
X a random variable with distribution µ, so u has X descendants in T; prune these
descendants with probability γk+1 independently, but conditionally on having at least
one surviving descendant.
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Definition 4.4. Let n ∈ N and p ∈ (0, 1]. A random variable B̂ is said to follow a

zero-truncated binomial of parameters n and p, and we write B̂ ∼ B̂in(n, p) if

P(B̂ = k) =
1

1− (1− p)n

(
n

k

)
pk(1− p)n−k k ∈ {1, . . . , n}.

Put otherwise, we have P(B̂ = k) = P(B = k | B > 0) with B ∼ Bin(n, p).

For a random variable X, we also write W ∼ Bin(X, p) if for any z ∈ N,

P(W = z) =

∞∑
d=1

P(X = d)P(B = z) , with B ∼ Bin(d, p) ,

i.e. W ∼ Bin(d, p) conditionally on X = d. A similar notation holds for W ∼ B̂in(X, p).

Lemma 4.5. For all k ∈ {0, . . . , n− 1}, let X∗k be a random variable with law µ∗k. Then

we have that X∗k ∼ B̂in(X, δk+1), where X is a random variable of distribution µ. Put
otherwise, if Bk ∼ Bin(X, δk+1), then P(X∗k = z) = P(Bk = z | Bk > 0) for z ∈ N.

Proof. For k ∈ {0, . . . , n − 1}, let X̃k ∼ B̂in(X, δk+1). Letting Bk ∼ Bin(X, δk+1), we
have for z ∈ N,

P(X̃k = z) = P(Bk = z | Bk > 0) =
P(Bk = z)

1− P(Bk = 0)
,

with

P(Bk = 0) =
∞∑
d=1

µ(d)P
(
Bin(d, δk+1) = 0

)
=
∞∑
d=1

µ(d)(1− δk+1)
d =

∞∑
d=1

µ(d)(γk+1)
d.

Then P(Bk = 0) = E[(γk+1)
X ] = γk, thanks to Lemma 4.2. Therefore, we end up with

P(X̃k = z) =
1

1− γk
P(Bk = z) =

1

δk

∞∑
d=1

µ(d)

(
d

z

)
(γk+1)

d−z(δk+1)
z = µ∗k(z),

which concludes the proof.

4.3 Proof of Proposition 4.3

Our goal is to write P⊗P(T∗n = t∗) in terms of the offspring distributions (µ∗k)0⩽k⩽n−1.
The approach for doing this is to consider all the possible trees t (sampled from T) such
that after pruning we may obtain t∗.

First of all, notice that we clearly have P ⊗ P(T∗n = ∅) = γ0. Indeed, conditionally
on the tree Tn, the probability that the whole tree is pruned is P(hv = 0∀ v ∈ Tn) =
(1− pn)

|Tn|, so P⊗P(T∗n = ∅) = E[(1− pn)
|Tn|] = γ0, see Lemma 4.2.
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We now work with t∗ ̸= ∅ of depth n and we write

P⊗P(T∗n = t∗) =
∑

t∈BPn(µ)

P⊗P
(
T = t,Prunedh(t) = t∗

)
.

Here, BPn(µ) is the set of all trees t of depth n generated by a Branching Process of
offspring distribution µ.

Preliminary calculation: offspring distribution. For u ∈ Tn, we denote X∗u the number
of descendants of u inside the pruned tree T∗n. Notice that the number of successor
of the vertex u on the tree Tn (i.e. before pruning), that we denote Xu, has to verify
Xu ⩾ X∗u. We have

{X∗u = d} =
⋃
ℓ⩾0

⋃
V⊂S(u),|V |=ℓ

{
Xu = d+ ℓ, Yv = 0 for v ∈ V, Yv = 1 for v ∈ S(u) \ V

}
,

meaning that the vertex u has d+ ℓ successors (on T) for some ℓ ⩾ 0, and exactly ℓ of
them get pruned.

Using this representation, we can compute the offspring distribution of a vertex u
at generation k. Using that vertices v ← u in generation k + 1 have a probability γk+1

of being pruned and that the events {Yv = 0}v←v are independent (they depend on
Bernoulli variables (hv) in different sub-trees), we get for d ⩾ 0

P⊗P(X∗u = d) =
∑
ℓ⩾0

µ(d+ ℓ)

(
d+ ℓ

ℓ

)
(γk+1)

ℓ(δk+1)
d . (4.3)

Notice that (4.3) generalizes the iteration γk := P⊗P(Yu = 0) = G(γk+1) of Lemma 4.2.
Now, notice that conditionally on T∗n ̸= ∅, a vertex u ∈ T∗n has at least one de-

scendant in T∗n. Note that we have P ⊗ P(X∗u > 0) = P ⊗ P(Yu = 1) = δ|u|, since u
has at least one descendant in the pruned tree if and only if it survives the pruning, i.e.
Yu = 1. We therefore get the offspring distribution of a vertex u ∈ T ∗k in T∗n (conditioned
on having T∗n ̸= ∅):

P⊗ P(X∗u = d | X∗u > 0) =
1

δk

∑
ℓ⩾0

µ(d+ ℓ)

(
d+ ℓ

ℓ

)
(γk+1)

ℓ(δk+1)
d = µ∗k(d) .

It remains to show that the number of descendants in the different generations are
independent.

Main calculation: probability of having a given pruned tree. Let t∗ be a non-empty tree
of depth n which is a possible candidate for being a pruned version of a Galton–Watson
tree T. We let d∗u denote the number of descendants of u ∈ t∗; recall that each vertex
u ∈ t∗ (in generation k < n) has to be such has it has at least one descendant, that is
d∗u ⩾ 1.

In order to have T∗n = t∗, one must have t∗ as a squeleton for T, see Figure 5. Then,
similarly as above, we can write the event {T∗n = t∗} as
n−1⋂
k=0

⋂
u∈t∗k

⋃
ℓu⩾0

⋃
V⊂S(u),|V |=ℓu

{
Xu = d∗u + ℓu, Yv = 0 for v ∈ V, Yv = 1 for v ∈ S(u) \ V

}
,
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meaning that each vertex u ∈ t∗ must have d∗u+ ℓu successors in T for some ℓu ⩾ 0, with
exactly ℓu of them getting pruned; the descendants of u inside t∗ are the v with Yv = 1.

Now, note that the events {Yv = 0} in the above are all independent because they
depend on different sub-trees of T (that lead to leaves with only h ≡ 0); recall that
P ⊗ P(Yv = 0) = γk+1 for v ∈ Tk. On the other hand, the events {Yv = 1} are not
independent, since all vertices v ∈ T such that Yv = 1 are ancestors of leaves with
h· = +1. In particular, having Yw = 1 for a leaf w ∈ ∂Tn implies that Yv = 1 for all
ancestors v of w, see Figure 5. However, all the events {Yv = 1} can be regrouped into
a simpler event {hw = 1 ,∀w ∈ t∗n}, which is independent of all events {Yv = 0}; note
that P⊗ P(hw = 1 ,∀w ∈ t∗n) = (pn)

|t∗n|.
All together, referring to Figure 5 for an illustration of the computation, and using

also that the (Xv)v∈T are independent with distribution µ, we obtain that

P⊗P
(
T∗n = t∗

)
=

n−1∏
k=0

∏
u∈t∗k

∑
ℓu⩾0

µ(d∗u + ℓu)

(
d∗u + ℓu

ℓu

)
(γk+1)

ℓu × (pn)
|t∗n| . (4.4)

Figure 5: Illustration of the computation in (4.4): the tree t∗ is represented in blue and the tree T
whose pruned version is t∗ is represented in black. For every hw = 1 in the leaves (represented by a blue
dot), all the ancestors v of w automatically have Yv = 1: this contributes to (4.4) by a factor (pn)

|t∗n|.
A branch that is pruned just above generation k contributes to the probability by a factor γk+1, and
all these pruning events (represented by a red segment) are independent since they depend on distinct
subtrees of T (the corresponding subtrees are circled with dashed lines).

We can now reformulate (4.4). Notice that pn = δn, and that |t∗n| =
∑

u∈t∗n−1
d∗u: we

therefore get that (pn)
|t∗n|
∏

u∈t∗n−1

∑
ℓu⩾0 µ(d

∗
u + ℓu)

(d∗u+ℓu
ℓu

)
(γk+1)

ℓu is equal to

∏
u∈t∗n−1

∑
ℓu⩾0

µ(d∗u + ℓu)

(
d∗u + ℓu

ℓu

)
(γk+1)

ℓu(δn)
d∗u = (δn−1)

|t∗n−1|
∏

u∈t∗n−1

µ∗n−1(d
∗
u) ,

where we have used the definition (4.2) of µ∗k to get that
∑

ℓ⩾0 µ(d+ℓ)
(
d+ℓ
ℓ

)
(γk+1)

ℓ(δn)
d =

δn−1µ
∗
n−1(d). Similarly, we get that

(δn−1)
|t∗n−1|

∏
u∈t∗n−2

∑
ℓu⩾0

µ(d∗u + ℓu)

(
d∗u + ℓu

ℓu

)
(γk+1)

ℓu = (δn−2)
|t∗n−2|

∏
u∈t∗n−2

µ∗n−2(d
∗
u).
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Therefore, iterating, we finally obtain from (4.4) that for any non-empty t∗,

P⊗P(T∗n = t∗) = δ0

n−1∏
k=0

∏
u∈t∗k

µ∗k(d
∗
u) .

This concludes the proof since this gives that for any t∗

P⊗P(T∗n = t∗) = µ̃∗0(d
∗
ρ)

n−1∏
k=1

∏
u∈t∗k

µ∗k(d
∗
u) =: P∗(T∗n = t∗) ,

where P∗ is the law of some inhomogeneous branching process of depth n, with offspring
distribution (µ̃∗0, µ

∗
1, . . . , µ

∗
n).

5 Transition in the shape of the pruned tree T∗n

5.1 Some notation and preliminaries

Recall that X denotes a random variable with law µ and that G(s) := E[sX ] denotes its
generating function. In all this section, we assume that µ(0) = 0, µ(1) < 1 and µ admits
a finite second moment. For k ⩾ 1, we denote mk := E[Xk] ∈ (1,∞] and we assume
that ν := m1 < +∞ and m2 < +∞; we denote σ2 = Var(X) = m2 −m2

1. We also let

d0 := min
{
d ⩾ 1, µ(d) > 0

}
(d0 ⩾ 1) .

As the parameters (γk)0⩽k⩽n are defined recursively in terms of the function G, see
Lemma 4.2, let us state the following useful lemma on the function G, whose proof is
elementary (we include it in Appendix A.1 for completeness).

Lemma 5.1. We have the following bounds on G: for all s ∈ [0, 1],

1 +m1(s− 1) ⩽G(s) ⩽ 1 +m1(s− 1) + Cµ(s− 1)2, (5.1)

µ(d0)s
d0 ⩽G(s) ⩽ µ(d0)s

d0 + sd0+1, (5.2)

where Cµ := 1
2(m2 −m1).

As a direct application of (5.1), we obtain the following bounds. For all t ∈ [0, 1],

νt(1− C̃µt) ⩽ F (t) := 1−G(1− t) ⩽ νt , (5.3)

where C̃µ = Cµ/ν.
We also state the following lemma on recursively defined sequences uj+1 = G(uj).

Again, its proof is elementary but included in Appendix A.1 for completeness.

Lemma 5.2. Let α ∈ (0, 1) and u0 ⩽ 1− α. Define recursively the sequence (uj)j⩾0 by
the relation uj+1 = G(uj). Then:
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(i) If d0 = 1, i.e. µ(1) ∈ (0, 1), there is a constant Cα = Cα(µ) such that for all j ⩾ 1

u0 µ(1)
j ⩽ uj ⩽ Cα u0µ(1)

j . (5.4)

(ii) If d0 ⩾ 2, there is a constant cα > 0 such that for all j ⩾ 1,

(u0)
dj−1
0 µ(d0)

d
j
0

d0−1 ⩽ uj ⩽ e−cαd
j
0 . (5.5)

(Note that the decay is doubly exponential in the second case.)

5.2 Some estimates on the parameters (γk)0⩽k⩽n

We now study how the parameters (γk)0⩽k⩽n vary. Recall that γk is defined in (4.1)
as the probability that a vertex at generation k is pruned, and also that we have set
γ̄k = γn−k and δk = 1− γk, δ̄k = δn−k.

Lemma 4.2 shows that γ̄k is defined by the iteration γ̄k+1 = G(γ̄k). Hence, we easily
get that the parameters (δ̄k)0⩽k⩽n can be recursively determined in terms of the function
F (t) := 1−G(1− t) in (5.3). Indeed, for 0 ⩽ k ⩽ n, we have

δ̄k+1 = 1− γ̄k+1 = 1−G(γ̄k) = 1−G(1− δ̄k) = F (δ̄k) .

A first observation from these iterative definitions is that by convexity of G, and since
G(1) = 1, we get that γ̄k+1 = G(γ̄k) ⩽ γ̄k. We therefore have the following:

Lemma 5.3. The sequence (γk)0⩽k⩽n is non-decreasing; equivalently, (δk)0⩽k⩽n is non-
increasing.

The main result of this section is that the parameters (γk)0⩽k⩽n, or equivalently
(δk)0⩽k⩽n, exhibit a (sharp) phase transition. Let us define:

k∗ = k∗(pn) := logν
(
pnν

n
)
, and k̄∗ = n− k∗ = logν

( 1

pn

)
, (5.6)

where logν(x) =
1

log ν log x. In the following, we omit the integer part to simplify notation

and often treat k∗, k̄∗ as integers. Let us note that k∗ → ∞ as soon as pnν
n → ∞ and

that k̄∗ →∞ as soon as pn → 0.

Proposition 5.4. There are constants c1 ∈ (0, 1) and 0 < c2 ⩽ c3 (that depend only on
the distribution µ) such that:

for all k ⩾ k∗ c1

(1
ν

)k−k∗
⩽ δk ⩽

(1
ν

)k−k∗
,

and, depending on whether d0 = 1 (i.e. µ(1) ∈ (0, 1)) or d0 ⩾ 2,

for all k ⩽ k∗

{
if d0 = 1 , c2µ(1)

k∗−k ⩽ γk ⩽ c3µ(1)
k∗−k ,

if d0 ⩾ 2 , e−c3(d0)
k∗−k

⩽ γk ⩽ e−c2(d0)
k∗−k

.
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The lower bounds in the above are not particularly relevant to our purpose (they however
have some technical use in the proofs), so let us write more compactly (whether d0 = 1
or d0 ⩾ 2) upper bounds that we will use repeatedly in the proof. There is a constant
c4 > 0 such that

γk ⩽ e−c4(k
∗−k) for k ⩽ k∗ and δk ⩽

(1
ν

)k−k∗
for k ⩾ k∗ . (5.7)

The interpretation of Proposition 5.4 (or of (5.7)) is as follows. On one hand, when
k is much smaller than k∗ in the sense that k∗ − k ≫ 1, then γk is very small (or δk is
close to 1), meaning that vertices have an exponentially small chance of being pruned.
On the other hand, when k is much larger than k∗ in the sense that k − k∗ ≫ 1, then
δk is very small (or γk is close to 1), meaning that vertices are very likely being pruned.
The transition is sharp, in the sense that it occurs in a window of size O(1).

One may therefore have the following picture in mind for the pruned tree T∗n: for
k ⩽ k∗, T∗n resembles the original Galton–Watson tree, while for k ⩾ k∗, T∗n has thin
long branches (i.e. with only one descendant per vertex) recalling that the vertices of
the pruned tree are conditioned on having at least one descendant. This picture is made
more formal in Proposition 5.7 below, see also Figure 1 on page 1 for an illustration.

Remark 5.5. In the case where pn = αn with α ∈ (0, 1), then we have that k̄∗ = n logν(
1
α)

with ηα := logν(
1
α) ∈ (0, 1). This shows that the transition occurs sharply around

generation k∗ = (1− ηα)n.

Proof of Proposition 5.4. For our purposes, it will be more convenient to work with the
iteration from Lemma 4.2 which goes from the leaves to the root. We therefore prefer
to work with γ̄k, δ̄k instead of γk, δk, and we want to show the following:

c1

(ν)k̄∗−k
⩽ δ̄k ⩽

1

(ν)k̄∗−k
for all k ⩽ k̄∗,

c2µ(1)
k−k̄∗ ⩽ γ̄k ⩽ c3µ(1)

k−k̄∗ for all k ⩾ k̄∗ .

The second line being valid if d0 = 1 (i.e. µ(1) ∈ (0, 1)), and replaced with

e−c3(d0)
k−k̄∗

⩽ γ̄k ⩽ e−c2(d0)
k−k̄∗

in the case where d0 ⩾ 2. The main idea of the proof is to use the iteration δ̄k+1 = F (δ̄k)
together with the estimate (5.3), until δ̄k is not small enough; we show that this occurs
around k = k̄∗. Then, we apply Lemma 5.2 to the iteration γ̄k+1 = G(γ̄k) starting from
k = k̄∗ for which γ̄k̄∗ is not too small.

Step 1. We start with some intermediate result which makes use of (5.3).

Lemma 5.6. Let k̄∗1 = min{0 ⩽ k ⩽ n :
∑k

i=0 C̃µδ̄i > 1/2}, with C̃µ as in (5.3). Then,
for all k ⩽ k̄∗1 we have

1

2
(ν)kpn ⩽ δ̄k ⩽ (ν)kpn. (5.8)

The upper bound is valid for any 0 ⩽ k ⩽ n.
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Proof. Let 0 ⩽ k ⩽ n. As δ̄k = F (δ̄k−1), the right-hand side of the inequality (5.3) gives
us δ̄k = F (δ̄k−1) ⩽ νδ̄k−1. Applying this inequality iteratively to all δ̄i with i ⩽ k − 1,
we obtain

δ̄k ⩽ (ν)kδ̄0 = (ν)kpn,

where we have used that δ̄0 = pn. This proves the right-hand side of the inequality.
Using the left-hand side of (5.3), we have δ̄k ⩾ νδ̄k−1(1 − C̃µδ̄k−1). Applying this

inequality iteratively to all δ̄i such that i ⩽ k − 1, we have

δ̄k ⩾ (ν)kδ̄0

k−1∏
i=0

(
1− C̃µδ̄i

)
. (5.9)

By definition of k̄∗1, and the fact that C̃µ and (δ̄j)0⩽j⩽n are non-negative, we have that

C̃µδ̄k ⩽ 1/2 for all k ⩽ k̄∗1. Thus, applying the Weierstrass inequality
∏k−1

i=0 (1 − xi) ⩾
1−

∑k−1
i=0 xi for xi ∈ [0, 1], we get that for 0 ⩽ k ⩽ k̄∗1,

k−1∏
i=0

(
1− C̃µδ̄i

)
⩾ 1−

k−1∑
i=0

C̃µδ̄i ⩾
1

2
,

where the last inequality follows again thanks to the definition of k̄∗1. This concludes the
left-hand side of the inequality, using again that δ̄0 = pn.

Step 2. We now show the bounds on δ̄k. First of all, since the bound δ̄k ⩽ (ν)kpn in
Lemma 5.6 is valid for any 0 ⩽ k ⩽ n, this gives the desired upper bound, recalling that
k̄∗ is such that (ν)k̄

∗
pn = 1, see (5.6).

For the lower bound on δ̄k, thanks to Lemma 5.6 we have a lower bound for all k ⩽ k̄∗1.
If k̄∗ ⩽ k̄∗1 this concludes the proof, otherwise we need to control δ̄k for k̄∗1 < k ⩽ k̄∗. In
fact, we show that k̄∗1 is comparable to k̄∗, in the sense that there exist two constants
L1, L2, that only depend on the the law µ, such that

L1 + k̄∗ ⩽ k̄∗1 ⩽ k̄∗ + L2 . (5.10)

To get the upper bound in (5.10), we use that by the upper bound in in Lemma 5.6,
we have

k̄∗1∑
i=0

δ̄i ⩽ pn

k̄∗1∑
i=0

(ν)i = pn
(ν)k̄

∗
1+1 − 1

ν − 1
⩽

ν

ν − 1
(ν)k̄

∗
1−k̄∗ ,

where we have again used that pn = (ν)k̄
∗
. Thus, by definition of k̄∗1, we have that

1
2C̃µ

⩽ ν
ν−1(ν)

k̄∗1−k̄∗ , which yields k̄∗1 ⩾ k̄∗ + L1, for L1 := logν
(

ν−1
2νC̃µ

)
.

For the lower bound in (5.10), using the lower bound in Lemma 5.6, we have similarly
as above

k̄∗1−1∑
i=0

δ̄i ⩾
1

2
pn

k̄∗1−1∑
i=0

(ν)i ⩾
1

2
pn(ν)

k̄∗1−1 =
1

2ν
(ν)k̄

∗
1−k̄∗ .
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Thus, by definition of k̄∗1 we have
1
2ν (ν)

k̄∗1−k̄∗ ⩽ 1
2C̃µ

, which yields the bound k̄∗1 ⩽ k̄∗+L2,

for L2 := logν
(

ν
C̃µ

)
.

Therefore, by the lower bound in Lemma 5.6 and recalling the definition of k̄∗, we
obtain that δ̄k̄∗1

⩾ α1, for α1 := 1
2(ν)

L1 ⩽ 1
2 (recall we are treating the case k̄∗1 < k̄∗ so

L1 ⩽ 0). Using that (δ̄k)k⩾0 is non-decreasing, we get that δ̄k ⩾ α1 for all k̄∗1 ⩽ k ⩽ k̄∗.
Adjusting the constant (and since (ν)kpn is of order one for k̄∗1 ⩽ k ⩽ k̄∗), we therefore
get that for all k ⩽ k̄∗,

δ̄k ⩾ c1(ν)
kpn, (5.11)

which gives the desired bound, using the definition of k̄∗.

Step 3. We now conclude the proof by showing the bounds on γ̄k for k ⩾ k̄∗. We have
proven above that δ̄k̄∗ ⩾ α1 for some α1 < 1 that depends only on the law µ. Indeed, this
is in the previous paragraph if k̄∗1 < k̄∗, and follows simply from Lemma 5.6 if k̄∗1 ⩾ k̄∗

since then δ̄k̄∗ ⩾ 1
2(ν)

k̄∗pn = 1
2 .

We therefore get that γ̄k̄∗ ⩽ 1− α1.
We can then apply Lemma 5.2 to uj := γ̄k̄∗+j , for j = k− k̄∗ ⩾ 0: in the case d0 = 1

(µ(1) ∈ (0, 1)), we obtain

γ̄k̄∗µ(1)
k−k̄∗ ⩽ γ̄k ⩽ Cα1µ(1)

k−k̄∗ ,

and a similar application of Lemma 5.2 gives the correct upper bound in the case d0 ⩾ 2.
This concludes the upper bound on γ̄k (the important part), but for the lower bound,

we need to show that γ̄k̄∗ ⩾ α2 for some universal constant α2 > 0 that depends only
on the law µ. To see this, note that the upper bound in Lemma 5.6 gives that δ̄k̄∗−1 ⩽

ν k̄
∗−1pn = ν−1, so γ̄k̄∗ = G(γ̄k̄∗−1) ⩽ G(1− ν−1) =: α2. One can then apply Lemma 5.2

to obtain the correct lower bounds.

5.3 Transition in the shape of the pruned tree

We now provide a statement that clarifies the intuition that the offspring distribution
µ∗k of the pruned tree T∗n is close to µ for generations 0 ⩽ k ⩽ k∗ and close to a Dirac
mass at 1 for generations k∗ ⩽ k ⩽ n− 1. We refer to Figure 6 for an illustration of this
transition in the shape of the pruned tree.

Recall that if µ and µ̃ are two probability measures on a measurable space (Ω,A),
the total variation distance between µ and µ̃ is defined by

dTV(µ, µ̃) := sup
A∈A
|µ(A)− µ̃(A)|.

An important property of the total variation is that it can be rewritten as dTV(µ, ν) =
infX∼µ,Y∼µ̃ P(X ̸= Y ), where the infimum is taken over all couplings of µ, µ̃, i.e. all
(joint) distributions for pairs of random variables (X,Y ) whose marginal distributions
are X ∼ µ and Y ∼ µ̃.
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Figure 6: Illustration of the transition in the shape of the pruned tree. On the left, we have represented
a tree t with mean offspring ν = 1.5 and n = 15 generations. On the right, the picture represents the
tree t∗ obtained by pruning t with Bernoulli random variables on the leaves of parameters pn = 0.2. We
can observe a change in the pruned tree t∗ at generation k∗ ≃ 11; for k ⩽ k∗, the tree t∗ looks like the
original tree t, whereas for k > k∗ mainly thin branches remain.

Proposition 5.7. There are some constants c4, c
′
4 > 0 such that

dTV(µ
∗
k, µ) ⩽ c′4e

−c4(k∗−k) for k ⩽ k∗ ,

dTV(µ
∗
k, µ{1}) ⩽ 2

(1
ν

)k−k∗
for k ⩾ k∗ ,

where we denoted by µ{1} the Dirac mass at 1.

Proof. Let us start with the case k ⩽ k∗. Recall the interpretation of µ∗k given by
Lemma 4.5: it provides a natural coupling (X∗k , X) with X∗k ∼ µ∗k and X ∼ µ, where the

conditional law of X∗k given X is a zero-truncated Binomial B̂in(X, δk). Then, by the
interpretation of the total variation distance in terms of coupling, we obtain

dTV(µ
∗
k, µ) ⩽ P(X∗k ̸= X) =

∑
d⩾1

µ(d)P(Bk,d ̸= d | Bk,d > 0) ,

with Bk,d ∼ Bin(d, δk+1). As γk+1 ∈ [0, 1] and d ⩾ 1, we have

P(Bk,d = d) = (δk+1)
d = (1− γk+1)

d ⩾ 1− dγk+1

P(Bk,d = 0) = (1− δk+1)
d = (γk+1)

d ⩽ γk+1 ⩽ γk∗+1 for k ⩽ k∗ ,

recalling also that (γk)k⩾0 is non-decreasing for the last inequality (see Lemma 5.3). Since
γk∗+1 = γ̄k̄∗−1 ⩽ 1− α1 for some α1 > 0 (see Step 3 of the proof of Proposition 5.4), we
therefore have

P(Bk,d ̸= d | Bk,d > 0) =
1− (1− γk+1)

d

1− (γk+1)d
⩽

d

α1
γk+1 ,
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so dTV(µ
∗
k, µ) ⩽

1
α1
νγk+1. This yields the desired upper bound thanks to Proposition 5.4;

see also the general bound (5.7).

For the case k ⩾ k∗, note that for any coupling (X∗k , Y ) such that the marginal
distributions are X∗k ∼ µ∗k and Y = 1 we have dTV(µ

∗
k, µ{1}) ⩽ P(X∗k ̸= 1). Using again

Lemma 4.5 that describes the law of X∗k , we have

P(X∗k ̸= 1) =
∑
d⩾2

µ(d)P
(
Bk,d ⩾ 2 | Bk,d > 0

)
,

with Bk,d ∼ Bin(d, δk+1). By sub-additivity and Bonferroni’s inequality, we have

P(Bk,d ⩾ 2) ⩽
d(d− 1)

2
(δk+1)

2, P(Bk,d ⩾ 1) ⩾ dδk −
d(d− 1)

2
(δk+1)

2.

Thus, we have the bound

P(Bk,d ⩾ 2 | Bk,d > 0) ⩽
(d− 1)(δk+1)

2

δk(2− (d− 1)δk+1)
.

This gives that P(Bk,d ⩾ 2 | Bk,d > 0) ⩽⩽ (d− 1)δk+1 for d ⩽ (δk+1)
−1, using also that

(δk)k⩾0 is non-increasing. Bounding P(Bk,d ⩾ 2 | Bk,d ⩾ 1) by 1 when d > (δk+1)
−1, we

get

∑
d⩾2

µ(d)P(Bk,d ⩾ 2 | Bk,d > 0) ⩽
(δk+1)

−1∑
d=2

µ(d)dδk+1 +
∑

d>(δk+1)−1

µ(d)

⩽ νδk+1 + P
(
X > (δk+1)

−1) ⩽ 2νδk+1 ,

where we have used Markov’s inequality in the last term. This gives the desired upper
bound, using Proposition 5.4.

5.4 Mean of the offspring distribution and size of a generation

In this section we estimate the mean and the variance of the offspring distribution of
the pruned tree, and we also observe the phase transition in these quantities. This is
not a direct consequence of Proposition 5.7 since the total variation distance does not
allow one to control moments. We then estimate the mean size of the generation k of the
pruned tree T∗n, which will reveal useful in Section 6. Some of the technical estimates of
this section are postponed to Appendix A.1.

5.4.1 Mean of µ∗k

For 0 ⩽ k < n, we let X∗k be a random variable with distribution µ∗k and ν∗k := E[X∗k ]
and (σ∗k)

2 = Var(X∗k). We now give several estimates on ν∗k , and in particular we observe
the phase transition around k∗. We are also able to estimate the variances (σ∗k)

2 (which
bring other useful information on µ∗k), but it is of no particular use for the sequel so we
postpone estimates on (σ∗k)

2 to Appendix A.2.
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Remark 5.8. Recall that in T∗n the offspring distribution of the root is µ̃∗0, see Proposi-
tion 4.3. However, when the root is conditioned on having at least one descendant (i.e.
T∗n ̸= ∅), which is an event of probability δ0, the offspring distribution of the root is µ∗0.

Let us stress that one can easily obtain a formula for ν∗k (we prove it in Appendix A.2,
see Lemma A.1):

ν∗k := E[X∗k ] =
δk+1

δk
ν . (5.12)

We can also show that (ν∗k)0⩽k<n is non-increasing, see Lemma A.2 (also proven in
Appendix A.1). We now show that the phase transition observed in Proposition 5.4
translates into the means (ν∗k)0⩽k<n. Recall the definition (5.6) of k∗ := logν(ν

npn).

Lemma 5.9. There are constants c4, c5 (that depend only on the law µ) such that

0 ⩽ ν − ν∗k ⩽ c5e
−c4(k∗−k) for k ⩽ k∗ , (5.13)

0 ⩽ ν∗k − 1 ⩽ 1 + c5

(1
ν

)k−k∗
for k ⩾ k∗ , (5.14)

where c4 is the constant appearing in (5.7).

This lemma shows that ν∗k is very close to ν if k∗ − k ≫ 1 whereas ν∗k is very close
to 1 if k−k∗ ≫ 1. Lemma A.3 complements this information by controlling the variance
of µ∗k, which is close to the variance of µ if k∗−k ≫ 1 whereas it is close to 0 if k−k∗ ≫ 1.
This confirms that the pruned tree roughly grows as a Galton–Watson tree with mean
ν > 1 for k ⩽ k∗ (i.e. with an exponential growth rate ν) and then the tree does not
grow much more since the mean is roughly 1 for k ⩾ k∗. We make this statement precise
by controlling the mean size of a generation, see Lemma 5.10 below.

Proof of Lemma 5.9. Let us start with the case k ⩽ k∗. First of all, using that the pa-
rameters (δk)0⩽k<n are non-increasing (see Lemma 5.3), we get from the expression (5.12)
of ν∗k the easy bound ν∗k ⩽ ν. On the other hand, using that δk ⩽ 1, we get from (5.12)
that ν∗k ⩾ νδk+1. Since δk+1 = 1 − γk+1, applying the bound in Proposition 5.4, we
obtain (5.13).

For the case k ⩾ k∗, δk = δ̄n−k verifies δ̄k+1 = F (δ̄k) with F (t) = 1 − G(1 − t), we
have thanks to (5.3)

νδk+1(1− C̃µδk+1) ⩽ δk ⩽ νδk+1.

Therefore, using the expression (5.12) for ν∗k , we get that

1 ⩽ ν∗k =
δk+1

δk
ν ⩽

1

1− C̃µδk+1

⩽ 1 + 2Cµδk+1 , (5.15)

for all k such that C̃µδk+1 ⩽
1
2 , using that (1−x)−1 ⩽ 1+2x for x ∈ [0, 12 ]. Hence, using

the bound in Proposition 5.4, this yields (5.14) for k ⩾ k∗2 := min{k , δk+1 ⩽ 1/(2C̃µ)}.
Similarly as in the proof of Step 2 of Proposition 5.4, one easily gets that k∗2 ⩽ k∗ + L′1
for some constant L′1 that depends only on the law µ; adapting the constant, this yields
(5.14).
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5.4.2 Size of the generations

Recall that T ∗k designates the set of vertices in the k-th generation of the pruned tree
T∗n and |T ∗k | its size. For ease of notations, let us note Zk = |T ∗k |, for 0 ⩽ k ⩽ n. By
Proposition 4.3, we have that when the pruned tree is conditioned to be non-empty,
(Zk)0⩽k⩽n is an inhomogeneous branching process with offspring distribution µ∗k. We
can construct (Zk)0⩽k⩽n as follows: set Z0 = 1 and for 0 ⩽ k < n

Zk+1 =

Zk∑
a=1

Xk,a,

where (Xk,a)a⩾1 is a family of i.i.d. random variables with distribution µ∗k.
More generally and for future use, we may want to study for any 0 ⩽ i ⩽ j ⩽ n the

size Zi,j of the population generated by an individual of generation i up to generation j.
The distribution of Zi,j can be constructed as follows: Zi,i = 1 and iteratively, for

j ∈ {i, . . . , n− 1}, Zi,j+1 =
∑Zi,j

a=1Xk,a. Let us now define, for 0 ⩽ i < j ⩽ n,

M∗i,j := E[Zi,j ] =

j−1∏
k=i

ν∗k , (5.16)

where Mi,i = 1 by convention. We can now show how the pruned tree growth stabilizes
at generation k∗; recall the definition (5.6) of k∗ := logν(ν

npn).

Lemma 5.10. There are constants c4 (from (5.7)), c6, c7, that depend only on the law
µ, such that (

1− e−c4(k
∗−k))(ν)k ⩽ M∗0,k ⩽ (ν)k for k ⩽ k∗ , (5.17)

c6(ν)
k∗ ⩽ M∗0,k ⩽ c7(ν)

k∗ for k ⩾ k∗ . (5.18)

This can be summarized in a slightly weaker form as follows: for all 0 ⩽ k ⩽ n,

c′6(ν)
k∧k∗ ⩽ M∗0,k ⩽ c7(ν)

k∧k∗ .

This lemma properly shows that M0,k grows as (ν)k up to k = k∗ and then almost
completely stops growing.

Proof. Notice that the expression of ν∗i in (5.12) yields the following expression of M∗0,k:
for all 0 ⩽ k ⩽ n,

M∗0,k =
k−1∏
i=0

δi+1

δi
ν =

δk
δ0

(ν)k.

For k ⩽ k∗, as the parameters (δk)0⩽k<n are non-increasing (see Lemma 5.3) and
δ0 ⩽ 1, we have

δk(ν)
k ⩽ M∗0,k =

δk
δ0

(ν)k ⩽ (ν)k.

33



Since δk = 1 − γk, applying the bound in Proposition 5.4 (or the general bound (5.7)),
we get the desired bound.

For k ⩾ k∗, the upper bound of δk from Proposition 5.4 yields

M∗0,k ⩽ (ν)k
1

(ν)k−k∗
1

δ0
.

Since δ0 is close to 1 (see e.g. Proposition 5.4), we have the right-hand side of (5.18).
For the left-hand side, using δ0 ⩽ 1 and Proposition 5.4, we have

M∗0,k ⩾ (ν)kδk ⩾ c1(ν)
k∗ ,

which concludes the proof.

To conclude this section, we also give some bounds on M∗n−k,n, i.e. the growth of
generations at the top of the tree. This completes the overall picture of the pruned tree.
Recall that k̄∗ := n− k∗ = logν(

1
pn
).

Lemma 5.11. There are constants c8, c9, that depend only on the law µ, so that

1 ⩽ M∗n−k,n ⩽ 1 + c8

(1
ν

)k̄∗−k
, for k ⩽ k̄∗,

(ν)k−k̄
∗
⩽ M∗n−k,n ⩽ c9 (ν)

k−k̄∗ , for k ⩾ k̄∗,

(5.19)

which can also be summarized as max{1, (ν)k−k̄∗} ⩽ M∗n−k,n ⩽ 1 + c(ν)k−k̄
∗
.

Proof. The proof is similar to the above. First of all, we clearly have M∗n−k,n ⩾ 1. For
the upper bounds, we can use that

M∗n−k,n =
δn

δn−k
(ν)k =

δ̄0
δ̄k

(ν)k ⩽
k−1∏
i=0

(1− C̃µδ̄i)
−1 ,

where we have used (5.9) for the last inequality. As (1− x)−1 ⩽ 1+ x ⩽ ex, we get that

M∗n−k,n ⩽ exp
(
C̃µ

k−1∑
i=0

δ̄i

)
⩽ exp

( C̃µ

ν − 1
pn(ν)

k
)

where we have used that δ̄i ⩽ pn(ν)
i for all i ⩾ 0, see Lemma 5.6. Since by definition of

k̄∗ we have pn = (ν)−k̄
∗
, we obtain M∗n−k,n ⩽ exp(c(ν)k−k̄

∗
) ⩽ 1 + c9(ν)

k−k̄∗ for k ⩽ k̄∗.

For k ⩽ k̄∗, we use that 1 ⩾ δ̄k ⩾ δ̄k̄∗ ⩾ c1 (see (5.11)) and the fact that δ̄0 = pn =

(ν)−k̄
∗
, to obtain

(ν)k−k̄
∗
⩽ M∗n−k,n =

δ̄0
δ̄k

(ν)k ⩽
1

c1
(ν)k−k̄

∗
.

This concludes the proof.
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6 Ising model on T∗n with plus boundary external field

6.1 Ising model on trees and non-linear capacity

For the Ising model on a tree t with plus boundary condition, Pemantle and Peres [27]
observed that the magnetization of the root (more precisely the log-likelihood ratio) is
comparable to the L3-capacity, or 3-capacity, of the tree, equipped with a specific set
of resistances. We state this as Theorem 6.4 below, but let us introduce the necessary
notation first.

Non-linear Lp-capacity. Let us start by defining the Lp- or p-capacity for a given
(finite or infinite) tree t = (V,E) rooted at a vertex ρ; we use analogous notation as
in [27]. We let ∂t be the set of maximal paths oriented away from the root. If the tree
is finite, we can identify ∂t with the set of leaves of t. For infinite trees, we assume that
there is no leaf and that all paths in ∂t are infinite.

The tree t is equipped with a set of resistances on its edges: to each edge e = uv with
u → v, assign a resistance Ru := R(e) ∈ R+ and a conductance Cu := C(e) = R(e)−1.
We say that a function θ : V 7→ R+ is a flow on the tree t if for every u ∈ V it verifies
θ(u) =

∑
u→v θ(v), i.e. if the inflow is equal to the outflow at every vertex of the tree.

Additionally, we define the strength |θ| of a flow θ as |θ| :=
∑

ρ→v θ(v), that is, the total
outflow from the root ρ. A flow θ with |θ| = 1 is called a unit flow.

Definition 6.1 (Lp-capacity). Let p > 1 and set s = p−1. Then we define the p-capacity
of the tree t with resistances (Re)e∈V as

Capp(t) := sup
θ:Vp(θ)=1

|θ| , with Vp(θ) := sup
y∈∂t

∑
e∈y

(θ(e)R(e))s .

Remark 6.2. We stress that when p = 2, by Thomson’s principle, the 2-capacity Cap2(T )
reduces to the usual electrical effective conductance between the root ρ and the leaves
of the tree; we refer to [21, Ch. 2, 3 & 9] for an extensive introduction on electrical
networks on graphs.

Then, Pemantle and Peres [27] establish a recursive expression for the p-capacity on
a tree. Recall that for a vertex u ∈ V , t(u) denotes the sub-tree of t consisting of u (as
a root) and all descendants of u.

Lemma 6.3 (Lemma 3.1 in [27]). Let t be a locally finite tree with root ρ. Fix p > 1
and s = p− 1. For any vertex u ∈ V , define

ϕp(u) := RuCapp(t(u)),

where Rρ = 1 by convention; in particular, ϕ(u) = Ru if u is a leaf. Then, for any vertex
u ∈ V , we have

ϕp(u) =
∑
u→v

Ru

Rv

ϕp(v)

(1 + ϕp(v)s)1/s
. (6.1)
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Relation to Lyons’ iteration. Lemma 6.3 is reminiscent of the iteration (2.5) for
the log-likelihood ratio, namely rβ(u) =

∑
u→v gβ(rβ(v)). Additionally, [27, Lem. 4.2]

observes that the function gβ(x) = log( e
2βex+1
e2β+ex

) verifies

tanh(β)x

(1 + c2x2)1/2
⩽ gβ(x) ⩽

tanh(β)x

(1 + c1x2)1/2
,

for some c1, c2 > 0. Therefore, a direct consequence of Theorem 3.2 in [27] and of the
recursion (2.5) is the following.

Theorem 6.4 (Theorem 3.2 in [27]). Let t be a tree with a set of leaves ∂t. There are
constants κ1, κ2 such that, for the Ising model on t with plus boundary condition, the
log-likelihood ratio of the root verifies

κ1Cap3(t) ⩽ r+t,β(ρ) ⩽ κ2Cap3(t) .

Here Cap3(t) is the 3-capacity of the tree t equipped with resistances Ru := tanh(β)−|u|.

This result is used in [27] to obtain a criterion for the magnetization of the Ising
Model with plus boundary conditions on an infinite tree t: Theorem 2.2 in [27] shows
that the root ρ is magnetized if and only if Cap3(t) > 0.

The goal of the rest of the section is therefore to estimate the 3-capacity of the
pruned tree T∗n. We will prove the following result, which thanks to Theorem 6.4 will
conclude the proof of Theorem 3.3; note that Theorem 6.4 applies with a plus boundary
condition, but can be adapted to treat the case of a plus boundary external field, see in
particular Remark 1.1.

Proposition 6.5. Let Tn be a Galton–Watson tree with offspring distribution µ satisfy-
ing Assumption 1, and let T∗n = Prunedh(Tn) be the pruned version of Tn with (hv)v∈∂T
given by i.i.d. Bernoulli random variables with parameter pn ∈ (0, 1], as defined in Sec-
tion 3.2.

• Upper bound. There is a constant c > 0 such that

E⊗ E
[
Cap3(T

∗
n)
]
⩽ c αn (6.2)

with

αn :=

{
pn(tanh(β)ν)

n if tanh(β)ν ̸= 1 ,

min{n−1/2, pn} if tanh(β)ν = 1 .

In particular, if tanh(β)ν ⩽ 1 or if limn→∞ pn(tanh(β)ν)
n = 0, then Cap3(T

∗
n) converges

to 0 in L1, hence in probability.
• Lower bound. If the offspring distribution µ admits a finite second moment and if

lim infn→∞ pnν
n = +∞, we have that

lim
ε↓0

lim sup
n→∞

P⊗ P
(
Cap3(T

∗
n) ⩽ εα̃n

)
= 0 , (6.3)
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with

α̃n :=

{
min{1, pn(tanh(β)ν)n} if tanh(β)ν ̸= 1 ,

min{n−1, pn} if tanh(β)ν = 1 .

In particular, if tanh(β)ν > 1 and lim infn→∞ pn(tanh(β)ν)
n > 0, then Cap3(T

∗
n) re-

mains asymptotically bounded away from 0; more precisely, {Cap3(T∗n)−1}n⩾0 is tight.

Remark 6.6. In the case where tanh(β)ν ̸= 1, then we identify the correct order for
Cap3(T

∗
n), hence for the root magnetization: min{1, pn(tanh(β)ν)n}. In the critical case

tanh(β)ν = 1, we have identified the correct order for the root magnetization only in
the case where pn ⩽ n−1, but the upper and lower bound differ otherwise.

Remark 6.7. For the critical Ising model on the Galton–Watson tree, i.e. when one has
tanh(β)ν = 1 and pn ≡ 1, then Proposition 6.5 and Theorem 6.4 give (also applying
Markov’s inequality) that for any ε > 0

lim
ε↓0

lim inf
n→∞

P
( ε
n
⩽ r+n (ρ) ⩽

ε−1√
n

)
= 1

Roughly speaking, it says that the magnetization of the root r+n (ρ) is bounded from
above by O(1/

√
n) and from below by O(1/n). To our knowledge, such bounds do not

appear in the literature; our lower bound seems not to be optimal so we believe that the
root magnetization is of order 1/

√
n, at least when the offspring distribution admits a

finite second moment.

Proposition 6.5 amounts to estimating the 3-capacity of an inhomogeneous branching
process. We find this question interesting in its own so we try to study this problem in
the most general terms. We will use the structure on the pruned tree only at the end of
the proof, to conclude the argument; the estimates in Section 5 turn out crucial for this
last step.

6.2 Capacity of an inhomogeneous branching process

Let us consider a tree T of depth n generated by a branching process with inhomogeneous,

n-dependent, offspring distributions (µ
(n)
k )0⩽k<n. Note that the offspring distributions

may also depend on n, as it is the case for the pruned tree T∗n, see Proposition 4.3 and
the definition (4.2) of µ∗k.

For notational convenience, we will simply write µk := µ
(n)
k , and we assume that

µk(0) = 0 for all k. We denote νk the mean of µk (by convention νn = 1) and for
0 ⩽ i < j ⩽ n+ 1,

Mi,j :=

j−1∏
k=i

νk , (6.4)

with Mi,i = 1 by convention. Hence, Mi,j is the mean size of a population generated by
a branching process with offspring distribution (µk)i⩽k<j . We then have the following
result.
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Proposition 6.8. Let T be a tree of depth n generated by an inhomogeneous branching

process with offspring distributions (µ
(n)
k )0⩽k<n, and associated resistances (Ru)u∈T given

by Ru = R−|u| for some fixed R > 0. Recalling the definition (6.4) of Mi,j, we have the
following upper bound

E [Cap3(T )] ⩽

( n∑
k=1

( 1

RkM0,k

)2)−1/2
. (6.5)

For the lower bound, define for 0 ⩽ k ⩽ n− 1 the quantity vk,n := 1+
n−1∑
i=k

σ2
i

Mk,i
, where σ2

i

is the variance of the law µi. Then we have that for any ε > 0,

P

(
Cap3(T ) ⩽ ε

( n∑
k=0

vk,n
RkM0,k

)−1)
⩽ P

(
|Tn| ⩽ ε1/3M0,n

)
+ ε1/3 . (6.6)

6.2.1 Upper bound in Proposition 6.8: proof of (6.5)

For u ∈ T , recall the definition ϕp(u) := RuCapp(T (u)) in Lemma 6.3. Now, consider
the random variable Φk := ϕp(u) for some vertex u ∈ Tk chosen uniformly at random
from generation k. Then, as the number of offspring of vertices in the same generation
are independent, by Lemma 6.3 we get for 0 ⩽ k < n, with s := p− 1,

Φk = R

Xk∑
i=1

Φ
(i)
k+1

(1 + (Φ
(i)
k+1)

s)1/s
,

where Xk is a random variable with distribution µk and (Φ
(i)
k+1)i⩾1 are i.i.d. copies

of Φk+1. Note that we also have used that Rv = R−|v| here.
Taking the expectation we obtain by the branching property

E[Φk] = Rνk E

[
Φk+1

(1 + Φs
k+1)

1/s

]
.

As the function x 7→ x/(1 + xs)1/s is concave, we can apply Jensen’s inequality to the
previous expression: we obtain

E[Φk] ⩽ Rνk
E[Φk+1]

(1 +E[Φk+1]s)1/s
=

Rνk
(1 +E[Φk+1]−s)1/s

. (6.7)

Now, defining zk := E[Φk]
−s, we can rewrite (6.7) as zk ⩾ (Rνk)

−s(1 + zk+1). By
applying this inequality recursively, we obtain that for all k ⩽ n,

zk ⩾
n∑

i=k

i∏
j=k

(Rνj)
−s + zn

n−1∏
j=k

(Rνj)
−s ⩾

n∑
i=k

(Ri+1−kMk,i+1)
−s ,
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where we have used the definition (6.4) Mk,i+1 :=
∏i

j=k νk for the last inequality. Since

z0 = E[Φ0]
−s and Φ0 = Capp(T ), we get that

E
[
Capp(T )

]
⩽

( n−1∑
i=0

( 1

Ri+1M0,i+1

)s)−1/s
.

This gives a general bound on the p-capacity Capp(T ): with p = 3, s = 2, this is the
bound (6.5), up to an index change.

6.2.2 Lower bound in Proposition 6.8: proof of (6.6)

Step 1. We start by showing that the 2-capacity of a tree is a lower bound for its
3-capacity.

Lemma 6.9. Let T be a tree of depth n with no leaf excepts the vertices at generation n
and equipped with resistances (Rv)v∈T . Then, for any 1 < p ⩽ p′ we have Capp(T ) ⩽
Capp′(T ).

Proof. Our starting point is Lemma 6.3. Recall that, for a vertex u on the tree T we
defined ϕp(u) = RuCapp(T (u)) and that, for any p > 1, we have Capp(T (u)) = 1 when
u is a leaf. Then, Lemma 6.3 shows that for any vertex u ∈ T that is not a leaf we have

ϕp(T (u)) =
∑
u→v

Ru

Rv

ϕp(T (v))

(1 + ϕp(T (v))s)1/s
, ϕp′(T (u)) =

∑
u→v

Ru

Rv

ϕp′(T (v))

(1 + ϕp′(T (v))s
′)1/s′

,

with s = p − 1, s′ = p′ − 1. To conclude the proof of the lemma, it suffices to show
that for any 0 < s ⩽ s′ we have (1 + xs)1/s ⩾ (1 + xs

′
)1/s

′
for any x ⩾ 0 and apply this

inequality iteratively. But this simply follows from the fact that for α ∈ [0, 1] and any
a, b ⩾ 0 we have (a+ b)α ⩽ aα + bα, so that (1 + xs

′
)s/s

′
⩽ 1 + xs.

Let us define An :=
n∑

k=0

vk,n
RkM0,k

. Using Lemma 6.9, we can bound

P
(
Cap3(T ) ⩽ ε(An)

−1) ⩽ P
(
Cap2(T ) ⩽ ε(An)

−1) .
We can therefore focus on the 2-capacity Cap2(T ) of the tree; recall that this is the
effective conductance between the root ρ and the leaves ∂T (see e.g. [21, Ch. 2] for an
overview of the theory of electrical networks on graphs). We then write Cap2(T ) =
C(ρ ↔ ∂T ) = R(ρ ↔ ∂T )−1, where R(ρ ↔ ∂T ) is the effective resistance between the
root ρ and the leaves ∂T . We are now reduced to showing the following inequality

P
(
R(ρ↔ ∂T ) ⩾ ε−1An

)
⩽ P

(
W0,n ⩽ ε1/3

)
+ ε1/3 , (6.8)

where W0,n = |Tn|/M0,n, see (6.10) below.
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Step 2. Our second step is to find an upper bound on the resistance R(ρ ↔ ∂T ). By
Thomson’s principle (see [21, §2.4]), we have

R(ρ↔ Tn) = inf
θ:|θ|=1

∑
u∈T

Ruθ(u)
2 , (6.9)

where θ is a flow on the tree T .
An upper bound is therefore obtained simply by choosing a specific flow θ on T :

similarly to what is done in [26, Lem. 2.2] (see also [7, Lem. 3.3]), we use the uniform
flow θ̂ on T . For a vertex u ∈ Tk in the k-th generation, we let

θ̂(u) :=
|Tk,n(u)|
|Tn|

,

where we note Tk,n(u) the set of descendants in generation n of the vertex u, i.e. of
individuals in generation n− k of the sub-tree T (u). We can easily see that the uniform
flow θ̂ is a unitary flow: indeed, we have

θ̂(ρ) =
1

|Tn|
∑
ρ→v

|T1,n(v)| = 1 .

Therefore, by the Thomson principle (6.9), we have

R(ρ↔ T ) ⩽
∑
v∈V

Rv θ̂(v)
2 =

1

|Tn|2
n∑

k=0

∑
u∈Tk

R−k|Tk,n(u)|2 .

Before we work on this upper bound, let us rewrite it using some notation. For 0 ⩽ k ⩽ n
and u ∈ Tk, let us define for ℓ ∈ {k, . . . , n}

Wk,ℓ(u) =
1

Mk,ℓ
|Tk,ℓ(u)| , (6.10)

and notice that (Wk,ℓ(u))k⩽ℓ⩽n is a martingale (with mean 1). We also denote W0,k :=
|Tk|/M0,k the martingale W0,k(ρ). Then, we have

R(ρ↔ T ) ⩽
1

(W0,n)2

n∑
k=0

R−k
(M0,n

Mk,n

)2 ∑
v∈Tk

Wk,n(v)
2

⩽
1

(W0,n)2

n∑
k=0

R−k

M0,k

1

M0,k

∑
v∈Tk

Wk,n(v)
2 ,

(6.11)

where we have used that M0,n = M0,kMk,n.
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Step 3. We are now ready to conclude the proof. Using the above inequality and
decomposing according to whether W0,n is small or not, we have

P
(
R(ρ↔ T ) ⩾ ε−1An

)
⩽ P

( n∑
k=0

R−k

M0,k

1

M0,k

∑
v∈Tk

Wk,n(v)
2 ⩾ ε−1(W0,n)

2An

)

⩽ P
(
W0,n ⩽ ε1/3

)
+P

( n∑
k=0

R−k

M0,k

1

M0,k

∑
v∈Tk

Wk,n(v)
2 ⩾ ε−1/3An

)

⩽ P
(
W0,n ⩽ ε1/3

)
+ ε1/3A−1n

n∑
k=0

R−k

M0,k
E
[
(Wk,n)

2
]
,

where we have used Markov’s inequality for the last part, together with the fact that
(Wk,n(v))v∈Tk

are i.i.d.; here Wk,n denotes a random variable with the same distribution.
Now, (|Tk,ℓ|)0⩽ℓ⩽n is an inhomogeneous branching process with offspring distribution
(µℓ)k⩽ℓ<n: it is standard to get that

E
[
|Tk,ℓ+1|2

]
= (νℓ)

2E
[
|Tk,ℓ|2

]
+ σ2

ℓE
[
|Tk,ℓ|

]
= (νℓ)

2E
[
|Tk,ℓ|2

]
+ σ2

ℓMk,ℓ ,

where σ2
ℓ is the variance of the law µℓ. Iterating, we get that

E
[
|Tk,n|2

]
= (Mk,n)

2 +
n−1∑
i=k

(Mi,n)
2σ2

iMk,i , so E[(Wk,n)
2] = 1 +

n−1∑
i=k

σ2
i

Mk,i
=: vk,n .

This concludes the proof of (6.6), recalling the definition of An.

6.3 Conclusion of the proof of Proposition 6.5

We now apply Proposition 6.8 to obtain an upper and a lower bound on Cap3(T
∗
n),

which is the content of Proposition 6.5.

6.3.1 Upper bound on Cap3(T
∗
n): proof of (6.2)

By Proposition 6.8, we have that

E⊗ E
[
Cap3(T

∗
n)
]
⩽

( n∑
k=1

( 1

RkM∗0,k

)2)−1/2
,

with R := tanh(β) < 1 and M∗i,j is defined in (5.16). We now use Lemma 5.10 to get
that

c−17 Kn ⩽
n∑

k=1

( 1

RkM∗0,k

)2
⩽ c−16 Kn , with Kn :=

n∑
k=1

R−2k(ν)−2(k∧k
∗) .

Now, we can easily study Kn depending on the value of Rν; note that we only need a

lower bound on Kn since the above shows that E⊗ E[Cap3(T∗n)] ⩽ cK
−1/2
n .
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• If Rν ̸= 1, then keeping only the term k = n in the sum, we have

Kn ⩾ (ν)−2k
∗
R−2n =

( 1

pn(Rν)n

)2
,

where we have used that n− k∗ = logν(
1
pn
). We end up with

E⊗ E
[
Cap3(T

∗
n)
]
⩽ c pn(Rν)n ,

which gives (6.2) in the case Rν ̸= 1. Note that it goes to zero if limn→∞ pn(Rν)n = 0.

• If Rν = 1, then we have

Kn ⩾
k∗∑
k=1

1 +
n∑

k=k∗+1

R−2(k−k
∗) ⩾ k∗ +R−2(n−k

∗) ⩾ max{k∗, p−2n } ,

where we have used that Rn−k∗ = 1/νn−k
∗
with νn−k

∗
= ν k̄

∗
= 1

pn
, by the definition (5.6)

of k̄∗. Now, notice that k∗ = n− logν(
1
pn
) so either pn ⩽ n−1/2, or pn ⩾ n−1/2 and then

k∗ ⩾ n/2. We therefore end up with Kn ⩾ cmax{n, p−2n }, so that

E⊗ E
[
Cap3(T

∗
n)
]
⩽ c′min

{
n−1/2, pn

}
.

This concludes the proof of (6.2) in the case Rν = 1.

6.3.2 Lower bound on Cap3(T
∗
n): proof of (6.3)

Applying Proposition 6.8, we need to control the two quantities in (6.6). We treat them
in the two following lemmas.

Lemma 6.10. Let σ∗k be the variance of the law µ∗k and Mk,i =
∏i−1

j=k ν
∗
j as defined

in (5.16). Then, there exists a constant C > 0 such that for all 0 ⩽ k ⩽ n

v∗k,n := 1 +

n−1∑
i=k

(σ∗i )
2

M∗k,i
⩽ C .

Lemma 6.11. Let W ∗0,n = 1
M∗

0,n
|T ∗n |. Then, if lim infn→∞ pnν

n = +∞, we have

lim
ε↓0

lim sup
n→∞

P
(
W0,n ⩽ ε

)
= 0 .

Using these two lemmas, we get from Proposition 6.8 that

lim
ε↓0

lim sup
n→∞

P⊗ P
(
Cap3(T

∗
n) ⩽ ε

( n∑
k=1

1

RkM∗0,k

)−1)
= 0 ,

Using again Lemma 5.10 to bound M∗0,k, we get that

cK̃n ⩽
n∑

k=1

1

RkM∗0,k
⩽ c′K̃n with K̃n :=

k∗∑
k=1

(Rν)−k + (ν)−k
∗

n∑
k=k∗+1

R−k ,
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so that limε↓0 lim supn→∞P ⊗ P(Cap3(T∗n) ⩽ ε(K̃n)
−1) = 0 and we now need to con-

trol K̃n depending on the value of Rν; note that we only need an upper bound.

• If Rν ̸= 1, since R = tanh(β) < 1, we have that

K̃n ⩽
1

Rν − 1

(
1− (Rν)−k

∗)
+ c(ν)−k

∗
R−n ⩽ c′ +

c′′

(Rν)k∗
+

c

pn(Rν)n
,

where we have used that (ν)n−k
∗
= 1/pn by definition (5.6) of k∗. In the case Rν < 1

(where we already know that Cap3(T
∗
n) goes to 0 in probability) we get that K̃n ⩽

c
pn(Rν)n ; note that this upper bound diverges. In the case Rν > 1 the upper bound is a

constant times max{1, 1
pn(Rν)n }. This concludes the proof of (6.3) in the case Rν ̸= 1.

Note that in the case whereRν > 1 and lim infn→∞ pn(Rν)n > 0, then lim supn→∞(K̃n)
−1 <

+∞, so it proves in particular that limε↓0 lim supn→∞P⊗ P
(
Cap3(T

∗
n) ⩽ ε

)
= 0.

• If Rν = 1, then similarly to the above, we have

K̃n ⩽ k∗ + c(ν)−k
∗
R−n ⩽ c′max{k∗, (ν)n−k∗} = c′max

{
k∗, p−1n

}
recalling that (ν)n−k

∗
= 1/pn. This concludes the proof of (6.3) in the case Rν = 1.

6.3.3 Last technical lemmas: proof of Lemmas 6.10 and 6.11

Proof of Lemma 6.10. We start with the case where k ⩾ k∗. Then, splitting the sum in
the definition of v∗k,n (see 6.8) according to whether i ⩽ k∗ or i ⩾ k∗, we obtain

v∗k,n = 1 +
k∗∑
i=k

(σ∗i )
2

M∗k,i
+

n−1∑
i=k∗+1

(σ∗i )
2

M∗k,i
⩽ 1 + c

k∗∑
i=k

ν−(i−k) +
n−1∑

i=k∗+1

(σ∗i )
2 ,

where we have used that (σ∗i )
2 ⩽ m2, see Remark A.4, that M∗k,i =

M∗
0,i

M∗
0,k

⩾ c(ν)i−k for

k ⩽ i ⩽ k∗ thanks to Lemma 5.10, and finally that M∗k,i ⩾ 1 in the case i ⩾ k∗. The first

sum is finite since ν > 1, and the second sum is also finite, using that (σ∗i )
2 ⩽ cν−(i−k

∗)

for i > k∗, see Lemma A.3.
In the case where k < k∗, then we have similarly

v∗k,n = 1 +

n−1∑
i=k

(σ∗i )
2

M∗k,i
⩽ 1 +

n−1∑
i=k

(σ∗i )
2 ,

that last sum being also bounded by a universal constant.

Proof of Lemma 6.11. First of all, let us observe that in the general case of a branching

process with inhomogeneous, n-dependent, offspring distributions (µ
(n)
k )1⩽k⩽n, one can-

not use a martingale convergence as one would for a homogeneous branching process.
For the pruned tree, we now give some ad-hoc proof, which uses the structure of the
tree. For completeness, we give in Appendix A.3 and alternative line of proof that one
should follow in the general case.
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In the case of the pruned tree T∗n, we use the fact that the distribution of |T ∗n | is
explicit: conditionally on |Tn|, it is a binomial Bin(|Tn|, pn). In particular,

M∗0,n := E
[
|T ∗n | | |T ∗n | > 1

]
= δ−10 E

[
|T ∗n |

]
= δ−10 pnν

n ,

with δ0 close to 1. We therefore get that

P
(
|T ∗n | ⩽ εM0,n

)
⩽ P

(
|Tn| ⩽ 2ενn

)
+P

(
|Tn| ⩾ 2ενn,Bin(|Tn|, pn) ⩽ εδ−10 pnν

n
)

⩽ P
(
|Tn| ⩽ 2ενn

)
+P

(
Bin(2ενn, pn) ⩽ εδ−10 pnν

n
)
.

The second probability clearly goes to 0, as long as lim infn→∞ pnν
n = +∞ (using also

that δ0 goes to 1). For the first probability, we use that T is a homogeneous branching
process: we have that ( 1

νn |Tn|)n⩾0 is a martingale that converges almost surely to a
positive random variable W (recall we assumed that µ(0) = 0). Hence, we get that

lim sup
n→∞

P
(
|T ∗n | ⩽ εM0,n

)
⩽ P(W ⩽ 2ε) ,

which goes to 0 as ε ↓ 0 and concludes the proof.

A Some technical proofs and comments

A.1 About recursions: proofs of Lemmas 5.1 and 5.2

Proof of Lemma 5.1. Recall that G is the generating function of a random variable X ∈
N with mean m1 and second moment m2.

For (5.1), by the Taylor-Lagrange theorem, for all s ∈ [0, 1] there exists x1 ∈ [s, 1]
such that:

G(s) = G(1) +G′(1)(s− 1) +
G′′(x1)

2
(s− 1)2 . (A.1)

By convexity of the function G, we have that 0 ⩽ G′′(x1) ⩽ G′′(1) = m2 −m1. Since
G(1) = 1, G′(1) = m1, we therefore obtain from (A.1) that for all s ∈ [0, 1]

1 +m1(s− 1) ⩽ G(s) ⩽ 1 +m1(s− 1) +
1

2
(m2 −m1)(s− 1)2 ,

which is the desired bound.
The bounds of (5.2) are easily deduced from the definition G(s) =

∑
i⩾1 µ(i)s

i, using

that si ⩽ sd0+1 for i ⩾ d0 + 1 and
∑

i⩾d0+1 µ(i) ⩽ 1 for the upper bound.

Proof of Lemma 5.2. Thanks to the bounds (5.2), we have for any j ⩾ 1

µ(d0) (uj−1)
d0 ⩽ uj = G(uj−1) ⩽ µ(d0) (uj−1)

d0 + (uj−1)
d0+1.

Thus, by iteration, we obtain for j ⩾ 1,

j−1∏
i=0

µ(d0)
di0 × (u0)

dj0 ⩽ uj ⩽
j−1∏
i=0

µ(d0)
di0 × (u0)

dj−1
0 ×

j−1∏
i=0

(
1 +

ui
µ(d0)

)dj−1−i
0

. (A.2)
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(i) In the case d0 = 1, the lower bound is directly given by (A.2). For the upper
bound, we only need to control

∏j−1
i=0 (1 +

1
µ(1)ui). We use that, G being convex, G(s) ⩽

pαs for all s ∈ [0, 1 − α], with pα = G(1−α)
1−α < 1: we easily deduce by iteration that

ui ⩽ (pα)
iu0 for all i ⩾ 0. This leads to the following:

j−1∏
i=0

(
1 +

ui
µ(1)

)
⩽ exp

( 1

µ(1)

j−1∑
i=0

ui

)
⩽ exp

( u0
µ(1)

1

1− pα

)
⩽ Cα,

with Cα := e
1−α

µ(1)(1−pα) , which proves (5.4).

(ii) In the case d0 ⩾ 2, the lower bound is also immediate from (A.2), since
∑j−1

i=0 d
i
0 =

dj0−1
d0−1 . For the upper bound, let us start by noting that if µ(d0) = 1, then we have the

exact formula uj = (u0)
dj−1
0 , with u0 ⩽ 1−α. If µ(d0) < 1, then there is some v0 ∈ (0, 1)

such that G(s) ⩽ sd0 for all s ⩽ v0. Since there is some jα such that uj ⩽ v0 for all
j ⩾ jα, we get as above that for j ⩾ jα

uj ⩽ (ujα)
dj−jα
0 ⩽ exp

(
− (d−jα0 log v0)d

j
0

)
.

Adjusting the constant to deal with the terms j < jα, this gives the desired bound.

A.2 Complementary estimates on the offspring distributions µ∗k

For 0 ⩽ k < n, let X∗k be a random variable with distribution µ∗k (the offspring distribu-
tion of the pruned tree) and let ν∗k be its mean and (σ∗k)

2 its variance.

Recall also Lemma 4.5 which says that X∗k ∼ B̂in(X, δk+1), where B̂in denotes a
zero-truncated binomial, i.e. a binomial conditioned on being strictly positive, see Defi-
nition 4.4, and X is a random variable with law µ. For later reference, if B̂ ∼ B̂in(n, p),
its mean and variance are given by

E
[
B̂
]
=

np

1− (1− p)n
, Var(B̂) =

np

(1− (1− p)n)2
(
1−p−(1−p+np)(1−p)n

)
. (A.3)

Recall that ν, m2 denote the first and second moment of the offspring distribution µ.

Lemma A.1. Let X∗k be a random variable with distribution µ∗k. then

ν∗k := E[X∗k ] =
δk+1

δk
ν,

(σ∗k)
2 := Var(X∗k) = ν∗k

(
1 + δk+1

(m2

ν
− 1
)
− ν∗k

)
.

Proof of Lemma A.1. Letting Bk ∼ Bin(X, δk+1), we have thanks to Lemma 4.5 that

ν∗k =
∑
z⩾1

zP(X∗k = z) =
∑
z⩾1

z
P(Bk = z)

P(Bk > 0)
=

1

δk

∑
z⩾1

zP(Bk = z),
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where we have used that P(Bk = 0) = γk so P(Bk > 0) = δk, see the proof of Lemma 4.5.
Working with the definition of Bk, we easily see that∑

z⩾1

zP(Bk = z) =
∑
d⩾1

µ(d)E
[
Bin(d, δk+1)

]
= δk+1

∑
d⩾0

µ(d)d = δk+1ν .

For the expression of the variance, let us compute the second moment of X∗k : for
0 ⩽ k < n, similarly as above we have

E
[
(X∗k)

2
]
=

1

δk

∑
z⩾1

z2P(Bk = z) =
1

δk

∑
d⩾0

µ(d)E
[
Bin(d, δk+1)

2
]

=
1

δk

(
δk+1γk+1ν + δ2k+1m2

)
.

Thus, by computing E[(X∗k)
2]−E[X∗k ]

2, we get the following expression for the variance:

(σ∗k)
2 =

δk+1

δk

(
γk+1ν + δk+1m2 −

δk+1

δk
(ν)2

)
,

which gives the correct expression, using the formula for ν∗k .

We now give some property of the means (ν∗k)0⩽k<n.

Lemma A.2. The sequence of means (ν∗k)0⩽k<n is non-increasing.

Proof. We start by writing ν∗k only in terms of the random variable X with distribution µ
and of the parameter γk+1. Note that, since conditionally on X the random variable Bk

is a zero-truncated binomial B̂in(X, 1− γk+1), we have

E[X∗k | X] =
X(1− γk+1)

1− (γk+1)X
.

Thus, ν∗k = E[f(γk+1, X)] for f(x, y) :=
y(1− x)

1− xy
. As X ⩾ 1 and γk+1 ∈ [0, 1] is non-

decreasing, it is enough to prove that x 7→ f(x, y) is non-increasing on [0, 1], for any
y ⩾ 1.

Fix y ⩾ 1 and let fy(x) := f(x, y), gy(x) := xy−1+yxy−1(1−x) for x ∈ [0, 1]. Thus,
we can write

f ′y(x) =
y

(1− xy)2
gy(x).

We can easily see that, for y ⩾ 1 and x ∈ [0, 1], we have gy(x) ⩽ 0, as gy(0) = −1,
gy(1) = 0 and x 7→ gy(x) is non-decreasing. Therefore, f ′y(x) ⩽ 0 for x ∈ [0, 1], which
concludes the proof.

Let us now study the variances ((σ∗k)
2)0⩽k<n and prove a statement analogous to

Lemma 5.9; in particular we also observe the phase transition from Proposition 5.4 in
terms of the variances. Recall the definition (5.6) of k∗ := logν(ν

npn).
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Lemma A.3. There are constants c, c′ (that depend only on the law µ) such that:

(σ∗k)
2 ⩽ c

(1
ν

)k−k∗
for k ⩾ k∗, (A.4)

|(σ∗k)2 − σ2| ⩽ c′e−c4(k
∗−k) for k ⩽ k∗ . (A.5)

Remark A.4. Note that we have no monotonicity for the sequence (σ∗k)0⩽k⩽n−1, nor the
upper bound (σ∗k)

2 ⩽ σ2 in general. Indeed, choosing µ(d0) = 1 for some d0 ⩾ 2, then

σ2 = 0 but (σ∗k)
2 > 0, since then µ∗k is a zero-truncated binomial B̂in(d, δ̄k+1). On the

other hand, we have a general (easy) bound: (σ∗k)
2 ⩽ E[B̂in(X, δk+1)

2] ⩽ E[X2] =: m2.

Proof. Recall from Lemma A.1 the formula: (σ∗k)
2 = ν∗k

(
1 + δk+1(

m2
ν − 1)− ν∗k

)
.

For k ⩾ k∗, using Lemma 5.9, we get that ν∗k ⩽ m1 and 1− ν∗k ⩽ 0, so

(σ∗k)
2 ⩽ δk+1(m2 − ν) ,

and we directly get the upper bound (A.4) thanks to Proposition 5.4.
For k ⩽ k∗, using that δk+1 = 1 − γk+1 and setting εk := ν − ν∗k ⩾ 0, we have

(bounding also ν∗k ⩽ ν),

(σ∗k)
2 ⩽ ν

(
1− ν + εk +

m2

ν
− 1− γk+1

(m2

ν
− 1
))

⩽ σ2 + εkν ,

where we have used that m2
ν −1 ⩾ 0. Using Lemma 5.9, we get the desired upper bound.

For the lower bound, we write similarly

(σ∗k)
2 ⩾ (ν − εk)

(
1− ν +

m2

ν
− 1− γk+1

(m2

ν
− 1
))

⩾ σ2 − σ2

ν
εk − γk+1(m2 − ν) .

Using Lemma 5.9 and Proposition 5.4, this concludes the proof.

A.3 About general inhomogeneous, n-dependent, branching processes:
alternative proof of Lemma 6.11

In this section, we give an alternative proof of Lemma 6.11, following a different scheme
of proof that remains valid for general inhomogeneous, n-dependent, branching processes

T , with offspring distribution (µ
(n)
k )0⩽k<n; note that what makes the result non-trivial

is precisely the n-dependence since one cannot use almost sure martingale convergence

results. We denote νk, σ
2
k the mean and variance of µk = µ

(n)
k .

We define W0,n := 1
M0,n
|Tn| as in Section 6.2 and we want to control P(W0,n ⩽ ε).

Equivalently to Lemma 6.11, we want to prove the following:

lim
λ→∞

lim sup
n→∞

E
[
e−λW0,n

]
= 0 . (A.6)

We let Gk = G
(n)
k be the generating function of µk (recall we assumed µk(0) = 0),

Gk(s) :=

∞∑
d=1

µk(d)s
d s ∈ [0, 1]
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and we note that GTn = G0 ◦G1 ◦ · · · ◦Gn−1 is the generating function of Tn. Hence, we
can rewrite E[e−λW0,n ] = GTn(e

−λ/M0,n). Since, for any fixed λ > 0 and n large enough,
we have e−λ/M0,n ⩽ 1 − λ

2M0,n
, we get that (A.6), hence Lemma 6.11 is equivalent to

having

lim
λ→∞

lim sup
n→∞

GTn

(
1− λ

M0,n

)
= 0 . (A.7)

Let us describe the general strategy to prove (A.7). For s ∈ (0, 1), define the sequence
(Γ̄k(s))0⩽k⩽n as

Γ̄0(s) := Γ̄0 = s

Γ̄k(s) := Γ̄k = Gn−k ◦ · · · ◦Gn−1(s) = Gn−k(Γ̄k−1) .

Note that we keep the notation Γ̄k (instead of Γk) in analogy with Section 5, since we
index our quantities in terms of the distance to the leaves.

The general strategy of proof can then be decomposed into the following steps:

1) Find κ̄ = κ̄(λ, n) such that for s := 1− λ
M0,n

we have Γ̄κ̄(s) ⩽ 1−η, for some universal
constant η > 0.

Informally, κ̄ is the number of steps needed for Γ̄k(s) to start getting away from 1.

2) Show that n− κ̄ ⩾ κ0(λ) uniformly in n, with limn→∞ κ0(λ) = +∞.

Informally, this tells that after κ̄ iterations there are still many iterations remaining.

3) Show that for any η > 0 and any ε > 0, there exists some universal kη,ε > 0 (i.e.
that does not depend on n) such that G0 ◦ · · · ◦Gk(1− η) ⩽ ε for k ⩾ kη,ε.

Informally, this tells that if one has reached Γ̄k ⩽ 1 − η and that a large number of
iterations remains, then Γ̄n := GTn(1− λ

M0,n
) is small.

These three steps indeed allow us to prove (A.7): applying Step 1, we have by
monotonicity of the generating functions,

GTn

(
1− λ

M0,n

)
⩽ G0 ◦ · · · ◦Gn−κ̄∗(1− η) .

Then, applying Step 2 in the second inequality (together with the fact that Gi(s) ⩽ s)
for any s ∈ [0, 1], we get that

GTn

(
1− λ

M0,n

)
⩽ G0 ◦ · · · ◦Gκ0(λ)(1− η)

Step 3 above, together with the fact that κ0(λ)→∞ as λ→∞ concludes the proof.

Remark A.5. More generally, one could simply define some κ̄ = κ̄(n, λ), show some upper
bound Γ̄κ̄(s) ⩽ 1 − η̄ with η̄ := η̄(n, λ), and then prove that G0 ◦ · · ·Gn−κ̄(1 − η) → 0.
One should think of the three steps described above as the general scheme one should
follow to prove (A.7). We refer to (A.15) for a general sufficient condition to get (A.7).

We now perform these three steps in a general framework: for the first two steps, we
give an explicit candidate for κ̄, see (A.10), and a bound for Γ̄κ̄ in terms of κ̄, see (A.11).

48



We apply these to the inhomogeneous branching process T∗n, where all quantities are
explicit.

Step 1. For s ∈ (0, 1), we define

κ̄ := κ̄(n, s) := max
{
0 ⩽ k ⩽ n ,

n∑
i=n−k+1

C̃i−1
M0,i

<
1

2M0,n(1− s)

}
,

where C̃j :=
1
2(

σ2
j

νj
+ νj − 1). We then have the following result, which helps us deal with

the first step of the proof (its proof is analogous to that of Proposition 5.4).

Lemma A.6. For s ∈ (0, 1), there is a constant c9 that depend only on µ, such that

c9Mn−k,n(1− s) ⩽ 1− Γ̄k(s) ⩽ Mn−k,n(1− s) for all k ⩽ κ̄ . (A.8)

The upper bound holds for any 0 ⩽ k ⩽ n.

Proof. Let us define ∆̄k := 1 − Γ̄k, which satisfies the recursion: ∆̄0 = 1 − s, ∆̄k =
Fn−k(∆̄k−1), with Fj(s) := 1−Gj(1− s). Note that as in Lemma 5.1 or (5.3), we have
some general bounds for the generating functions (Gk)0⩽k<n or (Fk)0⩽k<n, in terms of
their first and second moment: for all 0 ⩽ k < n and for t ∈ [0, 1], we have

νjt(1− C̃jt) ⩽ Fj(t) ⩽ νjt , (A.9)

where C̃j := 1
2νj

G′′j (1) = 1
2(

σ2
j

νj
+ νj − 1). Now, the upper bound in (A.8) is a direct

recursive application of the right-hand side bound in (A.9).
For the lower bound, we use the following result, which is analogous to Lemma 5.6;

we omit its proof as it is very similar. Let s ∈ (0, 1] and set κ̄1(s) := max{1 ⩽ j ⩽ n :∑j−1
i=0 C̃n−i−1∆̄i(s) < 1/2}. Then, for all k ⩽ κ̄1, we have

1

2
Mn−k,n(1− s) ⩽ ∆̄k(s) ⩽ Mn−k,n(1− s) .

Now, notice that by the upper bound on ∆̄i(s), we have

j−1∑
i=0

C̃n−i−1∆̄i(s) ⩽
j−1∑
i=0

C̃n−i−1Mn−i,n(1− s) = (1− s)M0,n

j−1∑
i=0

C̃n−i−1
M0,n−i

.

Hence, κ̄1 ⩾ max{1 ⩽ j ⩽ n :
∑j−1

i=0
C̃n−i−1

M0,n−i
⩾ (2M0,n(1− s))−1} =: κ̄, which concludes

the proof.

Step 2. In the case where s = 1− λ
M0,n

, i.e. M0,n(1− s) = λ, then κ̄ reduces to

κ̄ := κ̄(n, λ) := max
{
0 ⩽ k ⩽ n ,

n∑
i=n−k

C̃i−1
M0,i

<
1

2λ

}
, (A.10)
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and (A.8) in Proposition A.6 gives that for k = κ̄,

Γ̄κ̄(s) ⩽ 1−Mn−κ̄,n(1− s) = 1− λ

M0,n−κ̄
. (A.11)

Steps 1-2. Application to the pruned tree T∗n. For the inhomogeneous, n-dependent,

branching process T∗n, notice that we are able to control both C̃∗i = 1
2(

(σ∗
i )

2

ν∗i
+ ν∗i − 1)

and M∗0,i (we add ·∗ to the notation to make clear that we are dealing with this specific
case).

Using Lemma 5.10, we get that M∗0,i is of order (ν)i∧k
∗
. Also, using Lemma 5.9 to

bound ν∗i − 1 and Lemma A.3 to bound (σ∗i )
2, we get that

C̃∗i ⩽ C̃ for i ⩽ k∗ , C̃∗i ⩽ c(ν)−(i−k
∗) for i ⩾ k∗ .

Then, we obtain, for n− k ⩾ k∗

n−1∑
i=n−k+1

C̃∗i−1
M∗0,i

⩽ C ′
k∗∑

i=n−k+1

(ν)−i + c(ν)−k
∗

n∑
i=k∗+1

(ν)−(i−k
∗) ⩽ c′(ν)−(n−k) + c′′(ν)−k

∗
.

In the case where pnν
n → ∞ then we have that k∗ → ∞, so we get that for n large

enough

κ̄∗ ⩾ max
{
0 ⩽ k ⩽ n , (ν)−(n−k) <

1

4c′λ

}
,

so we end up with κ̄∗ ⩾ n − logν(cλ). It is easily seen that an analogous upper bound
also holds.

This enables us to conclude both Steps 1-2. Indeed, we have that n− κ̄∗ ⩾ κ0(λ) :=
logν(cλ), which goes to +∞ as λ→∞, which is what is required in Step 2. Also, using
that n− κ̄∗ ⩽ κ′0(λ) := logν(c

′λ), we get for s = 1− λ
M∗

0,n
,

Γ̄κ̄∗(s) ⩽ 1− λ

M∗0,n−κ̄∗
⩽ 1− λ

M∗
0,κ′

0

⩽ 1− cλ(ν)−κ
′
0 ,

where we have used Lemma 5.10 to bound M∗0,κ′
0
(note that κ′0 ⩽ k∗, at least for n large

enough since k∗ →∞). By definition of κ′0, we get that Γ̄κ̄∗(s) ⩽ 1−η for some universal
constant η > 0: this ensures that Step 1 is verified with κ̄∗ defined above.

Step 3. For any η > 0 and any ε > 0, let us define the following quantity

K(η, ε) := min
{
k ⩾ 1, G0 ◦G1 ◦ · · · ◦Gk(1− η) ⩽ ε

}
. (A.12)

If Steps 1-2 have been verified, Step 3 consists in showing that K(η, ε) is bounded by a
universal constant, i.e. a quantity that does not depend on n; recall that the offspring
distributions (µk)0⩽k<n may depend on n.

Note that the order of composition in (A.12) is important and there is no easy
iteration for the quantity G0 ◦ · · · ◦Gk−1(1− η). However, following a similar argument
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as in Lemma 5.2 allows us to deduce a good upper bound. Indeed, by convexity, we have
that for any u ∈ (0, 1− η),

Gi(u) ⩽ Siu , where Si = Si(η) =
1

1− η
Gi(1− η) .

Iterating, we therefore get that G0 ◦G1 ◦· · ·◦Gk−1(1−η) ⩽ (1−η)
∏k−1

i=0 Si, so we obtain
an upper bound for K(η, ε):

K(η, ε) ⩽ K̃(η, ε) := min
{
k ⩾ 1,

k−1∏
i=0

Si ⩽
ε

1− η

}
. (A.13)

One then simply needs to show that for any ε > 0 there is a (universal) constant kε,η > 0
such that

k−1∏
i=0

Gk(1− η)

1− η
⩽ ε for all k ⩾ kε,η .

This follows for instance if we prove that there exists a constant Sη < 1 and a sequence kn
with limn→∞ kn = +∞ such that for n large enough

Sk =
Gk(1− η)

1− η
⩽ Sη , uniformly for k ⩽ kn . (A.14)

Indeed, in that case, for kε,η = log ε
logSη

, we get that kε,η ⩽ kn for n large enough, so

kε,η−1∏
i=0

Gk(1− η)

1− η
⩽ (Sη)

kε,η = ε ,

for n large enough. This concludes Step 3 since kε,η is a universal constant.

Step 3. Application to the pruned tree T∗n. We now to prove the sufficient condi-
tion (A.14) for the pruned tree T∗n. A simple calculation shows that for any u ∈ [0, 1],

|G∗k(u)−G(u)| ⩽ dTV(µ
∗
k, µ) ⩽ c′4e

−c4(k∗−k) ,

where the second inequality holds for k ⩽ k∗, using Proposition 5.7. Now, if we set
kn := 1

2k
∗, which goes to +∞ as n→∞ as soon as pnν

n → +∞, we get that

G∗k(1− η)

1− η
⩽

G(1− η)

1− η
+

c′4
1− η

e−c4kn uniformly for k ⩽ kn .

This shows (A.14), for instance with the constant Sη := 1− 1
2(1−

G(1−η)
1−η ), and concludes

the proof of Step 3.

Remark A.7. Note that we have derived a slightly more general sufficient condition
for (A.7). Indeed, defining κ̄ as in (A.10) and κ := n − κ̄, the bound (A.11) gives
that Γ̄κ̄ ⩽ 1 − η with η = ηn,λ = λ

M0,κ
. One then simply needs to verify that for
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any ε > 0, we have G0 ◦ · · · ◦ Gκ(1 − ηn,λ) ⩽ ε at least for λ large, uniformly in n.
One therefore needs to show that K( λ

M0,n−κ̄
, ε) ⩽ κ or even K̃( λ

M0,n−κ̄
, ε) ⩽ κ (recall

the definitions (A.12)-(A.13)), at least for λ large enough. Put otherwise, a sufficient
condition for having (A.7), hence Lemma 6.11, is the following:

lim
λ→+∞

lim sup
n→∞

κ−1∏
i=0

Gi

(
1− λ

M0,κ

)
1− M0,κ

λ

= 0 , (A.15)

where κ := n− κ̄, with κ̄ = κ̄(n, λ) defined in (A.10).
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E-mail address: irene.ayuso-ventura@u-pec.fr
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