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A B S T R A C T   

Interspecific and intraspecific diversity are essential components of biodiversity with far-reaching implications 
for ecosystem function and service provision. Importantly, genotypic and phenotypic variation within a species 
can affect responses to anthropogenic pressures more than interspecific diversity. We investigated the effects of 
interspecific and intraspecific diversity on microplastic ingestion by two coexisting mussel species in South 
Africa, Mytilus galloprovincialis and Perna perna, the latter occurring as two genetic lineages. We found signifi-
cantly higher microplastic abundance in M. galloprovincialis (0.54 ± 0.56 MP items g− 1WW) than P. perna (0.16 
± 0.21 MP items g− 1WW), but no difference between P. perna lineages. Microbeads were the predominant 
microplastic (76 % in P. perna, 99 % in M. galloprovincialis) and polyethylene the prevalent polymer. Interspecific 
differences in microplastic abundance varied across locations, suggesting diverse sources of contamination. We 
suggest that microplastic ingestion can be species-specific even in organisms that coexist and play similar 
functional roles within ecosystems.   

1. Introduction 

Globally, microplastics (MPs; < 5 mm; Arthur et al., 2009) are of 
great concern due to their multiple negative ecological impacts (Chen 
et al., 2021; Khalid et al., 2021; Mao et al., 2022; Zhao et al., 2022) and 
the threats they pose to human health (Carbery et al., 2018; F. Zhang 
et al., 2020). MPs are the most abundant portion of plastic debris in the 
world's oceans (Eriksen et al., 2014) and because of their ubiquity, small 
size and different polymer compositions, are readily bioavailable to a 
wide range of aquatic organisms, particularly filter feeders (Law, 2017; 
Botterell et al., 2019; Thushari and Senevirathna, 2020; Wang et al., 
2020). The responses of different species to MP ingestion include 
physical harm, impairment of the immune, reproductive, digestive and 
endocrine systems as well as toxicological effects such as neurotoxicity 
and genotoxicity related to the leaching of chemicals (Wright et al., 
2013; De Sá et al., 2018; Gunaalan et al., 2020; Agboola and Benson, 
2021; Raju et al., 2022). 

Bivalves are among the most targeted species in plastic pollution 
research (Q. Zhang et al., 2020; Bom and Sá, 2021; Li et al., 2021; Ding 
et al., 2022) and are regarded as sentinel species because of their filter- 
feeding behaviour, wide distribution and sensitivity to contaminants 
(Fabbri et al., 2014; Amiard and Amiard-Triquet, 2015; Li et al., 2019). 
The detection of MPs has been extensively documented in mussels (De 
Witte et al., 2014; Li et al., 2016; Zhao et al., 2018; Sparks, 2020; Joyce 
and Falkenberg, 2023) and selective processes occurring during inges-
tion, translocation and ejection of MPs have been described (Ward et al., 
2019; Li et al., 2021 for a review). 

In coastal areas, mussels are key habitat engineers that enhance local 
biodiversity providing nurseries, refuge and feeding areas (Commito 
et al., 2005; Borthagaray and Carranza, 2007; Gestoso et al., 2013; 
Lefcheck et al., 2019). They also provide key ecosystem services such as 
water filtration (Newell, 2004; van Leeuwen et al., 2010), coastal pro-
tection (Folkard and Gascoigne, 2009; Borsje et al., 2011; Ysebaert et al., 
2019) and food provision (Wijsman et al., 2019). Bivalves are a food 
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source for many organisms (Dame and Kenneth, 2011) including 
humans (Danopoulos et al., 2020); consequently, the ingestion of MPs 
by mussels can result in bioaccumulation through the food web (Farrell 
and Nelson, 2013; Santana et al., 2017; Carbery et al., 2018; Santos 
et al., 2021) with potential repercussions for higher trophic levels. 

While current research has primarily focused on the effects of MP 
ingestion at the species level, there is a growing recognition of the 
importance of intraspecific variation in understanding the ecological 
impacts of plastic pollution (Nicastro et al., 2023b). Intraspecific vari-
ation includes the genotypic and phenotypic diversity within and among 
populations of a species. Such diversity plays a crucial role in regulating 
ecological and evolutionary processes (Palkovacs and Post, 2009; Har-
mon et al., 2009; Schweitzer et al., 2011; Zardi et al., 2015; Des Roches 
et al., 2018). Critically, there is evidence that intraspecific variation can 
have even greater implications for ecosystem function and services than 
differences among species (i.e., Cardinale et al., 2012; Raffard et al., 
2018; Nicastro et al., 2020; Cozzolino et al., 2022). Worldwide, intra-
specific diversity is declining due to anthropogenic threats (Hughes 
et al., 1997; DiBattista, 2008; Willoughby et al., 2015; Leigh et al., 2019) 
including climate change (Pfenninger et al., 2012; Siefert, 2012; 
Nicastro et al., 2013; Saada et al., 2016), species introductions (Laikre 
et al., 2010) and pollution (Rocha-Olivares et al., 2004; Cozzolino et al., 
2023 in press). Emerging findings indicate that intraspecific phenotypic 
diversity plays a role in influencing the degree of MP entrapment and 
ingestion within biogenic habitats and among reef fish (Nanninga et al., 
2020; Cozzolino et al., 2022; Nicastro et al., 2022). Similarly, it has been 
reported that intraspecific genotypic variation can modulate the 
behavioural and physiological responses of mussels when exposed to MP 
leachates (Cozzolino et al., 2023 under review). 

Here, we assess the composition and abundance of MPs ingested by 
the two dominant mussel species in South Africa, the invasive Medi-
terranean mussel Mytilus galloprovincialis, and the indigenous brown 
mussel Perna perna. The former invaded South Africa through a 

northeast Atlantic-derived population in the 1970s (Grant and Cherry, 
1985; Daguin and Borsa, 2000; Zardi et al., 2018) and rapidly extended 
its distributional range, now occurring over approximately 3700 km of 
the shoreline of southern African (Ma et al., 2021). Perna perna, is 
endemic to South Africa where it exhibits two distinct genetic entities 
generally described as the eastern and western lineages (Zardi et al., 
2007a, 2011; Ntuli et al., 2020). The two lineages have different 
evolutionary histories (Cunha et al., 2014) and physiological adapta-
tions (Nicastro et al., 2010; Zardi et al., 2011; Nicastro et al., 2012), as 
well as distinct geographical distributions (Zardi et al., 2015). The 
western lineage (here referred to as PPwest) inhabits the coast of Namibia 
down to the south-east coast of South Africa but is absent from the cold 
waters of the Benguela system, where it is probably excluded by suble-
thal effects of low temperature on its capacity for competition, or larval 
survival (McQuaid et al., 2015). On the other hand, the eastern lineage 
(referred to as PPeast) extends from the south-east coast eastwards to the 
subtropical bioregion up to central Mozambique (Fig. 1). The phylo-
geographic break between the two genetic lineages lies in the transi-
tional zone between the warm-temperate and subtropical bioregions and 
is maintained by both local adaptation and limited connectivity through 
larval dispersal (Zardi et al., 2007a, 2011). 

The distributions of the two species (M. galloprovincialis and P. perna) 
and the two lineages (PPwest and PPeast), overlap on the southeast coast 
(Fig. 1; Zardi et al., 2007b; Barker, 2021) with P. perna from both genetic 
lineages dominating the lower mussel zone, M. galloprovincialis the 
upper, and mixed species beds on the mid shore (Bownes and McQuaid, 
2006). The two species show different physiological parameters with 
M. galloprovincialis exhibiting faster feeding and metabolic rates than 
P. perna (Van Erkom Schurink and Griffiths, 1991). Similarly, at the 
intraspecific level, the eastern lineage of P. perna appears to have a 
higher filtration rate than the western lineage (Berry and Schleyer, 
1983; Van Erkom Schurink and Griffiths, 1991). On this basis, we 
hypothesised that M. galloprovincialis would ingest more MPs than 

Fig. 1. (A) Study area and sampling locations in the overlapping zone of the distributional ranges of P. perna lineages and M. galloprovincialis along the South African 
coastline. Blue dashed line shows the distribution of M. galloprovincialis. Solid and dashed grey lines show the distribution of P. perna western (PP west) and eastern 
lineage (PP east) respectively. Dashed borders identify limits of biogeographic regions; (B) mixed bed of P. perna and M. galloprovincialis at Kayser's Beach; (C) 
geographic distribution pattern of the mtDNA lineages and neighbour-joining phylogram based on sequences from cytochrome oxidase I (COI). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

L. Cozzolino et al.                                                                                                                                                                                                                              



Marine Pollution Bulletin 196 (2023) 115649

3

P. perna and that the eastern lineage of P. perna would ingest more MPs 
than the western lineage. We tested these hypotheses by comparing the 
ingestion of MPs (expressed as number of items per gram of wet weight 
biomass) between species (M. galloprovincialis vs P. perna) and between 
genetic lineages (PPwest vs PPeast). 

2. Materials and methods 

2.1. Study area and sampling 

Samples of Mytilus galloprovincialis and Perna perna were collected at 
three locations along a 200 km section on the south-east coastline of 
South Africa were the two species and the two lineages co-exist (Zardi 
et al., 2007a). The three locations were Kenton-on-Sea (− 33.693619, 
26.670574), Kayser's Beach (− 33.212563, 27.611679) and Kidd's Beach 
(− 33.142848, 27.705601) and they were sampled during spring low 
tide in March 2022 (Fig. 1A). These are small coastal towns found at 
various distances from major urban and industrial areas. Kenton-on-Sea 
lies approximately halfway between the industrial centres of East Lon-
don (180 km) and Port Elizabeth (130 km) and it is situated between the 
Bushmans and Kariega rivers (< 2 km). Kayser's Beach is located about 
35 km from East London and next to the Chalumna River (< 2 km). 
Kidd's Beach is the closest to the urban centre of East London but also the 
least susceptible to river runoff. In general, the sewage infrastructure in 
the area is deficient and some wastewater treatment sites have inade-
quate conveyance and treatment capacity (i.e., Kenton-on-Sea and 
Kidd's Beach; Buffalo City Metropolitan Municipality Annual Report 
2020/21; Green Drop Eastern Cape 2022). 

In the field, synthetic clothing was avoided. At each location, mussels 
were haphazardly collected from the mid shore where both species 
coexist intertidally in mixed mussel beds (Fig. 1B). Mussels were placed 
in sealed plastic bags and transported to the laboratory under dark cool 
conditions. In the laboratory, mussels were cleaned of sand and frozen at 
− 20 ◦C intact in their shells to avoid external contamination of the soft 
tissues. Mussels were not subjected to depuration before analysis in 
order to measure the absolute MP abundance, including those particles 
recently ingested or potentially translocated to the tissues (Li et al., 
2015). 

2.2. Genetic analysis 

Since the two lineages of P. perna are morphologically identical, all 
individuals were identified genetically. To do so, total genomic DNA was 
extracted from approximately 1 mm3 of mantle edge of each individual 
before analysis. Genetic analysis was carried out following a standard 
proteinase K and ammonium acetate extraction method adapted from 
Sambrook et al. (1989). Approximately 650 bp portion of the mito-
chondrial cytochrome oxidase subunit I (mtDNA COI) gene was PCR 
amplified and sequenced using the universal primers LCO 1490 (5′-GGT 
CAA CAA ATC ATA AAG ATA TTG-3′) and HCO 2198 (5′-TAA ACT TCA 
GGG TGA CCA AAA AAT CA-3′) from Vrijenhoek (1994). Amplifications 
were performed in a solution containing 1 μl (10 to 100 ng) of genomic 
DNA, 5 mM GoTaq Buffer (5×), 0.2 mM of dNTP (Promega, Madison, 
WI, USA), 1.5 mM MgCl2, 0.2 mM of each primer and 1 U of GoTaq DNA 
polymerase (Promega). The PCR cycling profile comprised an initial 
denaturation step at 94 ◦C for 2 min, 35 cycles of denaturation at 94 ◦C 
for 1 min, annealing at 54 ◦C for 1 min, extension at 72 ◦C for 90 s, and a 
final extension at 72 ◦C for 5 min (adapted from Zardi et al., 2007a). PCR 
products were cleaned using purified ethanol/sodium acetate precipi-
tation (Green and Sambrook, 2016) and directly sequenced with the 
corresponding PCR primers. Sequencing was performed on an Applied 
Biosystems 3130xl Genetic Analyser, using Sanger technology and the 
BigDye® Terminator v3.1 kit. MEGA software v6 (Tamura et al., 2013) 
was employed to construct a rooted neighbour-joining tree to identify 
the genetic origin of each individual using unique sequences of the 
eastern and western lineages retrieved from Zardi et al. (2007a; 

Table S1). 

2.3. Microplastic quantification 

Individuals of each species were defrosted and rinsed with pre- 
filtered ultrapure water (purified by an Elix equipment and filtered 
through a GF/C Whatman 1.2 μm pore size) to remove potential external 
contaminants adhered to the shells. The maximum lengths of shells were 
measured using Vernier callipers (0.01 mm precision) and soft tissue 
was extracted and weighed (g WW) using a Sartorius microbalance 
(0.001 g precision), then rinsed again with pre-filtered ultrapure water. 
A variable number of individuals is often used in digestions to ensure 
comparable biomass among replicates (e.g., Li et al., 2015, 2016; Teng 
et al., 2019). Because Mytilus galloprovincialis were relatively small, four 
to six randomly selected individuals with shell lengths ranging between 
2.1 and 5.1 cm and wet-tissue biomass ranging from 0.14 to 5.48 (g WW) 
were pooled to form a composite sample. There were five such samples 
(mean weight of 8.47 ± 0.21 g WW) per site. We analysed a total of N =
70 individuals of M. galloprovincialis across the three sites. Individuals of 
P. perna, ranging from 4 to 7 cm shell length and 3.26 to 10.91 g WW 
were analysed individually to allow subsequent intraspecific analysis. 

Soft tissue digestions and MP extractions were conducted using the 
adapted protocol of Dehaut et al. (2016). Each composite sample of 
M. galloprovincialis was placed in a 250 mL flask and 1.8 M KOH solution 
was added to digest the organic matter. The solution was covered with 
aluminium foil and placed in the oven at 60 ◦C for 24 h. After incubation, 
the warm solution was filtered (vacuum <5 cm Hg) through a Whatman 
GF/C glass-fibre filter (diameter 47 mm, 1.2 μm pore size). The resulting 
filters were placed in glass Petri dishes with lids, dried in the oven at 
40 ◦C for 24 h and thereafter examined for the presence of MPs under a 
stereomicroscope (BestScope 3044A) operated at 100× magnification. 
Filters were kept sealed when not in use to avoid airborne contamina-
tion. MPs were counted and classified according to their shape (e.g., 
pellet, fragment, fibre, film, foam, microbead; Frias et al., 2018). 

The entire laboratory analysis for MP determination was conducted 
within a laminar flow cabinet. To limit post-sampling contamination, 
gloves and 100 % cotton laboratory coats were worn during the process. 
In addition, all equipment used was non-plastic (i.e., glass or metal), and 
was rinsed twice with pre-filtered ultrapure water between each sample 
extraction. To account for possible contamination, a procedural (blank) 
control (containing KOH solution only) was performed in parallel to 
each digestion batch, yielding no procedural contamination. 

2.4. Polymer identification 

To identify polymer types, Fourier-transform infrared spectroscopy 
(FTIR) analysis was performed on a haphazardly collected subsample (n 
= 15) for each species and lineage. FTIR was conducted in attenuated 
total reflectance (ATR) mode with air as the background spectrum. All 
polymers were identified using a Nicolet iN10 Fourier infrared micro 
spectroscope (Thermo Fisher Scientific Co., Waltham, Massachusetts, 
USA). All spectra were obtained from 4000 to 600 cm− 1. Recorded 
spectra (Fig. S1) were compared against commercial FTIR spectral li-
braries (Hummel Polymer and Additives Library and FBI fibre library 
and PerkinElmer). Identifications were validated when scores higher 
than 0.75 were obtained. 

2.5. Statistical analyses 

The statistical analyses comprised two distinct assays, an intraspe-
cific comparison of ingested MPs between genetic lineages of P. perna 
(PPwest vs PPeast) and an interspecific one, between M. galloprovincialis 
and P. perna. Both analyses were performed using the count of MPs as 
the dependant variable. As the dataset for both M. galloprovincialis and 
P. perna was characterised by excessive zero-counts, we applied a 
generalized linear model (GLM) with a negative binomial law to deal 
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with overdispersion of the data (using glm.nb from the R package MASS, 
Venables and Ripley, 2002). Further, MP counts per wet weight was 
accounted for by using an offset term (log of the WW). The GLM used for 
the intraspecific analysis included lineage and location as fixed factors 
plus their interaction. The interspecific comparison was performed using 
a generalized linear model with negative binomial designed with species 
and location as fixed factors and accounting for their interaction. In both 
regressions, models with higher AIC values were selected to account for 
the interaction terms or not. Homogeneity of variances and dispersion 
were checked using the package Dharma (Hartig, 2022). Where appro-
priate, Tukey's post-hoc tests were used to perform pair-wise compari-
sons between factors' modalities using the R package “emmeans” (Lenth, 
2023) and using the compact letter display from the R package “mult-
comp” (Hothorn et al., 2008). Data analyses and visualization were 
conducted using R Studio 2022.07.0 (R Core Team, 2022). 

3. Results 

3.1. Genetic analysis 

All DNA sequences obtained matched with public records of COI 
genes in GenBank. High-quality chromatograms showing no variable 
nucleotide positions or double peaks were identified. The rooted 
neighbour-joining tree (Fig. 1C) revealed n = 44 individuals of P. perna 
belonging to the western lineage and n = 25 individuals belonging to the 
eastern lineage. The abundance of individuals of the western lineage 
decreased towards east and vice versa for individuals of the eastern 
lineage (Kenton on Sea: 21 PPwest and 2 PPeast; Kayser's Beach: 16 PPwest 
and 7 PPeast; Kidds' Beach: 7 PPwest and 16 PPeast). 

3.2. Microplastic ingestion 

Microplastics (MPs) were present in 52 % of eastern individuals and 
43 % of western ones. The abundance of ingested MPs was similar across 
the distinct genetic lineages (Negative binomial glm, P = 0.99) and 
among distinct locations (P > 0.05; Fig. 2A; Table S2A). On average, we 
found values of 0.21 ± 0.25 MP items g− 1 WW for the eastern lineage 
and 0.14 ± 0.19 items g− 1 WW for the western lineage. The most 
common MPs found were microbeads which accounted for 73.2 % of 
total debris in PPwest and 80 % in PPeast. The remainder consisted of 
microfibres. No fragments, plastic pellets or foams were detected in the 
individuals analysed. 

To test for the effect of species on ingestion of MPs, all individuals of 
P. perna (N = 70) and M. galloprovincialis (N = 70 individuals pooled in 
N = 5 composite samples per location) were used. MPs were present in 
46 % of the P. perna mussels analysed (0.16 ± 0.21 items g− 1 WW in 
P. perna) and 87 % of Mytilus galloprovincialis (0.54 ± 0.56 MP items g− 1 

WW). There was a significant interaction term between species and lo-
cations, meaning that the species effect differed between locations, and 
this prevents us from interpreting the effects of species and locations 
separately. Such significant interaction resulted from the lower differ-
ence in MP items g− 1 WW between M. galloprovincialis and P. perna at 
Kidds' Beach compared to Kayser's Beach (Negative binomial glm, P =
0.00123, Table S2B). No interaction occurred between species at Kays-
er's Beach and Kenton's Beach (Negative binomial glm, P = 0.88, 
Table S2B). This is better illustrated by pairwise comparisons (Table 1; 
Fig. 2). MP items g− 1 WW were significantly higher in 
M. galloprovincialis than in P. perna at Kayser's Beach and Kenton-on-Sea 
(Tukey's post-hoc test, P < 0.05; the mean difference between the two 
species for these locations was 0.62 MP items g− 1 WW) but not at Kidds' 
Beach (P > 0.05; Table 1; Fig. 2). Similarly, there were no significant 
differences in MP items g− 1 WW between the three locations for P. perna 

Fig. 2. Microplastic abundance per gram of wet weight biomass. (A) Intraspecific comparison between P. perna lineages (B) interspecific comparison between 
P. perna and M. galloprovincialis (Means of boxplots not sharing common superscript letters are significantly different, P < 0.05, Tukey's post-hoc test). 
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(P > 0.05) unlike M. galloprovincialis (P < 0.05). 
Overall, we found N = 66 MPs in P. perna (76 % being microbeads 

and 24 % microfibre) and N = 69 MPs in M. galloprovincialis (99 % being 
microbeads and only 1 % microfibre). Fourier-transform infrared spec-
troscopy (FTIR) analysis revealed microbeads to be largely composed of 
polyethylene (40–53 %) and to a lesser degree, polypropylene (20–33 
%) and polystyrene (13–20 %). Interestingly, M. galloprovincialis also 
contained relatively high quantities of alginate microbeads (26 %). 

4. Discussion 

Our study showed notable variation in microplastic (MP) ingestion 
between the two mussel species. The invasive Mytilus galloprovincialis 
exhibited higher ingestion rate than the indigenous Perna perna, 
although this effect was location dependent. Our results indicated no 
effect of intraspecific diversity on the rates of MP ingestion. 

Variation in the filtration rate between M. galloprovincialis and 
P. perna likely accounts for the differences observed in the ingestion of 
MP. Previous studies have shown that M. galloprovincialis has faster 
feeding and metabolic rates than P. perna (Van Erkom Schurink and 
Griffiths, 1991, 1993). For instance, filtration rates of a 50 mm 
M. galloprovincialis are around 2,27 l/h compared to 1,32 l/h for a 
similarly sized P. perna. Likewise, filtration rates for a 1 g dry weight 
individual would be c. 4.1 l. h− 1 and 2.61 l.h− 1, respectively (Van Erkom 
Schurink and Griffiths, 1991). Our results for MP abundances in P. perna 
are in line with those described for Southern India (Patterson et al., 
2021) but lower than those reported in studies conducted in Brazil (e.g., 
Santana et al., 2016; Birnstiel et al., 2019). By contrast, the values we 
report for M. galloprovincialis are higher than those found for this species 
in Europe with average of 0.08 ± 0.09 MP items g− 1 WW in Portugal, 
0.16 ± 0.11 MP items g− 1 WW in Italy, 0.11 ± 0.12 MP items g− 1 WW in 
Spain (Vandermeersch et al., 2015) and 0.23 MP items g− 1 WW along 
the Turkish coasts (Gedik and Eryaşar, 2020), although exceptions exist 
(e.g., 1.62 MP items g− 1 in Spain, Masiá et al., 2022). Interestingly, the 
MP values presented for M. galloprovincialis during this investigation are 
lower than those reported from the Western Cape of South Africa where 
the species also occurs (2.8 MP items g− 1 WW, see Sparks, 2020). 
However, direct comparison between studies should be treated 
cautiously. Lack of standardized protocols and quantification units may 
account for discrepancies (Claessens et al., 2013; Dehaut et al., 2016; 
Phuong et al., 2016, 2018; Q. Zhang et al., 2020) and, in South Africa, 
disparity in the degree of urbanisation among South African bioregions 
can be considerable and may partially explain the different values. 

The lack of significant differences in MP ingestion between the 

different genetic lineages of P. perna was unexpected. From an evolu-
tionary point of view, the two lineages have independent origins and a 
non-sister relationship (as shown by mitochondrial (COI) and nuclear 
(ITS) sequence data) across a wide geographic range (Cunha et al., 
2014). Most importantly, they show different physiological traits. Lab-
oratory and field experiments have shown that P. perna on the east coast 
(eastern lineage) are physiologically more tolerant of sand inundation 
and high temperatures than those on the south coast (western lineage) 
(Zardi et al., 2006b, 2011; Nicastro et al., 2023a). These studies also 
highlight marked behavioural differences consistent with the 
geographical and intertidal distributions of each lineage along sharp 
environmental clines, indicating their strong adaptive significance 
(Zardi et al., 2006a; Nicastro et al., 2010; Nicastro et al., 2012; Zardi 
et al., 2015; Barker et al., 2021). In the face of such divergences, our 
results do not support intraspecific differences in ingestion rates. Direct 
comparisons of the filtration rates of the different lineages of P. perna are 
currently lacking and the few existing studies conducted on the two 
different lineages are not comparable due to lack of standardized 
methodology (Berry, 1978; Berry and Schleyer, 1983; Bayne et al., 
1984). Thus, future research efforts should directly compare the filtra-
tion rates of the two lineages to better understand the susceptibility of 
the distinct P. perna populations to MP ingestion. 

Microplastic pollution is a growing environmental concern world-
wide. In South Africa, MP assessments are now available for a number of 
aquatic organisms (e.g., Reynolds and Ryan, 2018; Nel and Froneman, 
2018; Naidoo et al., 2020; Bakir et al., 2020; Sparks, 2020) and in 
various ecosystems, including estuaries (Naidoo et al., 2015), beach 
sediments (Ryan and Moloney, 1990; de Villiers, 2019) and sea-surface 
water (Ryan, 1988). High MP contamination has been reported in the 
study area along the south-eastern coastline (Nel and Froneman, 2015). 
In this study, we found differences in the abundance of MPs between 
species across sampling locations, possibly indicating different anthro-
pogenic pressure and/or variable sources and environmental contami-
nation among sites. Specifically, no significant differences in MP 
abundance between species were found at Kidd's Beach compared to the 
other two sites. Such differences are most likely related to the distance of 
the sampling sites from point sources such as river mouths (Suteja and 
Purwiyanto, 2022). Noticeably, the primary contributors to plastic 
pollution are land-based sources including domestic, industrial, and 
agricultural activities, with rivers, as the main pathway through which 
plastic debris enters marine ecosystems (Browne et al., 2007; Browne 
et al., 2011; Driedger et al., 2015; Sun et al., 2019). In our case, while 
Kidd's Beach is about 25 km away from the mouth of the Buffalo River, 
the other two sites (Kenton-on-Sea and Kayser's Beach) are next to river 
mouths (i.e., < 2 km; Bushman's River and Chalumna River respectively) 
and thus are potentially exposed to higher MP concentrations. 

Microbeads and fibres were the only MP type we reported. No foam, 
fragments, or pellets were found during our experiment. This is only 
partially in agreement with previous MP assessments in South Africa 
suggesting fibres (Naidoo et al., 2015; Nel and Froneman, 2015; Nel 
et al., 2017; Reynolds and Ryan, 2018; Bakir et al., 2020; Sparks, 2020), 
fragments or pellets (Ryan and Moloney, 1990; Ryan et al., 2018) as the 
most common MP types (Pereao et al., 2020 for a review). There are no 
former records of microbeads along the south-eastern coast of South 
Africa. These are primary MPs commonly employed in personal care and 
cosmetic products (UNEP, 2015) and enter the aquatic environment 
through untreated effluents (Fendall and Sewell, 2009; Napper et al., 
2015). The presence of rivers and wastewater treatment plants in our 
study area further suggest this pathway. We found polyethylene and 
polypropylene to be the most common polymers, which is in agreement 
with other global reports (Eriksen et al., 2013; Gouin et al., 2015; UNEP, 
2015). To the best of our knowledge, this study is the first to report the 
ingestion of alginate bead by filter feeders. Alginate-based bioplastics 
exhibit low-toxicity and biodegradability, and find extensive applica-
tions in food, pharmaceuticals, and as bio-adsorbents for pollutants 
(Asghari et al., 2022; Zhang et al., 2022). In light of our results, further 

Table 1 
MP abundance per gram wet weight biomass (MP x g WW; mean ± SD), total 
number of individuals analysed, total MP items and type (microbead or fibre) 
found in each species (Perna perna and Mytilus galloprovincialis) and location (n 
= 3). Means of MP x g WW not sharing common superscript letters are signifi-
cantly different (P < 0.05, Tukey's post-hoc test).  

Location MP x g WW Total 
individuals 

Total 
MPs 

Microbead Fibre  

Perna perna 
Kenton on 

Sea 
0.10 ±
0.17a 

24 20 16 4 

Kaysers' 
Beach 

0.17 ±
0.21ab 

23 23 16 7 

Kidds's 
Beach 

0.22 ±
0.24ab 

23 23 18 5  

Mytilus galloprovincialis 
Kenton on 

Sea 
0.54 ±
0.24bc 

20 23 23 0 

Kaysers' 
Beach 

0.97 ±
0.75c 

20 41 40 1 

Kidds's 
Beach 

0.12 ±
0.12ab 

30 5 5 0  
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research is needed to understand their persistence in the coastal habitat 
and their effect on coastal filter- feeders. 

Despite considerable evidence of the ecological importance of 
intraspecific variation, we found no indication that MP ingestion differs 
between distinct genetic lineages of P. perna along the south-east coast of 
South Africa. We did, however, find significant differences in the rela-
tive abundance of MP between our two species, suggesting that MP 
ingestion is most likely species-specific even in organisms that coexists 
and play a similar functional role within ecosystems. The implications of 
our findings extend from the immediate effects of MP ingestion on 
mussels to the broader consequences at the ecosystem level. In coastal 
environments, mussels are key ecosystem engineers (e.g., Suchanek, 
1985) that provide numerous ecosystem functions and services such as 
water filtration and nutrient cycling (Karatayev et al., 2002; Newell, 
2004; van Leeuwen et al., 2010). MP ingestion in mussels can result in 
negative impacts such as physical damage and reduced fitness (Von 
Moos et al., 2012; Détrée and Gallardo-Escárate, 2018; Alnajar et al., 
2021) that could alter mussel filtration efficiency with cascading effects 
on water quality and nutrient cycling. The species-specific differences in 
MP ingestion observed during the current investigation may adversely 
affect the competitive interaction between the two coexisting species, 
ultimately contributing to shifts in mussel abundance and distribution 
and consequences on food and habitat availability for other organisms. 
Such cascading effects would potentially lead to changes in community 
structure that could affect the overall composition of the intertidal and 
subtidal habitats. In addition, mussels are the primary target species for 
artisanal fisherfolk on the South African coast and form an important 
component of the diet of coastal communities (Fielding, 1996). 
Although P. perna is the main target species and shows less MP 
contamination than M. galloprovincialis, our results raise the possibility 
of potential risk for human health. To strengthen and validate our field 
observations, future research should involve direct MP assessments in 
both species and lineages within a controlled laboratory environment. 
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