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Strain gradient plasticity based on saturating variables

Introduction

Scalar based gradient plasticity models have become predominant for modeling size effects in the mechanical behavior of hardening ductile metals and alloys. They also serve as efficient regularization methods for the simulation of strain localization phenomena in softening materials [START_REF] Engelen | An evaluation of higher-order plasticity theories for predicting size effects and localisation[END_REF]. The Aifantis model is the prototype of strain gradient plasticity and includes the Laplacian of the cumulative plastic strain variable which is obtained by time integration of the plastic multiplier in rate-independent plasticity [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF]. The thermodynamic foundations of the Aifantis model were laid by [START_REF] Forest | Strain gradient crystal plasticity: Thermomechanical formulations and applications[END_REF]; [START_REF] Gurtin | Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson and their generalization[END_REF]; [START_REF] Forest | Formulations of strain gradient plasticity[END_REF]; [START_REF] Nguyen | Quasi-static responses and variational principles in gradient plasticity[END_REF][START_REF] Nguyen | On standard gradient plasticity and visco-plasticity[END_REF]. The finite element implementation of strain gradient plasticity models is not an easy task and the micromorphic approach has proven to be an efficient method for this purpose. It is based on the introduction of an auxiliary degree of freedom, χ, which is constrained to follow the evolution of an internal variable such as the cumulative plastic strain. The gradient of the micromorphic variable is then introduced into the free energy potential and the thermodynamic framework provides enhanced hardening through the appropriate Laplacian term. It was initiated by [START_REF] Forest | The micromorphic approach to plasticity and diffusion[END_REF][START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] and further developed for the gradient of scalar variables for ductile materials by [START_REF] Dimitrijevic | A regularization framework for damage plasticity models via gradient enhancement of the free energy[END_REF]; [START_REF] Wulfinghoff | Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics[END_REF]; [START_REF] Brepols | Gradient-extended two-surface damage-plasticity: Micromorphic formulation and numerical aspects[END_REF]; [START_REF] Xu | Localizing gradient-enhanced rousselier model for ductile fracture[END_REF]; [START_REF] Langenfeld | A micromorphic approach for gradient-enhanced anisotropic ductile damage[END_REF]; Rezaee- [START_REF] Rezaee-Hajidehi | Micromorphic approach to phase-field modeling of multivariant martensitic transformation with rate-independent dissipation effects[END_REF]; [START_REF] Holthusen | A two-surface gradient-extended anisotropic damage model using a second order damage tensor coupled to additive plasticity in the logarithmic strain space[END_REF]. More sophisticated models involving the gradient of tensorial variables, such as the full plastic strain tensor, have also been developed [START_REF] Gudmundson | A unified treatment of strain gradient plasticity[END_REF], but are not discussed here due to the increased computational cost compared to scalar-based approaches.

Severe limitations of scalar based gradient plasticity models have been pointed out in the last ten years both for applications in hardening and softening plasticity. The possibility of vanishing of the yield radius due to excessive values of the Laplacian term has been discussed in [START_REF] Poh | An implicit tensorial gradient plasticity model -Formulation and comparison with a scalar gradient model[END_REF][START_REF] Wulfinghoff | Conceptual difficulties in plasticity including the gradient of one scalar plastic field variable[END_REF][START_REF] Jebahi | Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects[END_REF][START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF]. This usually leads to divergence of the computation and significantly undermines the robustness of the approach. These limitations point out the importance of the choice of the plastic strain measure to be introduced in the gradient model. The fact that the cumulative plastic strain p is always increasing during any plastic loading leads to unbounded enhanced hardening which may well be physically irrelevant. This is particularly the case for cyclic loading where unlimited size-dependent cyclic hardening is predicted, especially for cyclic bending and torsion of bars [START_REF] Phalke | Modeling size effects in microwire torsion: A comparison between a lagrange multiplier-based and a CurlF p gradient crystal plasticity model[END_REF][START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF]. A model based on the gradient of the equivalent plastic strain instead of the cumulative one leads to bounded cyclic hardening, as demonstrated by [START_REF] Jebahi | Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects[END_REF], but its use is also associated with difficulties for vanishing plastic strain values.

The most efficient choice is the consideration of the full plastic strain tensor as proposed by [START_REF] Poh | An implicit tensorial gradient plasticity model -Formulation and comparison with a scalar gradient model[END_REF]. This choice leads however to significantly increased computational problem sizes. In the case of softening plasticity for models with saturating stress values, broadening of the localization band is observed after saturation at large strains. The use of a decreasing length scale in the gradient model has been proposed to ensure continuing localization inside the band [START_REF] Xu | Localizing gradient-enhanced rousselier model for ductile fracture[END_REF][START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF]. However, this implies a localization zone within the band with a width decreasing to zero. A constant band width of the plastic localization zone at large strains would be a desirable feature of a regularization method. However, this is not the case for the previous improvements mentioned above.

The aim of the present work is to overcome some of the previous shortcomings of standard scalar based gradient plasticity models by resorting to the gradient of saturating variables in plasticity instead of the ever increasing cumulative plastic strain p. For this purpose, a saturating variable r with exponential evolution of Voce type is introduced and associated with a microdeformation variable χ. The gradient of χ is then included in the free energy potential. Due to the constraint linking χ and r in the micromorphic approach, the proposed model therefore includes effects of the gradient of the saturated variable, ∇r. This new class of micromorphic/gradient plasticity models is referred to as the ∇r-models in the present paper. The ∇r-models are compared with standard gradient plasticity formulations, which are called ∇p-models in the following.

Constitutive modelling of plasticity, damage, chemical diffusion, etc. involves bounded or saturating internal variables. For instance, the hardening variables in Chaboche plasticity models, the dislocation density, the damage indicator, the concentration of chemical elements, phase field variables, etc. are examples of such ubiquitous variables. Local models accommodating these variables within the classical framework of continuum mechanics are well established. However, the absence of internal length scales renders such formulations unsuitable for modeling size effects or for simulating mesh-objective localization phenomena. The following non-exhaustive list summarizes theories involving bounded variables and their gradient enhancement:

• The Cahn-Hilliard model leads to a higher order diffusion equation for the concentration of chemical elements, which is a bounded variable by definition [START_REF] Ubachs | A nonlocal diffuse interface model for microstructure evolution of tin-lead solder[END_REF]. A micromorphic version of this model, called microdiffusion, has been proposed in (Forest et al., 2011) and compared to phase field methods that are widely used for damage, fracture, diffusion and phase transformation phenomena.

• The classical continuum damage theory, see [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF], is widely accepted. Several theories of gradient damage have been derived, e.g. [START_REF] Frémond | Damage, gradient of damage and principle of virtual power[END_REF][START_REF] Peerlings | A minimal gradient-enhancement of the classical continuum theory of crystal plasticity. Part I: The hardening law[END_REF]. Micromorphic damage models have been developed by [START_REF] Dimitrijevic | A method for gradient enhancement of continuum damage models[END_REF]; [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF]; [START_REF] Sprave | A large strain gradient-enhanced ductile damage model: finite element formulation, experiment and parameter identification[END_REF].

• Chaboche's models of plasticity include a nonlinear isotropic hardening component of the form R = Q(1-exp(-cp)) which saturates to the parameter value Q at a rate characterized by the parameter c. In the thermodynamic formulation of this model, [START_REF] Besson | Non-Linear Mechanics of Materials[END_REF] recommend using the saturating variable r = (1 -exp(-cp))/c as a state variable instead of p. The saturating variable r mimics the saturation of the dislocation density discussed in the next item.

• In metallic crystalline materials, the mechanical state is described by the total density of dislocations, ρ d . The dislocation density is therefore a well-suited internal variable for modeling continuum plasticity. The presence of geometrically necessary dislocations induced by strong strain gradients gives rise to size effects in the form of higher yield stress and hardening [START_REF] Fleck | A phenomenological theory for strain gradient effects in plasticity[END_REF]. The widely used evolution equation for dislocation density is the Kocks-Mecking model [START_REF] Mecking | Kinetics of flow and strain-hardening[END_REF]. The original model has been modified and tailored to describe the dislocation motion, interactions between different dislocation types, annihilation, etc. The total dislocation density is a saturating variable since only a limited number of dislocations can be accommodated in a crystalline solid. Gradient models involving the scalar dislocation density can be found for example in [START_REF] Estrin | A dislocation based gradient plasticity model[END_REF][START_REF] Stupkiewicz | A minimal gradient-enhancement of the classical continuum theory of crystal plasticity. Part II: Size effects[END_REF][START_REF] Stupkiewicz | A minimal gradient-enhancement of the classical continuum theory of crystal plasticity. Part II: Size effects[END_REF]. The present paper addresses only size-dependent hardening and does not discuss modelling of size-dependent initial yield stress. Two main modelling approaches can be mentioned in this respect. The first one introduces a non-quadratic gradient energy term into the free energy potential [START_REF] Ohno | Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations[END_REF][START_REF] Wulfinghoff | Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures[END_REF][START_REF] Bayerschen | Power-law defect energy in a single-crystal gradient plasticity framework: a computational study[END_REF][START_REF] Forest | Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage[END_REF][START_REF] Jebahi | Strain gradient crystal plasticity model based on generalized non-quadratic defect energy and uncoupled dissipation[END_REF]. For example, the use of the norm of the gradient plasticity tensor or dislocation density tensor leads to such an apparent instantaneous increase of the yield stress. The second approach introduces dissipative gradient contributions into the modelling approach (Fleck et al., 2015;Fleck and Willis, 2015;[START_REF] Hua | On energetic and dissipative gradient effects within higher-order strain gradient plasticity: Size effect, passivation effect, and bauschinger effect[END_REF][START_REF] Jebahi | Strain gradient crystal plasticity model based on generalized non-quadratic defect energy and uncoupled dissipation[END_REF][START_REF] Niordson | A homogenized model for size-effects in porous metals[END_REF][START_REF] Jebahi | An alternative way to describe thermodynamically-consistent higher-order dissipation within strain gradient plasticity[END_REF].

The outline of the paper is as follows. A general phenomenological micromorphic theory of gradient of saturating variable, called the ∇r-model, is presented in Section 2.

The capabilities of the model are illustrated in Section 3 regarding the size-dependent hardening effect and its regularization power in localization phenomena. Section 4 is devoted to gradient plasticity modeling based on the saturating scalar dislocation density.

Finally, bending and torsional structural problems are addressed in Section 5 where twodimensional and three-dimensional finite element simulations are reported. The Appendix A provides new analytical solutions for some of the considered boundary value problems within the small strain assumption. They are used for validation of the finite element implementation.

The theory and all finite element simulations are performed for finite rate-independent elastoplasticity. The finite deformation framework incorporates the multiplicative splitting of the deformation gradient, together with the gradient of the micromorphic variable w.r.t. Lagrange coordinates, thus following [START_REF] Liebe | Theory and numerics of geometrically non-linear gradient plasticity[END_REF][START_REF] Geers | Finite strain logarithmic hyperelasto-plasticity with softening: A strongly nonlocal implicit gradient framework[END_REF][START_REF] Forest | Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage[END_REF][START_REF] Abatour | A generic formulation of anisotropic thermo-elastoviscoplasticity at finite deformations for Finite Element codes[END_REF][START_REF] Friedlein | Observations on additive plasticity in the logarithmic strain space at excessive strains[END_REF].

Regarding notation, vectors, second and fourth order tensors are respectively denoted by A , A ∼ , A ≈ throughout. The Lagrangian coordinates of material points are the components of the vectors X while their current position is x . The reference configuration of the body is Ω 0 and Ω denotes the current configuration of the body. The gradient operator w.r.t. Lagrange (resp. Euler) coordinates is written Grad (resp. grad ). Index notation is used here and there for clarity.

Micromorphic approach based on saturating variables

Kinematics of the elastic-plastic micromorphic continuum

The micromorphic material point is endowed with displacement degrees of freedom represented by the vector u (X , t) and by the scalar microdeformation variable χ(X , t).

The deformation gradient is decomposed multiplicatively following [START_REF] Kröner | Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen[END_REF][START_REF] Lee | Finite strain elastic-plastic theory with application to plane-wave analysis[END_REF][START_REF] Mandel | Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques[END_REF] into elastic and inelastic parts as

F ∼ = 1 ∼ + Grad u = F ∼ e F ∼ p (1)
According to [START_REF] Mandel | Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques[END_REF], the isoclinic local intermediate configuration is adopted for which the directors describing the anisotropic material behavior have the same orientation as in the reference configuration. In that case, the intermediate configuration is unique up to an element of the material symmetry group. The present work is however limited to isotropic materials for the sake of brevity.

The total, elastic and plastic relative volume changes are denoted by J, J e and J p , respectively:

J = ρ 0 ρ = det F ∼ , J e = ρ ρ = det F ∼ e , J p = ρ 0 ρ = det F ∼ p (2)
where ρ, ρ and ρ 0 denote the mass density in the current, intermediate and reference local configurations, respectively. The velocity gradient can be decomposed into elastic and plastic deformation rates in the form

∼ = grad u = Ḟ ∼ F ∼ -1 = Ḟ ∼ e F ∼ e-1 + F ∼ e L ∼ p F ∼ e-1 with L ∼ p = Ḟ ∼ p F ∼ p-1
(3)

The Lagrangian and Eulerian gradients of the microdeformation variable χ are introduced:

K = Grad χ = ∂χ ∂X , k = grad χ = ∂χ ∂x with k = F ∼ -T K (4)

Balance equations and boundary conditions

The power density of internal forces expressed w.r.t. the current configuration, P (i) , takes the form

P (i) (u , χ) = σ ∼ : d ∼ + a χ + b • grad χ, ∀x ∈ Ω (5)
where σ ∼ is the Cauchy stress tensor, a and b are generalized stresses associated with the micromorphic variable and its Eulerian first gradient. The strain rate d ∼ is the symmetric part of the velocity gradient. The principle of virtual power is written w.r.t. the current configuration as follows

D P (i) dV = ∂D (t • u + a c χ) dS ∀D ⊂ Ω (6)
for all virtual fields u , χ. The principle is valid for all subdomains D of the current configuration Ω of the body. External contact forces arise from macroscopic surface tractions t and a generalized surface traction a c related to the micromorphic variable.

For the sake of simplicity, volume forces are set to zero. The application of the virtual power principle, w.r.t. the generalized set of independent degrees of freedom, leads to the static balance laws in the current configuration in the form

       div σ ∼ = 0 div b = a ∀x ∈ Ω        t = σ ∼ • n a c = b • n ∀x ∈ ∂Ω (7)
where n denotes the outward surface unit normal to the boundary ∂Ω of the body.

The power density of internal forces expressed w.r.t. the reference configuration, i) , is given by

P (i) 0 = JP (
P (i) 0 = P ∼ : Ḟ ∼ + a 0 χ + b 0 • K, ∀X ∈ Ω 0 (8)
where the generalized stresses a 0 and b 0 are related to a and b by

a 0 = ρ 0 ρ a = Ja, b 0 = JF ∼ -1 b (9)
and P ∼ = Jσ ∼ F ∼ -T is the Boussinesq stress tensor. In the reference configuration, Eq. ( 6) becomes

D 0 P (i) 0 dV 0 = ∂D 0 (T . u + a c 0 χ) dS 0 , ∀D 0 ⊂ Ω 0 ( 10 
)
where D 0 is any subdomain of the reference configuration Ω 0 . The balance laws (7) can now be rewritten in the form

       Div(P ∼ ) = 0 Div(b 0 ) = a 0 ∀X ∈ Ω 0        T = P ∼ • n 0 a c 0 = b 0 • n 0 ∀X ∈ ∂Ω 0 (11)
where n 0 is the outward surface normal to the boundary ∂Ω 0 and T is the surface traction measured on the reference boundary ∂D 0 .

Entropy principle and constitutive equations

The local form of the entropy principle is now exploited with the assumption that the generalized stresses a 0 and b 0 are non-dissipative stresses, following Forest (2016); [START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF]. Three finite deformation formulations were proposed in the two latter references, depending on the configuration with respect to which the microdeformation gradient, as an argument of the free energy potential, is considered. In the present work, only the Lagrangian formulation is retained.

The local form of the dissipation inequality is written as

P (i) 0 -ρ 0 ψ0 ≥ 0 (12)
It involves the Helmholtz free energy density function ψ 0 taken as a function of the elastic 

strain C ∼ e = F ∼ eT F ∼ e ,
By substituting Eq. ( 8) and the previous equation in the dissipation inequality ( 12), the Clausius-Duhem inequality is obtained

J p 2 Π ∼ e -ρ 0 ∂ψ 0 ∂C ∼ e : Ċ ∼ e +J p M ∼ : L ∼ p + a 0 -ρ 0 ∂ψ 0 ∂χ χ+ b 0 -ρ 0 ∂ψ 0 ∂K • K -ρ 0 ∂ψ 0 ∂α I αI ≥ 0 (14)
which involves the Piola stress tensor Π ∼ e with respect to the intermediate configuration and the Mandel stress tensor M ∼ which is the driving force for plastic flow:

Π ∼ e = J e F ∼ e-1 σ ∼ F ∼ e-T , M ∼ = C ∼ e Π ∼ e = J e F ∼ eT σ ∼ F ∼ e-T (15) 
Since Eq. ( 14) holds true for any mechanical process (i.e. for any Ċ ∼ e , χ and K), and assuming that the conjugate functions do not depend on these increments, the following state laws are derived

Π ∼ e = 2ρ ∂ψ 0 ∂C ∼ e , a 0 = ρ 0 ∂ψ 0 ∂χ , b 0 = ρ 0 ∂ψ 0 ∂K , A I = ρ ∂ψ 0 ∂α I (16)
The latter equation defines the thermodynamic forces A I associated with the internal variables α I . The residual dissipation rate takes the form

M ∼ : L ∼ p -A I αI ≥ 0 (17)
In the case of time-independent plasticity, the flow rule and evolution law for internal variables are taken of the form

L ∼ p = ṗ∂f (M ∼ , A I ) ∂M ∼ , αI = - ṗ ∂f (M ∼ , A I ) ∂A I ( 18 
)
where f (M ∼ , A I ) is the yield function which is evaluated for the Mandel stress tensor and the thermodynamical forces A I , according to [START_REF] Abatour | A generic formulation of anisotropic thermo-elastoviscoplasticity at finite deformations for Finite Element codes[END_REF]. The Eq. ( 18)

involves the plastic multiplier ṗ to be determined from the consistency condition.

Definition of the saturating internal variable

A dimensionless internal variable r of the plasticity model is introduced obeying to the following evolution equation:

ṙ = (1 -kr) ṗ ( 19 
)
where k is a material parameter and ṗ is the usual plastic multiplier in conventional plasticity. The present analysis is limited to positive values of the parameter k ≥ 0. Eq. ( 19) can be integrated to provide the function

r(p) = 1 k (1 -(1 -kr 0 ) exp(-kp)) ( 20 
)
where r0 = r(p = 0) is the initial value of r and p = ṗdt is the path-dependent cumulative plastic strain variable. The variable r saturates for increasing p towards the limit 1/k, as shown in Fig. 1 for several values of the parameter k. The variable r is therefore akin to nonlinear isotropic hardening variables introduced in classical plasticity, see [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF][START_REF] Besson | Non-Linear Mechanics of Materials[END_REF].

The saturating variable is allowed to increase or decrease depending on its initial condition. The variable r grows when its initial value r0 < 1/k and decreases if r0 > 1/k.

The examples provided in this work are limited to the first situation but an application to the second one is suggested in Section 4.4.

Choice of the free energy potential

The elastoplasticity model is described by a set of internal variables α I accounting for isotropic and kinematic hardening as in classical plasticity theory. Following the micromorphic approach to gradient plasticity by [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF][START_REF] Forest | Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage[END_REF], the micromorphic variable χ is associated to the previously defined saturating internal variable r. The adopted free energy density function is assumed to depend explicitly on this variable r in addition to usual hardening variables included in the set α I . The following form is chosen:

ρ 0 ψ 0 (C ∼ e , α I , r, χ, K) = ρ 0 ψ ref (C ∼ e , α I ) + 1 2 H χ (r -χ) 2 + 1 2 K • A ∼ • K (21)
which is quadratic w.r.t. the difference (r -χ) and K . It involves the coupling modulus H χ (MPa) and the second rank tensor A ∼ of higher order moduli. The micromorphic contribution is taken as a convex function w.r.t. (r -χ) and K to ensure the stabilizing character of the model. This requires H χ > 0 and the tensor A ∼ to be positive definite.

For the sake of demonstration, the following expression of the classical part ψ ref of the specific free energy is adopted

ρψ ref (C ∼ e , α I ) = 1 2 E ∼ e : C ≈ : E ∼ e + ρψ h (α I ) ( 22 
)
where E ∼ e = (C ∼ e -1 ∼ )/2 is the Green-Lagrange strain w.r.t. the intermediate configuration, C ≈ is the fourth-order tensor of elastic moduli and ψ h (α I ) is the stored energy contribution induced by work-hardening. Note that the present approach is purely phenomenological and intended for engineering structural applications but the tensor A ∼ has a physical significance related to geometrically necessary dislocation densities. An example of derivation of such higher order tensors from GND densities can be found for instance in [START_REF] Kröner | On the physical reality of torque stresses in continuum mechanics[END_REF][START_REF] Mesarovic | Size-dependent energy in crystal plasticity and continuum dislocation models[END_REF].

The exploitation of the second thermodynamic principle performed in Section 2.3 applies to the present set of variables simply by including the variable r in the set α I . In particular the thermodynamic force associated with r is denoted by

R r = ρ ∂ψ 0 ∂r = ρ ρ 0 H χ (r -χ) = H χ (r -χ) ( 23 
)
since J p = ρ 0 /ρ = 1 in the present context of incompressible plasticity. The state laws ( 16) become

Π ∼ e = C ≈ : E ∼ e , a 0 = -H χ (r -χ) , b 0 = A ∼ • K (24)
The first equation is called the Saint-Venant-Kirchhoff hyperelasticity law w.r.t. the local intermediate configuration.

The combination of the second balance equation ( 11) and Eq. ( 24) leads to the following regularization operator

r = χ - 1 H χ Div(A ∼ • K) (25)
In the isotropic and homogeneous case, i.e. A ∼ = A1 ∼ (A > 0), Eq. ( 25) reduces to

r = χ - A H χ ∆ 0 χ (26)
which involves the Laplacian operator ∆ 0 w.r.t. Lagrangian coordinates.

Size-dependent enhanced isotropic hardening

We consider the case where the set of hardening variables α I reduces to the cumulative plastic strain variable p itself. An alternative choice will be explored in Section 4. The thermodynamic force associated with p is called

R p = ρ ∂ψ 0 ∂p (27)
The residual dissipation rate (17) can then be written in the form

D = M ∼ : L ∼ p -R p ṗ -R r ṙ (28)
After taking the evolution law ( 19) for the saturating variable r into account, the dissipation rate becomes

D = M ∼ : L ∼ p -(R p + R r(1 -kr)) ṗ (29)
The yield function is introduced in the form

f (M ∼ , R) = M ∼ eq -R 0 -R (30)
where M ∼ eq is an equivalent stress measure and R is the hardening function. The initial yield stress is R 0 . The equivalent stress measure and the flow rule are taken such that

M ∼ : L ∼ p = M ∼ eq ṗ (31)
as usual in classical plasticity theory. This leads to the following form of the dissipation rate involving the yield function f :

D = f ṗ + (R 0 + R -R p -R r(1 -kr)) ṗ (32)
At this stage, two choices of hardening functions are proposed inspired by the previous form of the dissipation rate:

• Enhanced hardening with varying length scale corresponding to the following hardening function

R = R p + R r(1 -kr) (33)
The contribution R r(1 -kr) is a size-dependent additional hardening term complementing the usual isotropic hardening function R p . It is made more explicit after accounting for the expression (23) of R r and the micromorphic balance law (26):

R = R p + H χ (r -χ)(1 -kr) = R p -A(1 -kr)∆ 0 χ (34)
The enhanced hardening term is found to depend on the Laplacian of the microdeformation field and the coefficient in front of the Laplace operator involves the characteristic length

k = A|1 -kr| H χ ( 35 
)
If k = 0, the found length scale is constant and the approach coincides with Aifantis famous model [START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF]. For k = 0, this length scale varies with increasing plastic strain and finally vanishes when r → 1/k. The dissipation rate (32) then reduces to R 0 ṗ ≥ 0. It is always positive as R 0 ≥ 0. A similar model involving a varying length scale decreasing exponentially to zero has been explored

by [START_REF] Poh | Localizing gradient damage model with decreasing interactions[END_REF] for damage and by [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF] for plasticity.

• Enhanced hardening with constant length scale corresponding to the following hardening function

R = R p + R r = R p + H χ (r -χ) = R p -A∆ 0 χ (36)
The enhanced hardening term involves the constant intrinsic length

0 = A H χ (37)
The residual dissipation is

D = f (M ∼ , R) ṗ + (R 0 + kR r r) ṗ = (R 0 + kR r r) ṗ (38) 
This expression vanishes in the elastic unloading regime ( ṗ = 0) and it is positive under plastic loading conditions ( ṗ ≥ 0) as long as R 0 + kR r ≥ 0. Since R r can be negative according to Eq. ( 23), it is necessary to check the positivity of this expression during the computation 1

1 The fact that positivity of the dissipation rate is not ensured by the model for any loading path and any value of the material parameters is a weakness of the model shared by many complex hardening laws for which convex dissipation potentials do not necessarily exist. This is the case of conventional plasticity theory based on Kocks-Mecking evolution law for dislocation density, as discussed in Section 4.

Two types of hardening laws will be investigated in the sequel of the paper:

• Linear hardening/softening:

ρψ h (p) = 1 2
Hp 2 where H is a constant hardening modulus (H > 0, hardening; H < 0, softening). In that case,

R p = Hp (39) • Exponential hardening: ρψ h (p) = 1 2
Qcr 2 involving the internal variable r obeying to the following evolution equation

ṙ = (1 -cr) ṗ ( 40 
)
where Q and c are material parameters. This equation can be integrated so that

R p = Qcr = Q(1 -exp(-cp)) (41) 
assuming that p(t = 0) = 0. The product Qc is the instantaneous hardening/softening modulus dR p /dr (Q > 0 hardening; Q < 0 softening), and c ≥ 0 characterizes the saturation rate w.r.t. plastic strain. Note that r and r are identical when k = c.

The numerical simulations of the following sections make use of the second type of enhanced hardening, with a constant length scale. Note that the special case r = r, i.e. k = c, was initially theoretically proposed by [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] and by [START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF] but was never studied by means of finite element simulations. The merits of this model will be highlighted in the following sections.

To close the plasticity model formulation in the rate-independent case, the consistency condition ḟ = 0 must be exploited to compute the plastic multiplier ṗ. Although an explicit expression of the plastic multiplier can be worked out as a function of d ∼ and χ, it is not reproduced here because it is not used in the numerical resolution of the equations.

Instead, the yield condition is included as an additional residual for the Newton algorithm in the implicit resolution scheme described in Section 2.6 of the reference [START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF]. The implicit finite element resolution scheme was presented in the latter article for a similar micromorphic model, so that it is not necessary to recall it here. The finite element suite Zset (Z-set, 2022) is used for all the simulations to come.

All examples provided in the following applications deal with isotropic elasticity and isotropic plasticity relying on the von Mises yield criterion with the following equivalent Mandel stress measure :

[M ∼ ] eq = 3 2 M ∼ dev : M ∼ dev with M ∼ dev = M ∼ - 1 3 (trace M ∼ )1 ∼ (42)
Note that the Mandel stress tensor turns out to be symmetric in the case of the isotropic Saint-Venant Kirchhoff law (24).

Application to size-dependent hardening and strain localization problems

The material strip of Fig. 2 of width 2h and infinite in the direction 2, is considered in this section. It is successively subjected to simple glide and simple tension loading conditions. In both cases, the microdeformation is fixed to zero at the left and right boundaries, which corresponds to a sort of surface passivation. In the absence of these constraining conditions, the material response would be homogeneous. Instead, boundary layer effects will be studied in subsections 3.1 and 3.2. The two last subsections deal with the simulation of shear band localization for the same strip geometry. The parameter values used in the simulations are purely illustrative but they correspond typically to metals subject to shear banding and related size effects as discussed for instance for steels in [START_REF] Marais | Identification of a strain-aging model accounting for Lüders behavior in a C-Mn steel[END_REF]. The physical motivation for these confined plasticity boundary value problems stems from the constrained slip of dislocations in single crystalline layers, simulated by discrete dislocation dynamics and by strain gradient plasticity by [START_REF] Shu | Boundary layers in constrained plastic flow : comparison of non local and discrete dislocation plasticity[END_REF]. Note that these simulations deal with single slip in single crystals while the following anaytical and numerical results refer to isotropic polycrystals modeled by phenomenological plasticity theory. This means that the physical meaning of the results remains to be studied.

Analytical solutions for the considered shear problems are derived in Appendix A under the small strain assumption. They provide the distributions of the targeted variables in boundary layers and in the localization zones. Modifications of these reference solutions induced by large deformations will be highlighted.

O 

1 2 2h χ(-h) = 0 χ(h) = 0

Confined simple glide under monotonic loading

The material strip is subjected to the following displacement field at finite deformations:

u 1 (X 1 , X 2 ) = γX 2 , u 2 (X 1 , X 2 ) = u(X 1 ), u 3 (X 1 , X 2 ) = 0 (43)
where X 1 , X 2 , X 3 are the Lagrange coordinates of the material point using the Cartesian coordinate system of Fig. 2. The function u(X 1 ) is the first unknown of the problem to be determined by means of the finite element method. It is subjected to the following boundary conditions

u(±h) = 0 (44)
The loading conditions (43) are enforced by means of a periodic element, involving γ as prescribed mean component F 12 over the material strip. The displacement u and degree of freedom χ are periodic along direction 2, see the dashed lines of Fig. 2. Plane strain conditions are enforced. The second unknown field is the function χ(X 1 ) with the clamping/passivation conditions χ(±h) = 0. The third unknown is the function r(X 1 ).

The width 2h = 10 mm is discretized in 201 elements. Quadratic interpolation is used for displacement and linear interpolation for microdeformation degrees of freedom (P2P1 elements), see [START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF] for a comparison with quadratic/linear interpolations (P2P1 elements). A single row of elements is required for this 1D problem, with periodicity conditions along axis 2.

The initial yield stress is R 0 = 20 MPa (no hardening R p in this example), the penalty modulus H χ is set to 10 5 MPa. The parameters k and A are subject to a parametric study.

The left Fig. 3 shows the average shear stress component σ 12 , as a function of the mean applied shear F12 = γ, for 4 values of the higher order modulus A. Note that, in contrast to the small strain solution, the Cauchy stress tensor field is not uniform in the finite deformation case, so that values are averaged w.r.t. to the deformed configuration. 

Cyclic tension/compression

The previous passivated material strip is now subjected to cyclic tension/compression loading by prescribing the displacement conditions u(-h) = 0 and u 1 (x = h) = ū(t).

Confined plasticity boundary conditions χ(±h) = 0 are still enforced. 

Shear strain localization due to linear softening

Shear banding induced by linear softening (model ( 39) with H < 0) has been extensively studied in strain gradient plasticity with a view to predicting finite width localization zone and circumvent spurious mesh-dependence of associated finite element simulations [START_REF] De Borst | Fundamental issues in finite element analyses of localization of deformation[END_REF]. This is illustrated here in Fig. 6. An initial imperfection (initial yield stress 1% smaller) is introduced in the middle element of the strip to trigger the localization band at this specific location.

The analytical solution of this problem with the micromorphic model based on the gradient of cumulative plastic strain was provided by [START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF] under the small strain assumption. The localization zone is found to be a sine function branch with the wave number

ω p = |H|H χ A(H + H χ ) (45) 
The ∇r-model can be applied to this linear softening problem. stress softening when r saturates. Note also that plasticity also slightly occurs outside the central band. This is due to the multiaxial stress state induced, in the finite deformation formulation, by the plane strain conditions. This is in contrast to small strain simulations of the same problem. Mesh objectivity of the results all along the calculation has been checked numerically but it is not reported here for the sake of brevity.

Linear hardening/softening models can be used only in a limited strain range due to the vanishing of the yield stress. A saturating hardening model must be used at large strains. It is studied in the next subsection. 

Shear strain localization induced by saturating softening

The shear localization problem illustrated in Fig. 6 is tackled again in the case of exponential softening (41) (Q < 0). The ∇p-model, obtained for k = 0 in the ∇r-model, was observed in [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF][START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF] to induce band broadening once saturation is reached. This band broadening is visible in Fig. 8(left) for k = 0. In contrast, the case k = 2 shows that no broadening occurs and that the localization zone remains bounded with constant width. This is in agreement with the analytical solution reported in Appendix A.2 at small strains for the case k = c. The function r(X 1 ) is found to be harmonic with the wave number

ω rp = c|Q|H χ A(cQ + H χ ) (46) 
Comparing Eq. ( 45) and ( 46) shows that the softening modulus H in the former is replaced by the instantaneous tangent modulus cQ = dR p /dr in the latter. Note that the plastic strain distribution p(X 1 ) differs from a sine-function, contrary to r(X 1 ), due to the exponential relation (20) between r and p. Fig. 8(right) shows the curve of the overall shear stress/applied shear strain for two values of k. Very close softening saturating responses are obtained, which shows that the ∇r-model does not alter significantly the ∇p-model overall response in the case of exponential softening. This is in contrast to the results of section 3.3 obtained for linear softening.

The link between the microdeformation χ and the internal variable r is controlled by the penalty parameter H χ whose influence is illustrated by Fig. 9. A low value of H χ (Fig. 9(left)) leads to a slight departure of the χ(X 1 ) profile from the distribution r(X 1 ), with r > χ in the middle of the localization band and r < χ at the elastic-plastic interface zone. In contrast, the two variables are found to coincide for high H χ values, see Fig. The response of the ∇r-model for the strain localization problem strongly depends on the relative values of the c and k parameters. The results of the finite element simulations reveal three distinct regimes:

• 0 < k < c:
The localization band is found to broaden until the variable r saturates (curves not reported here for brevity). Band broadening is more significant when k c. • k = c: This corresponds to r = r. A finite localization zone is observed even at large strain values, as discussed in the previous paragraph.

• k > c > 0: The localization zone is found to remain bounded but further straining leads to localization in a thinner and thinner zone inside the band until the bandwidth reaches one element size (not shown here for brevity).

An important feature of the proposed ∇r-model is therefore its ability to limit or cancel localization band broadening which can be regarded as a weakness of the more classical ∇p-model to describe the plasticity of metals. The band broadening effect can also be cancelled by considering a varying material parameter A(p) as proposed by [START_REF] Scherer | Strain gradient crystal plasticity with evolving length scale: Application to voided irradiated materials[END_REF]. The link between the evolving length scale and gradient of saturating variable approaches can be seen from Eq. ( 21) in the limit H χ → 0. In that case, χ ≡ r = (1-exp(-kp))/k. It follows that K = Grad χ = exp(-kp)Grad p. This amounts to replace the parameter A in standard ∇p-models by an exponentially decaying function A(p). However, this reasoning is only indicative and the exact equivalence between the two models remains to be studied in detail. The material parameters are those listed in the caption of Fig. 10.

Strain localization in tension

The previous examples were essentially one-dimensional boundary value problems.

Strain localization is now illustrated in the two-dimensional case of the plane strain tension (not reported here).

Micromorphic model based on the scalar dislocation density

The previous plasticity formulations involving the internal variables like the cumulative plastic strain p and/or the nonlinear isotropic hardening variable r are essentially phenomenological models with limited link to the physics of plasticity. The proposed micromorphic approach based on saturating variables is applied in this section to a physically relevant plasticity variable, namely the dislocation density.

Dislocation density based plasticity model

In metal plasticity, a physically relevant internal variable is the total dislocation density ρ d which represents the total length of dislocation lines per unit volume [START_REF] Hirth | Theory of Dislocations[END_REF]. In metals and alloys, the plastic strain is due mainly to the multiplication and motion of large numbers of dislocations. During plastic deformation, the dislocation density increases such that the average distance between adjacent dislocations decreases.

Accordingly, the material becomes harder because of the repulsive interaction between dislocations. In carefully solidified metal crystals, dislocation densities can be as low as 10 3 mm -2 . It can be as high as 10 10 mm -2 for heavily deformed materials.

According to dislocation theory [START_REF] Hirth | Theory of Dislocations[END_REF], the yield stress is directly related to the square root of the dislocation density, which leads to the following yield function:

f (M ∼ , ρ d ) = [M ∼ ] eq -R 0 -ζµb ρ d (47)
where R 0 is the friction stress, b is the magnitude of the Burgers vector, µ is the shear modulus and ζ is a coefficient close to 0.3 which depends partly on the strength of the interaction between dislocations. The following evolution equation for the dislocation is the so-called Kocks-Mecking model developed by [START_REF] Mecking | Kinetics of flow and strain-hardening[END_REF][START_REF] Tabourot | Generalised constitutive laws for FCC single crystals[END_REF][START_REF] Kocks | Physics and phenomenology of strain hardening: the FCC case[END_REF]:

ρd = (k 1 ρ d -k 2 ρ d ) ṗ ( 48 
)
where k 1 and k 2 are positive material parameters. The first term (k 1 ρ d ) corresponds to multiplication of dislocations and the second one (k 2 ρ d ) to dynamic dislocation annihilation during dislocation motion ( ṗ > 0). The dislocation density saturates at

ρ d ∞ = (k 1 /k 2 ) 2 .
Simulation examples with such a dislocation-based plasticity model are provided here in the softening case to illustrate the need for regularization. Material parameters are taken from [START_REF] Ren | A constitutive model accounting for strain ageing effects on work-hardening. Application to a C-Mn steel[END_REF] for a C-Mn steel at room temperature. Fig. 12(top) shows the response of the Kocks-Mecking model for several values of the initial dislocation density. For initial values ρ d 0 < (k 1 /k 2 )2 , the material behavior exhibits a hardening that saturates toward ρ d ∞ . In contrast, it becomes a softening model when

ρ d 0 > (k 1 /k 2 ) 2 , with saturation toward the same limit ρ d ∞ . For ρ d 0 = (k 1 /k 2 ) 2
, the model reduces to perfect plasticity. Regarding the softening case, the bottom Fig. 12 depicts the stress-strain curves for a simple glide loading. They are obtained for several mesh sizes. The softening is very sharp for smaller mesh sizes since the plastic strain is localized in one single element (not shown here). This issue requires the enhancement of the Kocks-Mecking model to incorporate some intrinsic length scale.

First enhancement of the Kocks-Mecking model

The micromorphic approach is applied to the Kocks-Mecking model after introducing the saturating dimensionless internal variable = b ρ d . The translates into the following evolution equation for

˙ = 1 2 (k 1 b -k 2 ) ṗ (49)
The initial value of is denoted by 0 = b ρ d 0 . The integration of Eq. ( 49) w.r.t. monotonic loading yields

= b ρ d = k 1 b k 2 + 0 - k 1 b k 2 e -k 2
A micromorphic variable χ is associated to in the following quadratic free energy potential:

ρ 0 ψ 0 (E ∼ e , , χ , K) = 1 2 E ∼ e : C ≈ : E ∼ e + 1 2 ζµ 2 + 1 2 H χ ( -χ ) 2 + 1 2 K • A ∼ • K (51)
where K = ∂ χ /∂X . The power of internal forces is given by

P (i) 0 = P ∼ : Ḟ ∼ + a 0 ˙ χ + b 0 • K (52)
Thus, the dissipation rate inequality writes

J p 2 Π ∼ e -ρ 0 ∂ψ 0 ∂C ∼ e : Ċ ∼ e + a 0 -ρ 0 ∂ψ 0 ∂ χ ˙ χ + b 0 -ρ 0 ∂ψ 0 ∂K • K +J p M ∼ : L ∼ p -ρ 0 ∂ψ 0 ∂ ˙ ≥ 0 (53)
Constitutive equations are derived as

Π ∼ e = ρ ∂ψ ∂E ∼ e , R = ρ ∂ψ ∂ , a 0 = ρ 0 ∂ψ ∂ χ , b 0 = ρ 0 ∂ψ ∂K (54)
and the intrinsic dissipation rate

M ∼ : L ∼ p -R ˙ ≥ 0 (55)
The yield condition is chosen in the form

f (M ∼ , R) = [M ∼ ] eq -R 0 -R( , χ ) (56)
where the following enhancement of hardening is obtained from the potential ( 51)

R( , χ ) = ζµ + H χ ( -χ ) (57)
By rewriting the dissipation rate inequality in (Eq. 55), we get 

M ∼ : L ∼ p - 1 2 (k 1 b -k 2 )R ṗ ≥ 0 (58) or [M ∼ ] eq - 1 2 (k 1 b -k 2 )R ṗ ≥ 0 (59)
F 11 -1 ϱ d 0 = 1 × 10 10 mm -2 ϱ d 0 = 5 × 10 9 mm -2 ϱ d 0 = 2 × 10 9 mm -2 ϱ d 0 = 1 × 10 9 mm -2 ϱ d 0 = 1 × 10 5 mm -2
= 166 MPa, ζ = 0.3, µ = 80000 MPa, k 1 = 1.44×10 6 mm -1 , k 2 = 32, b = 2.9×10 -7 mm.

Size effects and strain localization predicted by the enhanced Kocks-Mecking model

The analysis is limited here to simple glide at small strain to work out the generic partial differential equation driving χ . For that purpose, the second balance Eq. ( 7) div b = a is combined with the constitutive equations derived from the potential ( 51)

a = -H χ ( -χ ), b = A∇ χ (62)
The differential equation governing the micromorphic variable χ writes

∆ χ - H χ A ( χ -) = 0 (63)
The yield condition is assumed to be fulfilled:

f (σ ∼ , R) = σ eq -(R 0 + ζµ + H χ ( -χ )) = 0 (64) 
with σ eq = √ 3 σ 12 , the von Mises stress. By combining Eqs. ( 63) and ( 64), the following ODE for χ is derived:

∆ χ - ζµH χ A(ζµ + H χ ) χ + H χ A(ζµ + H χ ) (σ eq -R 0 ) = 0 ( 65 
)
whose solution is always of exponential type due to the positivity of the coefficient

ζµH χ /A(ζµ + H χ ).
Confined simple glide. The confined plasticity of a material strip under simple glide, see Section 3.1, is tackled again for the dislocation-based plasticity model. Fig. 13 illustrates the ability of the micromorphic Kocks-Mecking model to predict size effects in the hardening behavior of metals. For a fixed geometry of the strip, increasing the higher order modulus A leads to enhanced apparent hardening of the overall stress-strain curves.

Strain localization under shear. The model can predict a softening material response by properly choosing the initial dislocation density. The localization problem of Section 3.3 is addressed again with this micromorphic dislocation based plasticity model. According to the finite element simulations (not shown here for conciseness), mesh-dependent results are obtained: The initial yield drop is steeper and steeper when refining the mesh, as observed without gradient enhancement, see Fig. 12.

This absence of regularizing power can be explained by the fact that the PDE (65)

does not predict a finite localization zone and behaves in the same way in hardening and softening regimes. The micromorphic approach applied to the saturating dislocation density does not regularize the strain localization problem. 

ρ d 0 = 3 × 10 8 mm -2 , R 0 = 166 MPa, ζ = 0.3, µ = 80000 MPa, k 1 = 1.44 × 10 6 mm -1 , k 2 = 32, b = 2
.9 × 10 -7 mm, H χ = 10 5 MPa. Unit cell size 2h = 10 mm.

Alternative enhancement of the Kocks-Mecking model

As a remedy for the shortcomings of the gradient of saturating variable approach applied to dislocation based plasticity in the previous section, this section shows that it is nevertheless possible to regularize strain localization simulations performed with the Kocks-Mecking model in the softening regime by resorting to the standard micromorphic approach. The same internal variable and its evolution equation hardening law (49) are kept but the micromorphic variable, denoted by p χ , is now associated with the cumulative plastic strain p, instead of . The free energy is assumed to be a quadratic function of E ∼ e , , p, p χ and K = ∇p χ as

ρ 0 ψ(E ∼ e , , p, p χ , K) = 1 2 E ∼ e : C ≈ : E ∼ e + 1 2 ζµ 2 + 1 2 H χ (p -p χ ) 2 + 1 2 K • A ∼ • K (66)
considering that p and are independent variables, and taking K = ∂p χ /∂X . Thus, the dissipation rate inequality is given by

J p 2 Π ∼ e -ρ 0 ∂ψ 0 ∂C ∼ e : Ċ ∼ e + a 0 -ρ 0 ∂ψ 0 ∂ χ ˙ χ + b 0 -ρ 0 ∂ψ 0 ∂K • K + J p M ∼ : L ∼ p -ρ 0 ∂ψ ∂p ṗ -ρ 0 ∂ψ 0 ∂ ˙ ≥ 0 (67)
The state laws of the proposed model then are

Π ∼ e = ρ ∂ψ ∂E ∼ e , a 0 = ρ 0 ∂ψ ∂p χ , b 0 = ρ 0 ∂ψ ∂K , R p = ρ ∂ψ ∂p , R = ρ ∂ψ ∂ (68)
The yield condition is given by

f (M ∼ , R) = [M ∼ ] eq -R 0 -R( , p, p χ ) (69) 
The hardening law is taken of the form

R( , p, p χ ) = R + R p = ζµ + H χ (p -p χ ) (70) 
which can be compared to the similar Eq. ( 57) from the first formulation. This model provides the same response as the classical Kocks-Mecking model if the plastic strain field is homogeneous, i.e. when p χ = p. The rate of intrinsic dissipation then becomes

M ∼ : L ∼ p -R p ṗ -R ˙ ≥ 0 (71) 
or, equivalently,

f (M ∼ , R) ṗ + R 0 + R 1 - 1 2 (k 1 b -k 2 ) ṗ ≥ 0 (72)
By applying the Karush-Kuhn-Tucker conditions, the positivity of the residual dissipation requires that, under plastic loading:

R 0 + R 1 - 1 2 (k 1 b -k 2 )) ≥ 0 (73)
which has the same form as Eq. ( 61) with the difference that, according to the present formulation, R = ζµ > 0. In the case of softening, the term (k

1 b -k 2 ) is negative.
Accordingly, the dissipation rate is positive. Otherwise, R must satisfy the following condition:

R ≥ - 2R 0 2 -(k 1 b -k 2 ) (74) 
It must be checked at each time step of the calculation.

Analytical solution for the simple glide. Coming back to the one-dimensional simple glide problem, the micromorphic variable p χ is solution of the following ODE:

p χ - H χ A (p χ -p) = 0 (75) 
An approximate analytical solution to this problem can be worked out by linearizing the hardening term R as

R = ζµ = ζµ k 1 b k 2 + 0 - k 1 b k 2 e -k 2 2 p ≈ R 0 + Hp (76) 
where

R 0 = ζµ 0 and H = ζµ 2 (k 1 b -k 2 0 ).
The modulus H is positive when the saturating value of , given by k 1 b k 2 , is larger than the initial dislocation density 0 , and negative otherwise. Substitution of the cumulative plastic strain p obtained from the yield condition, Eq. ( 69), into the differential Eq. ( 75) yields

p χ - HH χ A( H + H χ ) p χ + H χ A( H + H χ ) ( √ 3σ 12 -R 0 -R 0 ) = 0 (77) 
Positive values of H lead to exponential solutions for p χ with boundary layers similar to those explored in Section 3.1. Harmonic solutions are obtained for negative values of H which correspond to shear strain localization in a band of finite width. Fig. 14 depicts the shear stress-strain curves for different mesh sizes. It is apparent that the enhanced model yields a solution that does not depend on the mesh size.

The finite localization zone is visible on Fig. 15(left). The corresponding distribution of dislocation density in Fig. 15(right) shows the decrease of dislocation density in the localization band (which is responsible for the softening) and a saturation of dislocation density at larger shear strain values. The hardening law R then saturates at large strains due to saturation of the dislocation density. This leads to the band broadening observed in Fig. 15(left). This broadening effect was discussed in Section 3.4, see Fig. 8 (k = 0). The broadening effect can be cancelled by introducing the saturating variable r (k = 0) and its micromorphic counterpart, instead of p χ used in the present section. The parameter k can then be calibrated such that the profile of r follows that of the dimensionless dislocation density variable . In that case, the initial condition r0 would be such that the saturating variable r is a decreasing function. The regularizing power of this model remains to be evaluated. 

Application to size effects in bending and torsion

Limitations of scalar strain gradient plasticity also arise in the case of the bending problem, as discussed in the literature [START_REF] Poh | An implicit tensorial gradient plasticity model -Formulation and comparison with a scalar gradient model[END_REF][START_REF] Peerlings | An implicit gradient plasticity-damage theory for predicting size effects in hardening and softening[END_REF][START_REF] Wulfinghoff | Conceptual difficulties in plasticity including the gradient of one scalar plastic field variable[END_REF][START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF]. The objective of this section is to show that some of these shortcomings can be overcome by resorting to the gradient of saturating variable approach. The torsion problem is also tackled to highlight the robustness of the proposed approach in the three-dimensional finite element setting. The ∇r-model described in Section 2 is applied to the bending and torsion problems.

Monotonic bending problem

The considered four-point bending test under plane strain conditions is described in Fig. 16. The finite element mesh is composed of 3232 quadrilateral elements (P2P2 elements with quadratic interpolation for displacements and microdeformation, and reduced integration, i.e. four Gauss points per element). A perfect plasticity material used in the simulation of Fig. 16 is enriched with the saturating internal variable r (k = 10) and its micromorphic counterpart, χ, following the model proposed in Section 2, with the free energy potential (21). A deformed state of the beam is illustrated in Fig. 16 where the field of cumulative plastic strain p and of the variable r are drawn. The corresponding curves of Fig. 17 show the typical V-shape distribution of cumulative plastic strain in the beam cross-section. Due to large deformations, the position of the neutral axis is shifted from the center (representation w.r.t. the Lagrange coordinate X 2 ). The variable r displays a similar V-profile but it saturates at the boundaries X 2 /w = ±1. The microdeformation χ profile closely follows that of r due to the penalty term H χ , except at the boundaries X 2 /w = ±1 and in the center. At the boundaries, the Neumann condition b • n entails a horizontal tangent for the χ profile. The strong plastic strain gradient in the core of the beam (at small strains, the gradient of p is undefined at the neutral axis) is a difficulty for strict plastic strain gradient approaches. In contrast, the micromorphic variable has a smooth profile close to X 1 = 0 and therefore departs more significantly from the variable r. The micromorphic model induces a size-dependent bending response of the beam. This can be seen in Fig. 18 showing the bending moment as a function of beam curvature. In the absence of micromorphic contributions, the curve would become flat as soon as the plastic zone reaches the core of the beam. In contrast constant apparent hardening is observed which depends on the values of parameters A and k.

According to the hardening law of the plasticity model given by Eq. ( 36), the yield stress of the model is:

σ Y = R 0 + R p + R r = R 0 + R p + H χ (r -χ) ( 78 
)
where the contribution H χ (r-χ) represents the enhanced hardening induced by the model.

Looking at Fig. 17, under bending loading conditions, this contribution is therefore positive close to the boundary X 1 = ±w and negative close to X 1 = 0. In the perfect plasticity model, R p = 0, it may happen that the gap H χ (r -χ) becomes smaller than -R 0 so that the yield stress becomes negative. This is a drawback of the model, already recognized in several contributions, see [START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF] and the references quoted therein. In that case, the threshold is replaced by zero in the code but this nevertheless leads to divergence of the computation (at least for the rate-independent case considered here). The curves of Fig. 18 terminate when divergence occurs in the computation, i.e. when the yield radius vanishes. It appears that the ∇r (k > 0) model postpones the occurrence of divergence compared to the ∇p-model (k = 0) but it does not solve the problem entirely. Other remedies to the vanishing threshold issue are discussed in [START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF]. 

Cyclic simple bending

Unlimited cyclic enhanced hardening observed in constrained cyclic tension/compression was predicted by the ∇p-model (k = 0) in Section 3.2. A similar situation arises in the case of cyclic bending of a beam. The beam considered in the previous section is now subjected to cyclic four-point bending. The reference material is perfectly plastic (slight linear hardening was introduced however) and saturation of the moment-curvature loops is expected in that case. In contrast, enhanced hardening induced by the ∇p-model (k = 0) leads to increased cyclic hardening, as shown in Fig. 19. Similar increased cyclic hardening was observed in cyclic torsion by [START_REF] Phalke | Modeling size effects in microwire torsion: A comparison between a lagrange multiplier-based and a CurlF p gradient crystal plasticity model[END_REF]. This size-dependent hardening effect can now be controlled by means of the additional parameter k using the ∇r-model, as illustrated by Fig. 19 for k = 5. This model feature can be useful to model the cyclic bending of steel tubes involving localization phenomena like Lüders bands, as done by [START_REF] Zhang | Cyclic bending of steel tubes with Lüders bands[END_REF]. A precise description of the Lüders band front requires the introduction of an intrinsic length as proposed by [START_REF] Mazière | Strain gradient plasticity modeling and finite element simulation of Lüders band formation and propagation[END_REF][START_REF] Hajidehi | Gradient-enhanced model and its micromorphic regularization for simulation of Lüders-like bands in shape memory alloys[END_REF]. The present ∇r-model could be applied to cyclic bending in this context.

the bar (length L and diameter D) is described in Fig. 20. The finite element mesh contains 6656 bricks, with P2P1 interpolation: Quadratic interpolation of the displacement components (20 nodes per brick) and linear interpolation of the micromorphic scalar variable (8 node per brick), which amounts to 97692 degrees of freedom. Each brick contains 8 Gauss point for space integration (reduced integration) as usual in elastoplasticity.

Fig. 21 shows the distribution of cumulative plastic strain, saturating variable r and microdeformation χ, along one diameter, at two torsion loading steps. The plastic strain line has a characteristic V-shape with zero plasticity at the center of the cross-section and maximal strain at the outer boundary. The p-distribution is found to be bi-linear at both time steps. In contrast, the r-profile is nonlinear and saturates close to the outer boundary. The microdeformation χ follows closely the r-profile except in the center where the function r(X 1 ) is not differentiable. Instead, the χ(X 1 ) function displays a horizontal tangent at X 1 = 0. Note the full saturation of r and χ at the second loading step.

The overall torque-twist curves are given in Fig. 22 for three values of the k parameter.

They show the dependence of the gradient enhanced hardening on parameter k. In a way similar to the bending case, the gap (r -χ) is strongly negative in the center of the bar (see Fig. 21), which leads to the vanishing of the yield radius and subsequent divergence of the model. Increasing parameter k postpones the occurrence of the divergence event, as observed in the bending case. 

Conclusions

An original micromorphic model has been proposed in this work by introducing the gradient of a scalar microdeformation variable akin to some selected saturating internal variable. It differs from standard strain gradient plasticity models which rely on the unbounded cumulative plastic strain. Three kinds of saturating variables have been studied: have been determined analytically under the small strain assumption. This model is therefore a good candidate to regularize strain localization simulations at large strains. Taking k > c leads to a thinning of the band at large strains.

• The enhanced dislocation density model based on the gradient of dislocation density was found to be unable to regularize finite element simulations of strain localization induced by dislocation annihilation. Instead, ∇p or ∇r models can be used for the purpose of regularization of this class of physically based plasticity models.

• A limitation of most scalar based gradient plasticity models is the possible vanishing of the yield radius due to too high values of the Laplacian term (∆χ in the micromorphic case). The ∇r-class of models does not solve this issue but it has been demonstrated, in the case of bending and torsion of bars, that higher values of the parameter k postpone the occurrence of the yield radius vanishing.

Thermodynamic consistency was shown to require, in some situations, the check of positive dissipation at each time step. This means that positive dissipation for some of the presented models could not be ensured for all loading path and all material parameters, in contrast to the original ∇p-model class. Note that estimations of stored and dissipated energy in dislocation density based plasticity are not satisfactory today [START_REF] Cebron | Stored energy predictions from dislocation-based hardening models and hardness measurements for tensile-deformed commercial purity copper[END_REF] so that significant work is needed to improve the description of free energy functions and dissipation rate for models involving saturating dislocation density-like variables. The approach is limited here to variables r with exponential evolution w.r.t. plastic strain and can be applied to other types of saturating variables, as initiated here for the dislocation density. Anisotropy and more general yield functions than von Mises plasticity explored here remain to be addressed within the proposed framework. The extension to viscoplasticity is straightforward.

The method developed in the present paper was limited to the description of size-dependent hardening but did not consider the enhancement of the apparent yield stress. A further extension would be to consider non-quadratic potentials with respect to ∇χ ∇r to where χ denotes the second derivative of χ w.r.t. x = X 1 . Three cases can be distinguished depending on the sign of the modulus Q: perfect plasticity (Q = 0), hardening (Q > 0), and softening (Q < 0). The latter case is studied in Appendix A.2.

Case 1: Perfect plasticity (Q = 0). In this case, the equation (A.3) reduces to The shear stress-strain curve of Fig.

A.23d exhibits a saturating size effect. This is due to the fact that the difference between r and χ does not evolve any more when r saturates.

When the value of r tends to the saturating value 1/k, the value of p in Eq. (A.6) tends to infinity. The relations involve the inverse of an intrinsic length defined as

ω r = cQH χ A(cQ + H χ ) (A.10)
Similarly, the shear stress σ 12 is obtained using Eqs. (A.6) and (A.7). The distribution of the variable r(x) is hyperbolic with a boundary layer that depends on the characteristic length 1/ω r . In contrast, the profile of plastic strain exhibits large values in the middle region of the strip where r gets closer to 1/k, in accordance with Eq. (A.6).

It is parallel to the direction X 2 and has a finite width 2x c which is smaller than the strip width 2h. Therefore, two distinct zones must be distinguished:

• Plastic zone (|x| < x c ): The solution of Eq. (A.3) is harmonic in that case and reads where the inverse characteristic length of the problem was given by Eq. ( 46).

χ(x) = (R 0 - √ 3σ 
• Elastic zone (|x| ≥ x c ): The variable r vanishes according to (41) (no plasticity) and χ is governed by the differential equation (A.1) with r = 0. The solution of the previous equation for (-) -h ≤ x ≤ -x c and (+) x c ≤ x ≤ h is given by .13) where ω 2 e =

χ ∓ (x) = R 0 - √ 3σ 12 H χ cosh(ω e (h ± x)) cosh(ω e (h -x c )) (A

H χ A

The identification of integration constants was performed using the continuity of the micromorphic variable χ and its gradient at ±x c (implied by the continuity of the higher order traction vector b • e 1 ). The location ±x c of the elastic/plastic boundary is finally obtained by solving the equation p(x c ) = 0, a transcendantal equation which is solved numerically. The strip width 2h must be chosen large enough so that |x c | < h for a given set of material parameters.

The expression of shear stress is obtained using Eqs. (A.6) and (A.7). The main outcome of the analysis is that the plastic strain localization band remains bounded.

This result is related to the harmonic profile of r(x) with the period 2π/ω rp , see Eq.

(46). No band broadening is observed in spite of the consideration of saturating strain hardening and in constrast to the ∇p-approach, see [START_REF] Abatour | Toward robust scalarbased gradient plasticity modeling and simulation at finite deformations[END_REF]. Meanwhile, the cumulative plastic strain p = -log(1 -kr)/k goes to infinity in the localization band

Figure 1 :

 1 Figure 1: The evolution of the variable r as a function of cumulative plastic strain for several values of the parameter k. The initial value r0 = 0 .

Figure 2 :

 2 Figure 2: Material strip of width 2h and infinite in the directon 2. The left and right boundaries are passivated, meaning that the microdeformation χ is prescribed to zero. Periodic boundary conditions are applied to the dashed lines.

Figure 3 :Figure 4 :

 34 Figure 3: Shear stress vs. mean shear strain for different values of the parameters A (left) and k (right). Perfect plasticity model: R 0 = 20 MPa, H χ = 10 5 MPa. Unit cell size 2h = 10 mm.

Figure 5 :

 5 Figure 5: Oligocyclic tension/compression loading with confined plasticity for two values of parameter k. Perfect plasticity model: R 0 = 100 MPa, A = 10 5 N, H χ = 10 5 MPa. Unit cell size 2h = 10 mm.

  Fig. 7(left) shows the plastic slip distribution p(X 1 ) and the development of the shear localization band in the middle for the value k = 2. This profile is not a sine-function any more but continuing localization is found to occur for increasing applied shear strain. The saturation effect of the k parameter is illustrated by Fig.7(right) showing the overall shear stress/applied shear curve for three k values. The ∇p-model is retrieved for k = 0 for which linear overall softening is observed. Non-zero values of k are shown to induce dramatic shear

X1

  

Figure 6 :

 6 Figure 6: Strain localization under simple glide loading. Material parameters: R 0 = 20 MPa, H = -20 MPa, k = 2, A = 5 N, H χ = 10 4 MPa. Unit cell size 2h = 10 mm. The map of cumulative plastic strain is taken at F 12 = 0.165.

Figure 7 :

 7 Figure 7: Shear strain localization problem: Development of the plastic shear band (left) and overall shear stress/strain curves for three values of parameter k. Material parameters: R 0 = 20 MPa, H = -20 MPa, A = 5 N, H χ = 10 4 MPa.

Figure 8 :

 8 Figure 8: Shear strain localization: Profiles of cumulative plastic strain at F 12 = 0.33,0.66 and 0.9 for two values of the parameter k (left). Overall stress-strain curves (right). Material parameters: R 0 = 20MPa, Q = -15 MPa, c = 2, A = 5 N, H χ = 10 5 MPa.

Figure 9 :

 9 Figure 9: Shear strain localization: Profiles of the internal variable r and the microdeformation variable χ for two values of the parameter H χ . The other parameter values are given in the caption of Fig. 8.

Figure 10 :Figure 11 :

 1011 Figure 10: Strain localization in a plate under plane strain tension: Cumulative plastic strain localization for two values of the parameter k. Material parameters R 0 = 20 MPa, Q = -15 MPa, c = 5, A = 200 N, H χ = 10 4 MPa.

  Fig. 11 displays the overall tensile curves of the two simulated plates. It shows that the models k = 0 and k = 5 yield very similar overall responses. Again mesh sensitivity analysis of this problem has been performed to check the mesh-objectivity of the results

Figure 12 :

 12 Figure 12: Stress-strain curves for simple tension loading for various initial values of dislocation density ρ d 0 (top). Simple glide loading for ρ d 0 = 3.045 × 10 9 mm -2 and various mesh sizes (bottom). Material parameters: R 0 = 166 MPa, ζ = 0.3, µ = 80000 MPa, k 1 = 1.44×10 6 mm -1 , k 2 = 32, b = 2.9×10 -7 mm.

Figure 13 :

 13 Figure 13: Size effect in simple glide loading (confined plasticity) using a dislocation-based plasticity model. Material parameters: ρ d 0 = 3 × 10 8 mm -2 , R 0 = 166 MPa, ζ = 0.3, µ = 80000 MPa, k 1 = 1.44 × 10 6 mm -1 , k 2 = 32, b = 2.9 × 10 -7 mm, H χ = 10 5 MPa. Unit cell size 2h = 10 mm.

Figure 14 :Figure 15 :

 1415 Figure 14: Strain localization under simple glide loading. Influence of the mesh size on the micromorphicenhanced model. Material parameters are given in the caption of Fig. 12. Micromorphic parameters: A = 80 N, H χ = 10 5 MPa. Unit cell size 2h = 5 mm.
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 1617 Figure 16: Schematic of a two-dimensional beam subjected to four-point bending (top). Distribution of the cumulative plastic strain and the variable r in the beam, as predicted by the ∇r-micromorphic model (bottom). Perfect plasticity: R 0 = 100 MPa, A = 2000 N, H χ = 10 4 MPa, k = 10. Applied curvature κ = 0.03 mm -1 .

Figure 18 :

 18 Figure 18: Bending moment vs curvature for different values of the material parameters A and k. Perfect plasticity model: R 0 = 100 MPa, H χ = 10 4 MPa.

Figure 21 :

 21 Figure 21: Profiles of cumulative plastic strain, r and micromorphic variable χ for two values of applied twist. Material parameters: R 0 = 300 MPa, H = 100 MPa, H χ = 10 4 MPa, A = 200 N, k = 20.

Figure 22 :

 22 Figure 22: Normalized torque (w.r.t deformed configuration) vs. surface strain curves for different values of the parameter k. Material parameters: R 0 = 300 MPa, H = 100 MPa, H χ = 10 4 MPa, A = 200 N.

  Figure A.23: The distribution of cumulative plastic strain p, the saturating variable r and the micromorphic variable χ at three levels of applied shear γ. The numerical results are compared to analytical solutions. Material parameters: R 0 = 20 MPa, k = 10, Q = 0 MPa, H χ = 10 5 MPa and A = 10 5 N.

Fig

  Fig. A.23 shows the profiles of the micromorphic variable χ, the internal variable r and the cumulative plastic strain for three levels of applied shear (γ = 0.05, 0.2 and 0.34).

Figure A. 24 :

 24 Figure A.24: The evolution of shear stress for several values of the parameters k and A. Other material parameters: R 0 = 20 MPa, Q = 0 MPa and H χ = 10 5 MPa. Unit cell size 2h = 10 mm.

  a list of appropriate internal variables denoted α I , the microdeformation χ and its Lagrangian gradient K ∼ . The rate of change of free energy density is

	therefore evaluated as								
	ψ0 (C ∼	e , α I , χ, K) =	∂ψ ∂C ∼ e : Ċ ∼	e +	∂ψ ∂α I	αI +	∂ψ ∂χ	χ +	∂ψ ∂K	• K

  12 )(cQ + H χ ) cQH χ cos(ω rp x c ) cos(ω rp x) +

	r(x) =	R 0 -cQ cos(ω rp x c ) √ 3σ 12	cos(ω rp x) +	√ 3σ 12 -R 0 √ cQ	3σ 12 -R 0 cQ	(A.11) (A.12)

p(50) 

With the specific choice (56), the positivity of the residual dissipation requires that, under plastic loading:

In this expression, both R and (k 1 b -k 2 ) can be positive or negative. This means that the positivity of the dissipation must be checked at each step of the computation. If the computed dissipation rate happens to be negative, corresponding values of parameters must be excluded. We have checked that the previous inequality is satisfied for the values used by [START_REF] Ren | A constitutive model accounting for strain ageing effects on work-hardening. Application to a C-Mn steel[END_REF], at least for the loading paths considered in the present work (positive of negative hardening). 

Torsion of a cylindrical bar

Finite element simulations of the torsion problem are presented here in order to illustrate the capabilities of the model for three-dimensional applications. The geometry of

• The internal variable r was introduced whose evolution equation ( 19) involves a parameter k controlling the saturation rate w.r.t. plastic strain. For low enough values of its initial value, this variable monotonically increases towards the finite limit 1/k. The penalty parameter H χ in the free energy potential (21) ensures that χ remains close to r all along the loading path.

• The special case k = c, where c is the hardening rate of an exponential hardening variable (Voce type), was highlighted. The ∇r-model then involves the gradient of a saturating hardening variable, as initially proposed by [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] and [START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF].

• A physically-based saturating internal variable is the dislocation density whose evolution is driven by the famous Kocks-Mecking model. Two micromorphic extensions of this model were depicted, based either on the gradient of the dislocation density itself (or, more precisely, of its micromorphic counterpart) or the gradient of cumulative plastic strain.

The following advantages of the promising class of ∇r-models were discovered:

• All ∇r-models can capture size effects in the case of strain hardening materials. The parameter k can be used to control cyclic hardening for confined tension/compression and bending. In contrast, standard scalar based gradient plasticity models predict unlimited cyclic hardening.

• For softening materials with saturating stress levels at large strains, the ∇r-model can be used to control the broadening of strain localization bands. The case k = 0, corresponding to standard Aifantis gradient plasticity, leads to unlimited band broadening which can be an undesirable physical feature. The case k < c in the presence of Voce hardening with rate c leads to limited band broadening. The case k = c predicts a localization band of finite width along the entire loading path.

The finite width of the localization band and the distribution of variables p and r cover both size-dependent strengthening and hardening. The introduction of dissipative mechanisms is also possible for instance along the lines of [START_REF] Forest | Elastoviscoplastic constitutive frameworks for generalized continua[END_REF][START_REF] Jebahi | An alternative way to describe thermodynamically-consistent higher-order dissipation within strain gradient plasticity[END_REF]. on the gradient of plastic strain ∇p (k = 0 in the present approach). New solutions are worked out below for the gradient of saturating variable approach. Perfect plasticity and nonlinear hardening/softening materials are successively considered.

Appendix A.1. Confined simple glide

The simple glide boundary value problem defined in Section 3.1 is solved analytically in this appendix under the small deformation assumption. The elastoplastic constitutive behavior includes nonlinear isotropic hardening (41) and the resolution is limited to the case k = c, so that the saturating variable r and the hardening variable r coincide, r = r.

The first balance equation ( 7) implies that σ 12,2 = 0 and σ 21,1 = 0 since σ 12 is the only non-zero stress component. Therefore, σ 12 is uniform in the plate. The differential equation governing the micromorphic variable χ results from the second balance equation

where ∆ denotes the Laplacian operator. The yield function is given by

where σ eq = √ 3 σ 12 is the von Mises equivalent stress. By combining Eqs. (A.1) and (A.2), the following ordinary differential equation is obtained for χ(X 1 ):

. Shear strain localization

If softening is introduced (Q < 0), strain localization is expected to occur in the material strip. The shear band is assumed to develop in the middle of the strip at X 1 = 0.

when r saturates. The plastic strain profile p(x) is not harmonic due to the exponential distorsion but remains bounded and active in this zone. This property of the model allows for continuing strain localization in a finite size zone for increasing applied shear strain.