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Abstract

We study the impact of pheromone control against the Asian citrus psyllid, Diaphorina citri, a prin-

cipal vector of diseases in citrus cultures. The model is expressed as a piecewise smooth ODE system,

and its long-term behavior is analyzed. In particular, through qualitative analysis and applying an

open-loop control approach, we identify the threshold in terms of two external parameters related to

the pheromone traps, the amount of pheromones to be released and the male-killing rate, to ensure

local elimination of the wild psyllid population. We also show that a feedback control with periodic

assessments of the wild population sizes is applicable and then deduce that a mixed-type control, com-

bining the open- and closed-loop control approaches, provides the best results. We present several

simulations to illustrate our theoretical findings and to estimate the minimal amount of pheromones

and time needed to reach the local elimination of wild psyllids. Finally, we discuss possible implemen-

tations of our results as a part of Integrated Pest Management programs.

Keywords: Diaphorina citri, pheromone traps, mating disruption, piecewise smooth system, open-

and closed-loop control, numerical simulations.

1 Introduction

The Asian citrus psyllid (ACP) [1, 14], Diaphorina citri Kuwayama, is the most important pest of citrus

cultures because it is the main vector of Candidatus Liberibacter spp., the bacterium that cause huan-

glongbing (HLB), the citrus greening disease [10], impacting several places around the world, and, in

particular, Colombia [2] and also La Réunion, a French overseas department. When uninfected psyllids

feed on an infected citrus tree, they acquire the bacterium. Subsequently, when they feed on healthy

trees, they can transmit the bacterium, thereby spreading the disease. Note also that in La Réunion

another psyllid, the African citrus psyllid, Trioza erytreae, has been identified as an efficient vector of
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Candidatus Liberibacter asiaticus [26]. Since there is no cure for infected trees, several control strate-

gies have been developed, including the removal and destruction of infected trees to prevent further

spread, the use of insecticides to control the Asian citrus psyllid population, quarantine measures to

limit the movement of infected plant material, research into disease-resistant citrus varieties through

breeding programs, development of early detection methods to identify infected trees, etc. So far, only

in La Réunion the biological HBL control was achieved successfully in the late 1970s [5]. Indeed, in La

Réunion, the two psyllid vectors have been controlled with hymenopteran psyllid parasites: Tamarixia

radiata introduced from India against D. citri and Tamarixia dryi, from South Africa, against Trioza

erytreae [5]. D. citri started to be reported in the Caribbean basin in the late 1990s [15], before being

first officially reported in Colombia in 2007 [12, 25]. ACP Biological control methods started in Colom-

bia, using, for instance, natural enemies of D. citri, like T. radiata [12], and others collected in the

department of Valle del Cauca, Colombia [17]. In Colombia, single insecticides and insecticide rota-

tions have also been tested against D. citri [25]. Meanwhile, in Brazil, ACP biological control with sex

pheromones [30] is under study.

Mathematical modeling is now a common tool to study (biological) control strategies against pests

[27] and vectors [3]. In particular, several models have been developed and studied to control the spread-

ing of HLB: see [28] for an overview and references therein. The majority of these models are epidemi-

ological models based on vector-borne disease models developed for mosquitoes. In [13], the authors

developed an ACP continuous population model to study the effect of physiological and behavioral re-

sistance and investigate the existence of threshold conditions for extinction. Discrete ACP models for

each stage (eggs, nymphs, and adults) have been developed in [22] to study the impact of environmental

parameters, habitat, and natural enemies on the ACP dynamics in an urban area in California. How-

ever, these phenological models are degree-day models, i.e., based on a temperature accumulation, and

thus well adapted to study population accumulation of D. citri and the effect of temperature. In this

paper, we consider a piecewise smooth modeling approach to study the impact of sex pheromone control.

The outline of the paper is as follows. In Section 2, we propose a sex-structured mathematical model

that encompasses only the population of adult Asian citrus psyllids. The model is formulated as a piece-

wise smooth dynamical system in continuous time. In Section 3, dedicated to the qualitative analysis of

the proposed model, the long-term evolution of the natural ACP population dynamics is studied, and the

underlying stability properties of the piecewise smooth dynamical system are established. The proposed

model is further amended in Section 4 with external control actions of pheromone traps: attraction and

direct removal of male insects that induce mating disruption targeting to reduce the future offspring.

These intervention measures are modeled by two external parameters, the male-killing rate and the
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strength of lure. The choice of these two parameters may result in two outcomes: the suppression or

elimination of the local ACP population. To reach one of these goals, the open-loop and closed-loop

operational control modes are suggested and validated in Subsections 4.1 and 4.2, respectively. Section

5 provides numerical simulation illustrating the open-loop and closed-loop control approaches. Finally,

Section 6 summarizes the main results of our work.

2 Natural population dynamics of Diaphorina citri

Asian citrus psyllids are small (2.7 to 3.3 mm long) jumping and flying insects that live on citrus trees

and feed on young stems, sprouts, and leaves during all stages of development. The psyllid’s life cycle

includes an immature phase (consisting of the egg stage and five nymphal instars) followed by the adult

stage (imago) of sexually matured insects, males or females. Oviposition and development of immature

D. citri elapse on young, tender flush leaves where the nymphs remain almost docile while feeding on

the tissue of young leaves and stems until turning into adults [16].

In this section, we propose a sex-structured mathematical model that encompasses only the popula-

tion of adult Asian citrus psyllids (ACP), Diaphorina citri, even though the ACP life cycle also includes

the immature phase (consisting of eggs and five nymphal instars). The model is based on this insect

species’ behavioral and biological features, and particular attention is paid to the ACP mating behavior.

On the other hand, oviposition can also be reduced by the continuous presence of males seeking matings

since this particular species (D. citri) exhibits a male-biased operational sex ratio [19], meaning that

there are more sexually active males than sexually receptive females.

Laboratory and field observations show that fertilized female psyllids become temporarily unavail-

able for mating and try to avoid males when they are ready for oviposition [20]. After oviposition, such

female insects again exhibit receptiveness for mating. Thus, the female psyllids usually mate intermit-

tently during their lives to keep an adequate amount of viable sperm and be able to lay eggs throughout

their lives whenever young leaves and stems are present.

To mimic this mating behavior, we divide the total population of adult psyllids into three disjoint

compartments or population classes, namely:

• M(t) – the number or density of male insects at the moment t.

• A(t) – the number or density of female insects available for mating at the moment t.

• U(t) – the number or density of fertilized female insects at the moment t (they avoid mating while

preparing for oviposition).
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Figure 1: Flow diagram of the natural dynamics of Diaphorina citri described by system (1)

Thus, F (t) := A(t)+U(t) constitutes the total population of female psyllids. It is also supposed that

all male insects M(t) are available for mating anytime and remain sexually active during their lifetime.

Following the approach of [3, 27], and according to the flow diagram provided in Figure 1, we derive

the following ODE system to describe the population dynamics of adult psyllids.





dM

dt
= rρUe−σ(M+A+U) − µM

dA

dt
= (1− r)ρUe−σ(M+A+U) − νmin

{
γM

A
, 1

}
A+ ηU − δA

dU

dt
= νmin

{
γM

A
, 1

}
A− ηU − δU

(1a)

(1b)

(1c)

with nonnegative initial conditions

M(0) = M0, A(0) = A0, U(0) = U0.
(2)

The constant parameters included in the model (1) are all positive, and their concise definitions,

as well as numerical values in simulations (Section 5), are summarized in Table 1. Notably, these

parameter values are borrowed from a field study on Valencia sweet orange tree (Citrus sinensis) with

Rangpur lime as a rootstock (Citrus limonia).

In the equations (1a) and (1b), we denote by r and (1 − r) with r ∈ (0, 1) the proportion of male

and female psyllids emerging from the immature stage and entering the compartments of males and

receptive females, respectively.

The parameter ρ > 0 stands for the mean number of eggs produced on average per day by one female

psyllid from the class U . At the same time, the exponential factor in the recruitment terms of equations
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Table 1: Parameters of the model (1) with some values corresponding to the field study performed on
Valencia sweet orange tree (Citrus sinensis) with Rangpur lime (Citrus limonia) taken as a rootstock

Parameter Description Value Unit References

r primary sex ratio 0.41 – [24]

ρ mean no. of eggs produced by one female per day 6.352 day−1 [24]

σ characteristic of eggs survival to the adult stage 0.001 individual−1 assumed

µ natural mortality rate for males 0.021 day−1 [24]

δ natural mortality rate for females 0.023 day−1 [24]

γ females fertilized by a single male 1.2 – [24]

ν transfer rate from A to U 1/4 day−1 estimated from [30]

η transfer rate from U to A 1 day−1 -

(1a) and (1b) expresses the eggs’ survival to adulthood while they pass through five nymphal instars.

The parameter σ > 0 in the exponential factor may be seen as the ratio σ = β/K between β, a quantity

characterizing the transition of immature insects into adults under density dependence and nymphal

competition for food resources, and a carrying capacity K. The latter is typically proportional to the

capacity of available breeding sites (young stems, sprouts, and leaves) that also provide food for all

nymphal stages and adults (males and two classes of females).

Natural mortality rates for males and females (F = A + U ) are denoted by µ and δ, respectively,

and correspond to the inverses of their average lifespans (1/µ and 1/δ days, respectively). Some studies

report that female psyllids live longer than males (see [16, 24] and more detailed references therein),

so we suppose in the sequel that µ ≥ δ.

Further, we assume that a receptive female A needs to mate once or more to pass into the class U

of eggs-laying females and be able to reproduce. The conversion of mating females A into eggs-laying

females U is modeled by the mating term νmin
{
(γM)/A, 1

}
A that appears in equations (1b) and (1c).

In this term, γ ≥ 1 expresses the mean number of females a single male can fertilize. Furthermore,

the parameter ν can be viewed as the effective mating (or contact) rate that results in successful fer-

tilization of the female leading to her readiness for oviposition. In other words, it is assumed that a

sexually mature female becomes ready for oviposition after 1/ν days from exhibiting receptiveness and

completing at least one mating. The latter is valid only if there are enough males so all females from

class A can mate at least once. However, if male psyllids are scarce, then only a proportion (γM)/A of

mate-seeking females A can get fertilized and pass into the eggs-laying class U for further reproduction.

Moreover, after completing the oviposition, a female psyllid U becomes receptive to mating again after

1/η days and moves back to A-class.

Notably, the three-dimensional model (1) has been designed by merging two modeling approaches.

Namely, we have used as a basis the two-dimensional sex-structured model initially developed by Bli-
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man et al. [9] for mimicking the population dynamics of any pest or disease vector population. It is also

well known that female psyllids must re-mate after each oviposition to enhance fertility and continue

laying viable eggs. To mimic this process, we have introduced a separate female class A gathering all

female psyllids available for mating, like in [3]. To model the re-mating process, we have employed

the so-called “mating function” (min
{
(γM)/A, 1

}
), which was proposed initially by Barclay & van den

Driessche [6] for discrete-time models, and further adapted to continuous-time models by Anguelov et

al. [3] (see also [27]).

Using the approach developed in [3], system (1) can be written in the form

dX

dt
= Φ(X) :=

{
Φ1(X) if γM ≥ A

Φ2(X) if γM ≤ A
, (3)

where X := (M,A,U) ∈ R
3
+ and

Φ1(X) =




rρUe−σ(M+A+U) − µM

(1 − r)ρUe−σ(M+A+U) − νA+ ηU − δA

νA− ηU − δU


 ,

Φ2(X) =




rρUe−σ(M+A+U) − µM

(1 − r)ρUe−σ(M+A+U) − νγM + ηU − δA

νγM − ηU − δU


 .

(4)

(5)

Following definitions given in [11], the dynamical system defined by (1), (3) can be considered as a

piecewise smooth (PWS) system with the switching manifold defined by the plane

Ps :=
{
(M,A,U) ∈ R

3
+ : γM = A

}

because any point X̃ = (M,A,U) ∈ Ps satisfies the relationship Φ1

(
X̃
)
= Φ2

(
X̃
)
. Even though the first

derivatives of Φ in (3) have a jump discontinuity across the switching plane Ps, their one-side limits

are finite, and the jumps are bounded. Therefore, the overall vector field Φ is continuous and piecewise

smooth for all X ∈ R
3
+, meaning that the right-hand side of the dynamical system (1), (3) is Lipschitz.

The latter guarantees the existence and uniqueness of a piecewise smooth solution to the initial-value

problem (1)-(2). Figure 2 gives an example of the piecewise smooth solution
(
M(t), A(t), U(t)

)
to the

system (1) in the form of a parametric 3D-curve that crosses the switching plane Ps.

Let us denote by X(t;X0) the solution of (1) engendered by the initial condition X0 :=
(
M0, A0, U0

)
.

If X0 ∈ R
3
+ then it is easy to show that X(t;X0) ∈ R

3
+. In effect, it is fulfilled that
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Figure 2: A piecewise smooth solution
(
M(t), A(t), U(t)

)
to the system (1) drawn as a parametric 3D-

curve that crosses the switching plane Ps (shadowed area)

dM

dt

∣∣∣∣
M=0

≥ 0,
dA

dt

∣∣∣∣
A=0

≥ 0,
dU

dt

∣∣∣∣
U=0

≥ 0.

Therefore, the positive invariance of R3
+ becomes obvious and we haveX(t;X0) ≥ 0 for all t ≥ 0 whenever

X0 ∈ R
3
+.

Furthermore, we can establish the following result related to the uniform ultimate bound of all

solutions to the PWS system (1).

Proposition 1. There exists a compact absorbing set Ω ⊂ R
3
+ that attracts all the solutions of the PWS

system (1) engendered by any initial condition
(
M0, A0, U0

)
∈ R

3
+.

Proof. First, we note that along the trajectories of (1), it is fulfilled that

d(M +A+ U)

dt
= ρUe−σ(M+A+U) − (µM + δA+ δU) ≤ (M +A+ U)

[
ρe−σ(M+A+U) −min{µ, δ}

]

Therefore,

M(t) +A(t) + U(t) ≤ max
{
M0 +A0 + U0, P̂

}

where
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P̂ :=
1

σ
ln

(
ρ

min{µ, δ}

)

stands for the carrying capacity of the Ricker differential equation P ′(t) = P (t)
[
ρe−σP (t) −min{µ, δ}

]
.

Thus, the compact set

Ω :=
{
(M,A,U) ∈ R

3
+ : 0 ≤ M +A+ U ≤ P̂

}

is invariant in the sense that any solution of (1) engendered by
(
M0, A0, U0

)
∈ Ω remains in Ω for all

t ≥ 0. Moreover, Ω attracts all the trajectories engendered by
(
M0, A0, U0

)
∈ R

3
+ \Ω and there is a finite

time t̂ > 0 such that
(
M(t̂), A(t̂), U(t̂)

)
∈ Ω for all t ≥ t̂. In other words, Ω constitutes the absorbing set

of the PWS system (1), and its trajectories engendered by any initial condition
(
M0, A0, U0

)
∈ R

3
+ are

uniformly ultimately bounded. �

Once the well-posedness of the PWS system (1) is formally established, we proceed to study its

stability by applying the methodology employed in [3, 27].

3 Qualitative analysis of the PWS system (1)

The switching plane Ps divides the positive octant R3
+ into two disjoint regions:

1. The male abundance region

Ma :=
{
(M,A,U) ∈ R

3
+ : γM > A

}
,

where the vector field Φ1(X) defined by (4) takes action, that is,

dX

dt
= Φ1(X). (6)

2. The male scarcity region

Ms :=
{
(M,A,U) ∈ R

3
+ : γM < A

}
,

where the vector field Φ2(X) defined by (5) takes action, that is,

dX

dt
= Φ2(X). (7)
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As shown in Figure 2, Ma-region is in front of the switching plane Ps (shadowed area), whereas Ms-

region is behind Ps. Both systems (6) and (7) have smooth right-hand sides. Their stability properties

can be studied separately, at least to understand better the overall dynamics of the original PWS system

(1) whose long-term behavior is richer and more complex than that of the two smooth ODE systems (6)

and (7) when considered separately.

Generally speaking, a solution X
(
t;X0

)
with X0 ∈ Ms may remain in Ms or may enter the region

Ma by crossing the switching plane Ps and then remain there (this situation is illustrated in Figure

2). It is also not excluded that the mentioned solution leaves the region Ma and then returns or moves

cyclically across the plane Ps (periodic or chaotic behavior). Similar behavior options also apply to

solutions engendered by X0 ∈ Ma. Therefore, for analyzing the long-term behavior of solutions of the

PWS system (1), (3), the first step will be to identify the equilibria of (6) and (7) and then to study their

stability properties separately. Further, we will explore their possible connections and relations with

the equilibria of the PWS system (1), (3).

In this context, it is useful to recall some definitions related to the classification of equilibria a PWS

system may possess [11]. On the one hand, a point X∗ ∈ R
3
+ satisfying either

Φ1

(
X

∗
)
= 0 and X

∗ ∈ Ma

or

Φ2

(
X

∗
)
= 0 and X

∗ ∈ Ms

is referred to as a regular equilibrium of the PWS system (1), (3). On the other hand, a point X∗ ∈ R
3
+

satisfying either

Φ1

(
X

∗
)
= 0 and X

∗ ∈ Ms

or

Φ2

(
X

∗
)
= 0 and X

∗ ∈ Ma

is called a virtual equilibrium of the PWS system (1), (3).

Let us also introduce for future use the following positive quantities:

NM :=
γrρν

µ(δ + η)
=

rρ

µ
· γν

δ + η
, NF :=

(1 − r)ρν

δ(δ + η + ν)
=

(1 − r)ρ

δ
· ν

δ + η + ν
. (8)
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These positive constants represent the basic offspring numbers related to the male and female psyllids.

It is worthwhile to recall that the basic offspring number expresses a mean number of descendants

produced by one individual during his/her lifespan. For males, NM depends not only on the usual ratio

rρ/µ expressing an average number of eggs that later become males but also on the mating efficiency γ of

males and the relative availability for mating ν/(δ+ν) of the female psyllids. Similarly, for females, NF

depends not only on the usual ratio (1− r)ρ/δ expressing an average number of eggs that later become

females but also on the mating frequency of female psyllids ν/(δ + η + ν). Notably, the parameters ν, η

related to the interchange between the compartments A and U are explicitly included in NM and NF

meaning that the overall population size of adult insects strongly depends on the females’ readiness for

mating.

Now we proceed to identify the possible equilibria of smooth ODE systems (6) and (7).

3.1 Case 1: abundance of male psyllids

When γM > A, the PWS system (1) becomes (6) with Φ1 given by (4), and its equilibria are nonnegative

solutions of the following algebraic system





0 = rρUe−σ(M+A+U) − µM,

0 = (1− r)ρUe−σ(M+A+U) − νA+ ηU − δA,

0 = νA− ηU − δU.

(9a)

(9b)

(9c)

It is immediate to deduce that E0 = (0, 0, 0) is solution of (9). Then, we solve this system with M and

A as unknowns and obtain

M =
rδ(δ + η + ν)

(1− r)µν
U, A =

(δ + η)

ν
U. (10)

Replacing these solutions in (9a), we obtain

rρUe−σ(M+A+U) =
δr(δ + η + ν)

ν(1 − r)
U ⇒ e−σ(M+A+U) =

δ(δ + η + ν)

(1− r)ρν
=

1

NF

according to the second relationship in (8). Thus, we deduce

M +A+ U =
1

σ
lnNF > 0 (11)

meaning that a positive solution E
∗
1 :=

(
M∗

1 , A
∗
1, U

∗
1

)
of (9) exists if and only if NF > 1. Further, by

plugging the relationships (10) into (11) we obtain
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1

σ
lnNF =

(
rδ(δ + η + ν)

(1− r)µν
+

(δ + η)

ν
+ 1

)
U =

(δ + η + ν)ϑ

(1 − r)µν
U, (12)

where

ϑ := (1− r)µ + rδ (13)

denotes the so-called standardized mortality of adult psyllids that, in effect, is the weighted mean mor-

tality of both sex groups with the weights defined by their opposite-sex ratios. Finally, solving the

equation (12) for U and using it in (10) we arrive to a strictly positive solution E
∗
1 :=

(
M∗

1 , A
∗
1, U

∗
1

)
of (9):





M∗
1 = r

δ

ϑ

1

σ
lnNF ,

A∗
1 = (1− r)

µ

ϑ

δ + η

(δ + η + ν)

1

σ
lnNF ,

U∗
1 = (1− r)

µ

ϑ

ν

(δ + η + ν)

1

σ
lnNF .

(14a)

(14b)

(14c)

Note also that the total number of insects at equilibrium E
∗
1 verifies (11), and its coordinates explicitly

include the standardized mortality ratios (rδ/ϑ and (1 − r)µ/ϑ) related to opposite sex.

Thus, we conclude that the smooth system (6) has two possible equilibria: the trivial equilibrium

E0 = (0, 0, 0) that exists for any positive value of NF (defined by (8)), and the strictly positive one

E
∗
1 =

(
M∗

1 , A
∗
1, U

∗
1

)
defined by (14) that exists if and only if NF > 1. The following result establishes the

stability properties of E0 and E
∗
1.

Proposition 2. • Assume NF < 1. Then E0 is locally asymptotically stable (LAS).

• Assume NF > 1. Then E
∗
1 is LAS and E0 is unstable; however, there always exists a trajectory

converging to E0 meaning that E0 is not a repeller.

Proof. See Appendix A, page 36. �

3.2 Case 2: scarcity of male psyllids

When γM < A, the PWS system (1) becomes (7) with Φ2 given by (5), and its equilibria are nonnegative

solutions of the following algebraic system





0 = rρUe−σ(M+A+U) − µM,

0 = (1 − r)ρUe−σ(M+A+U) − γνM + ηU − δA,

0 = γνM − ηU − δU.

(15a)

(15b)

(15c)

It is immediate to deduce that E0 = (0, 0, 0) is solution of (15). We also set
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θM :=
(1− r)µ(δ + η)

γrδν
. (16)

Then, we solve the nonlinear system (15) with M and A as unknowns and obtain

M =
(δ + η)

γν
U, A =

(
µ(1 − r)(δ + η)

γδνr
− 1

)
U =

(
θM − 1

)
U. (17)

Thus, A > 0 whenever θM > 1. It is interesting to notice that

θM =
1

NM

(1− r)ρ

δ
,

such that having NM > 1 (cf. the first relationship in (8)), we need

(1− r)ρ

δ
> NM , (18)

in order to assure that θM > 1. In fact, (18) means that the average number of eggs that further become

females has to be larger than the mean number of male descendants produced by one male individual

all along his lifespan. In other words, condition θM > 1 can be replaced by (18).

Direct substitution of (17) into (15a) renders

rρUe−σ(A+M+U) =
µ(δ + η)

γν
U ⇒ e−σ(A+M+U) =

µ(δ + η)

γrρν
=

1

NM

leading to

A+M + U =
1

σ
lnNM > 0, (19)

and meaning that a positive solution E
∗
2 =

(
M∗

2 , A
∗
2, U

∗
2

)
of (15) exists if and only if NM > 1 and θM > 1,

where NM and θM are given by (8) and (16), respectively. Further, by plugging the relationships (17)

into (19) we obtain

1

σ
lnNM = M +A+ U =

(
η + δ

νγ
+ θM − 1 + 1

)
U =

γνθM + η + δ

γν
U. (20)

Finally, solving equation (20) for U and using it in (17) we arrive to a strictly positive solution E
∗
2 :=

(
M∗

2 , A
∗
2, U

∗
2

)
of (15):





M∗
2 =

δ + η

γνθM + η + δ

1

σ
lnNM ,

A∗
2 =

γν
(
θM − 1

)

γνθM + η + δ

1

σ
lnNM

U∗
2 =

γν

γνθM + η + δ

1

σ
lnNM ,

(21a)

(21b)

(21c)
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Remark 1. One can also obtain the expressions for coordinates of E
∗
2 in terms of the standardized

mortality ϑ defined by (13). Notably, the denominator of all expressions included in (21) verifies

γνθM + η + δ = γν
(1− r)µ(δ + η)

γrδν
+ (δ + η) = (δ + η)

(
(1− r)µ

rδ
+ 1

)
= (δ + η)

ϑ

rδ
.

Furthermore,

γν
(
θM − 1

)
=

(1− r)µ(δ + η)

rδ
− γν =

µ

r
(δ + η)

(
1− r

δ
− γrν

µ(δ + η)

)
=

µ

rρ
(δ + η)

(
(1− r)ρ

δ
−NM

)
.

Using the above relationships in combination with (21), we can obtain an alternative form of (21):





M∗
2 = r

δ

ϑ

1

σ
lnNM ,

A∗
2 =

µ

ϑ

δ

ρ

(
(1− r)ρ

δ
−NM

)
1

σ
lnNM ,

U∗
2 =

µ

ϑ

δ

ρ
NM

1

σ
lnNM ,

(22a)

(22b)

(22c)

This alternative form of E∗
2 makes visible the necessity of the condition (18) for existence of E∗

2 along with

NM > 1.

Note also that for both forms of E∗
2 ((21) and (22)), the total number of insects at equilibrium E

∗
2

verifies (19).

Thus, we conclude that the smooth system (7) has two possible equilibria: the trivial equilibrium

E0 = (0, 0, 0) that exists for any positive value of NM (defined by (8)), and the strictly positive one

E
∗
2 =

(
M∗

2 , A
∗
2, U

∗
2

)
defined by (21) or (22) that exists if and only if NM > 1 and θM > 1, that is, if the

condition (18) holds. The following result establishes the stability properties of E0 and E
∗
2.

Proposition 3. • Assume NM < 1. Then E0 is locally asymptotically stable (LAS).

• Assume NM > 1 and θM > 1 meaning that (18) holds. Then E
∗
2 is LAS and E0 is unstable; however,

there always exists a trajectory converging to E0 meaning that E0 is not a repeller.

Proof. See Appendix A, page 36. �

3.3 Stability appraisal for the PWS system (1)

First, we note that E0 ∈ Ps. Let us now determine the position of E∗
1 and E

∗
2 in R

3
+ with respect to the

switching plane Ps. Clearly, E∗
1 ∈ Ps if and only if γM∗

1 = A∗
1, that is,

γr
δ

ϑ

1

σ
lnNF = (1 − r)

µ

ϑ

δ + η

(δ + η + ν)

1

σ
lnNF or γrδ = (1− r)µ

δ + η

(δ + η + ν)
.

13
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Figure 3: Regular and virtual equilibria of the PWS system (3)-(5) according to the values of NF and
NM

By multiplying both sides of the last relationship by
ρν

µδ(δ + η)
> 0 we arrive to

γrρν

µ(δ + η)
=

(1− r)ρν

δ(δ + η + ν)
⇔ NM = NF .

Thus, E∗
1 ∈ Ps if and only if NM = NF > 1. Furthermore, it is easy to deduce that

E
∗
1 ∈ Ma ⇔ NM > NF > 1 and E

∗
1 ∈ Ms ⇔ NM < NF , NF > 1.

The above expressions imply that E
∗
1 is a regular equilibrium of the original PWS system (1) when

NM > NF > 1, and E
∗
1 is a virtual equilibrium of (1) when NM < NF and NF > 1.

On the other hand, E∗
2 ∈ Ps if and only if γM∗

2 = A∗
2, that is,

γ(δ + η)

γνθM + η + δ

1

σ
lnNM =

νγ
(
θM − 1

)

γνθM + η + δ

1

σ
lnNM or δ + η + ν =

ν(1− r)µ(δ + η)

γrδν
.

By multiplying both sides of the last relationship by
γrρν

µ(δ + η)(δ + η + ν)
> 0 we arrive to

γrρν

µ(δ + η)
=

(1− r)ρν

δ(δ + η + ν)
⇔ NM = NF .

Thus, E∗
2 ∈ Ps if and only if NM = NF > 1. Furthermore, it is easy to deduce that

14



E
∗
2 ∈ Ms ⇔ NF > NM > 1 and E

∗
2 ∈ Ma ⇔ NM > NF , NM > 1.

The above expressions imply that E∗
2 is a regular equilibrium of the original PWS system (1) when NF >

NM > 1, and E
∗
2 is a virtual equilibrium of (1) when NM > NF and NM > 1. Figure 3 schematically

displays the regular and virtual equilibria the PWS system (3)-(5) may possess according to the values

of the basic offspring numbers NF and NM .

From the foregoing rationale, we can also conclude that NM = NF > 1 implies that E
∗
1 = E

∗
2 ∈ Ps

meaning that both positive equilibria collide and coalesce on the switching plane Ps. The latter can

be checked by comparing the components of E∗
1 and E

∗
2 using their forms given by (14) and (22) when

NM = NF > 1.

4 Pest control by pheromone traps

Female psyllids available for mating (class A) emit sex pheromones that attract male insects over a long

distance [18].

Sex pheromone traps offer an alternative to traditional pesticides and can be considered an eco-

friendly component of integrated pest control. First, pheromone traps can be used for monitoring pest

insects to determine whether additional control measures are needed. Second, pheromone traps can be

set up as a lure to perform control of pest populations. In this case, sticky pheromone traps emitting

large quantities of sex pheromones may serve one of the following two purposes or both of them:

1. Attraction and mass trapping of male insects, followed by their direct removal (male killing).

2. Mating disruption for decreasing the fecundity of females (offspring reduction).

The ACP population dynamics model (1) proposed in Section 2 can be adapted to include the two con-

trol actions mentioned above. Let Ap > 0 express the “strength of lure”. Knowing the average amount of

sex pheromones emitted by one female psyllid [21], the external parameterAp can be expressed in terms

of the number of “false” female psyllids available for mating. Then, the total number of male-seeking

females (both natural and false) is expressed by (Ap+A) [3, 6]. Furthermore, a female-seeking male has

the probability
A

Ap +A
of being attracted to a wild (natural) female and the probability

Ap

Ap +A
of being

attracted to the pheromone traps. Let α ∈ [0, 1] denote the capture or killing rate of males attracted

to a pheromone trap. Then, by setting α = 1, it is modeled that all males approaching or entering the

trap are killed, while α = 0 models that none of them will be killed when approaching or entering the

trap. Notably, by setting α = 0 and Ap = 0, the original model (1) can be immediately recovered.
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Figure 4: Flow diagram of the population dynamics of D. citri with pheromone traps (23)

Using two additional parameters (Ap and α) defined above, we can now formulate the modified

version of the model (1) that accounts for mating disruption and male-killing effect induced by the

pheromone traps:





dM

dt
= rρUe−σ(M+A+U) − α

Ap

Ap +A
M − µM

dA

dt
= (1 − r)ρUe−σ(M+A+U) − νmin

{
γM

Ap + A
, 1

}
A+ ηU − δA

dU

dt
= νmin

{
γM

Ap +A
, 1

}
A− ηU − δU

(23a)

(23b)

(23c)

The initial conditions for this model are the same as (2), and Figure 4 provides the flow diagram of

the model (23).

Similarly to the original dynamical system (1), the model (23) is a PWS system that features two

external parameters α ∈ [0, 1] and Ap ≥ 0, one of which directly affects its switching plane

P̃s(Ap) :=
{
(M,A,U) ∈ R

3
+ : γM = A+Ap

}
.

The geometric role of the parameter Ap > 0 is illustrated in Figure 5: for larger values of Ap > 0,

the male-scarcity region becomes more extensive, and the switching plane P̃s(Ap) moves farther away

from the origin.

Existence and uniqueness of a piecewise smooth solution to the system (23) for any nonnegative

initial conditions (2), as well as the nonnegativity and boundedness of the system’s trajectories in R
3
+

can be proved using the arguments presented in the proof of Proposition 1.

To analyze the behavior of solutions of the PWS system (23), we split it, following the approach in [3],

into two smooth systems, each featuring two external parameters. For each smooth system, we propose



Male-abundance

region  ! >  " > 1

 " >  ! > 1

Male-scarcity

region

Figure 5: Changes in the male-scarcity and male-abundance regions induced by Ap > 0

two operational control modes referred to as open-loop and closed-loop control approaches in the sequel.

It is worthwhile to recall here that open-loop control operates based on a predefined sequence of actions.

In contrast, the closed-loop control approach is more adaptive since its actions can respond to changes

in the system behavior.

4.1 Open-loop control approach

In the male abundance region Ma, where it holds γM > A + Ap, the dynamical system (23) takes the

following form:





dM

dt
= rρUe−σ(M+A+U) − α

Ap

Ap +A
M − µM

dA

dt
= (1− r)ρUe−σ(M+A+U) − νA+ ηU − δA

dU

dt
= νA− ηU − δU

(24a)

(24b)

(24c)

and in the male-scarcity region Ms, where it holds γM < A+Ap, the dynamical system (23) becomes:





dM

dt
= rρUe−σ(M+A+U) − α

Ap

Ap +A
M − µM

dA

dt
= (1− r)ρUe−σ(M+A+U) − ν

γM

Ap +A
A+ ηU − δA

dU

dt
= ν

γM

Ap +A
A− ηU − δU

(25a)

(25b)

(25c)

Following the same rationale as in Subsection 3.1, it is straightforward to show that system (24) ad-

mits two equilibria, E0, and E
∗
1,P = (M∗

1,P , A
∗
1,P , U

∗
1,P ), where A∗

1,P is the positive root of the quadratic

17



equation

(
δ + ν + η

δ + η

)(
(1− r)µ + δr

1− r

)
A2+

[(
δr

1− r
+ (µ+ α)

)(
δ + ν + η

δ + η

)
Ap −

µ

σ
lnNF

]
A−(µ+ α)Ap

1

σ
lnNF = 0,

or

(
δ + ν + η

δ + η

)(
ϑ

1− r

)
A2 +

[(
ϑ

1− r
+ α

)(
δ + ν + η

δ + η

)
Ap −

µ

σ
lnNF

]
A− (µ+ α)Ap

1

σ
lnNF = 0.

Notably, the above equation has only one positive real root because its discriminant is positive, the

branches of the corresponding parabola are directed upwards, while its cross with the vertical axis is

negative. By setting ∆ as the discriminant of the above quadratic equation, we deduce

A∗
1,P =

1

2

(
δ + ν + η

δ + η

)(
(1− r)µ + δr

1− r

)
[
µ

σ
lnNF −

(
r

1− r
+ (µ+ α)

)(
δ + ν + η

δ + η

)
Ap +

√
∆

]
,

U∗
1,P =

ν

δ + η
A∗

1,P ,

M∗
1,P =

rρ

µ+ α
Ap

A∗
1,P +Ap

1

NF

ν

δ + η
A∗

1,P .

Note also that M∗
1,P + A∗

1,P + U∗
1,P =

1

σ
lnNF meaning that, in the male abundance case, there is no

impact on the total population. Of course, when Ap = 0, we recover the positive equilibrium E
∗
1 given

by (14) in Subsection 3.1.

Last but not least, following the same methodology as in Appendix A, it is straightforward to show

that for system (24), we have the following result.

Proposition 4. Assume Ap ≥ 0.

• If NF < 1, then E0 is locally asymptotically stable (LAS).

• If NF > 1, then E
∗
1,P is LAS and E0 is unstable.

Let us now focus on system (25). Like in Subsection 3.2, it is straightforward to show that E0 is

still an equilibrium. However, mating disrupting entails the Allee effect when the system parameters

correspond to the male-scarcity case. Namely, E0 may remain locally asymptotically stable as long as a

sufficient amount of pheromones are released and regardless of NF . The latter can be shown via direct

computation of the Jacobian matrix at equilibrium E0. This property is essential because it allows
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the use of a small amount of pheromones to control a non-established population and, from the field

application point of view, to derive a massive and small releases strategy, like in the Sterile Insect

Technique [4]. Notwithstanding, showing the existence of at least one positive equilibrium for system

(25) is a bit more complicated than in Subsection 3.2.

Proposition 5. Assume that Ap ≥ 0 and θM > 1, where θM is defined by (16). There exists a threshold

quantity Acrit
p > 0 such that

• When 0 < Ap < Acrit
p , system (25) admits 2 positive equilibria, E1,p and E2,p.

• When Ap = Acrit
p , system (25) admits only one positive equilibrium E∗,p.

• When Ap > Acrit
p , system (25) has no positive equilibrium.

Proof. See Appendix B, page 42. �

From Proposition 5, when Ap > Acrit
p , we deduce that the only equilibrium is E0, which is always

LAS.

Remark 2. The previous result shows that massive releases of pheromones can be used to suppress

or eradicate the ACP population. However, the emission of pheromones in large quantities is not always

necessary as long as we can estimate the wild population during the intervention. That is why the closed-

loop control approach can help derive some strategies relying on a minimal amount of pheromones.

Subsection 4.2 addresses this issue in more detail.

It is also possible to show that E0 is not only LAS but also GAS (globally asymptotically stable) when

Ap is sufficiently large. Following [3], it is easy to check that the right-hand side of system (25) is not

quasi-monotone because of the term −ν
γM

Ap +A
A. However, it is possible to consider an auxiliary system

that is monotone cooperative and provides an upper-bound for the solution of system (25) by removing

−ν
γM

Ap +A
A and also some exponential terms. The auxiliary system becomes





dM

dt
= rρUe−σM − α

Ap

Ap +A
M − µM

dA

dt
= (1− r)ρU + ηU − δA

dU

dt
= ν

γM

Ap +A
A− ηU − δU.

(26a)

(26b)

(26c)

We can derive the following result.

Theorem 1. (a) System (26) defines a positive dynamical system on R
3
+.
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(b) Equilibrium E0 = 0 of the system (26) is always LAS.

(c) There exists Ãcrit
p > 0 such that

– If Ap > Ãcrit
p , then E0 = 0 is GAS on R

3
+.

– If 0 < Ap < Ãcrit
p , system (26) admits two positive equilibria Ẽ1,p and Ẽ2,p such that Ẽ1,p <

Ẽ2,p. Moreover, the basin of attraction of E0 contains the set
{
X ∈ R

3
+ : E0 ≤ X < Ẽ1,p

}
, and

the basin of attraction of Ẽ2,p contains the set
{
X ∈ R

3
+ : X ≥ Ẽ2,p

}
.

Proof. See Appendix C, page 45 �

Finally, by comparison, any solution of (26) is an upper bound for the solution of (25) with the same

initial point. This implies that the basin of attraction of E0 as an equilibrium of (25) contains the sets

given in Theorem 1 (c). Thus we deduce the following statement.

Theorem 2. Let Ap > 0. Then, the following hold for model (25):

(a) If 0 < Ap < Ãcrit
p , the basin of attraction of E0 contains the set

{
X ∈ R

3
+ : E0 ≤ X < Ẽ1,p

}
.

(b) If Ap > Ãcrit
p , then E0 = 0 is GAS on R

3
+.

Theorem 2 provides the following helpful information from the practical perspective:

• As long as Ap < Ãcrit
p , only an invading or non-established population can be controlled.

• An established population can only be eliminated when Ap > Ãcrit
p .

4.2 Closed-loop control approach

Let us now assume that the total amount of sex pheromones expressed in terms of “false” females is

proportional to the number of natural female psyllids A(t) seeking for mating that is,

Ap = k ×A(t), (27)

where the constant k > 0 defines the “gain” of feedback. Then, in the male-abundance region γM >

A+Ap = (k + 1)A, the dynamical system (23) takes the following form:





dM

dt
= rρUe−σ(M+A+U) − α

k

k + 1
M − µM

dA

dt
= (1− r)ρUe−σ(M+A+U) − νA+ ηU − δA

dU

dt
= νA− ηU − δU

(28a)

(28b)

(28c)
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Alternatively, in the male-scarcity region γM < A + Ap = (k + 1)A, the dynamical system (23)

becomes





dM

dt
= rρUe−σ(M+A+U) − α

k

k + 1
M − µM

dA

dt
= (1− r)ρUe−σ(M+A+U) − γν

k + 1
M + ηU − δA

dU

dt
=

γν

k + 1
M − ηU − δU

(29a)

(29b)

(29c)

Let us now derive, for both systems (28) and (29), the conditions that define either the permanence

or extinction of the ACP population under the feedback (27) and in the presence of male-killing traps.

To do so, we will employ the next-generation approach initially derived for epidemiological systems [29]

and later adapted to more general population dynamics models, see for instance [8, 7]. This approach

consists in determining the spectral radius of the next-generation matrix evaluated in the trivial equi-

librium of the population dynamics model. To construct the next-generation matrix, the right-hand

side of the dynamical system is written in the form

dX

dt
= G(X) := F(X)− V(X),

where the vectorF(X) gathers all terms dealing with the emergence of new individuals, while the vector

V(X) contains the transition and mortality terms. For the systems (28) and (29), the vector F(X) is

same, that is,

F(X) =




rρ Ue−σ(M+A+U)

(1− r)ρ Ue−σ(M+A+U)

0


 , X =



M
A
U


 ,

while V(X) takes different forms:

System (28) ⇒ V(X)=V1(X)=




αk

k + 1
M+µM

(ν+δ)A−ηU

(η+δ)U−νA


, System (29) ⇒ V(X)=V2(X)=




αk

k + 1
M+µM

γν

k + 1
M+δA−ηU

(η+δ)U− γν

k + 1
M



.

Next step is to calculate the Jacobian matrices of F ,Vi, i = 1, 2 and evaluate them in the trivial

equilibrium E0 = (0, 0, 0):

F :=
∂F
∂X

∣∣∣∣
E0

=



0 0 rρ
0 0 (1− r)ρ
0 0 0


 ,
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V1 :=
∂V1

∂X

∣∣∣∣
E0

=




αk

k + 1
+µ 0 0

0 ν+δ −η

0 −ν η+δ


 , V2 :=

∂V2

∂X

∣∣∣∣
E0

=




αk

k + 1
+µ 0 0

γν

k + 1
δ −η

− γν

k + 1
0 η+δ




.

Subsequently, the next-generation matrices of the form FV −1
i , i = 1, 2 can be constructed for the dy-

namical systems (28) and (29), and their respective eigenvalues can be identified. Let us start by con-

structing the next-generation matrix for the system (28):

FV −1
1 =




0 0 rρ

0 0 (1−r)ρ

0 0 0







k+1

k(α+µ)+µ
0 0

0
δ+η

δ(δ+η+ν)

η

δ(δ+η+ν)

0
ν

δ(δ+η+ν)

δ+ν

δ(δ+η+ν)



=




0
rρν

δ(δ+η+ν)

rρ(δ+ν)

δ(δ+η+ν)

0
(1−r)ρν

δ(δ+η+ν)

(1−r)ρ(δ+ν)

δ(δ+η+ν)

0 0 0




.

The next-generation matrix FV −1
1 corresponding to the dynamical system (28) is upper-triangular, and

its eigenvalues are located on the main diagonal. There are two zero eigenvalues (λ1
1 = λ1

3 = 0) and a

positive one that determines the spectral radius of FV −1
1 :

λ1
2 =

(1−r)ρν

δ(δ+η+ν)
= NF > 0.

Thus, the spectral radius of the next-generation matrix FV −1
1 corresponding to the dynamical sys-

tem (28) does not depend on the external parameters k and α. Moreover, the spectral radius of FV −1
1

is precisely the basic offspring number NF related to the female population of psyllids, which was al-

ready derived for the dynamical system (3)-(4) describing the natural ACP dynamics under the male

abundance (cf. formula (8)).

Furthermore, following Subsection 3.1, replacing−µ by −µ+α
k

k + 1
, and using similar computations

to those developed in Appendix A, one can deduce that there exists a strictly positive equilibrium E
∗
1,P ≤

E
∗
1 whose coordinates are

M∗
1,P =

(k + 1)rδ

(k + 1)rδ +
(
αk + (k + 1)µ

)
(1 − r)

1

σ
lnNF

A∗
1,P =

(η + δ)(1− r)

ν + η + δ

αk + (k + 1)µ

(k + 1)rδ +
(
αk + (k + 1)µ

)
(1 − r)

1

σ
lnNF ,

U∗
1,P =

ν(1− r)

ν + η + δ

αk + (k + 1)µ

(k + 1)rδ +
(
αk + (k + 1)µ

)
(1 − r)

1

σ
lnNF

(30a)

(30b)

(30c)

When α = 0 or k = 0, we recover the equilibrium E
∗
1 given by (14). Then, we derive the following result.

Proposition 6. Consider the dynamical system (28).
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• Assume NF < 1. Then E0 is LAS.

• Assume NF > 1. Then E
∗
1,P is LAS and E0 is unstable.

Remark 3. It is interesting to notice that trapping alone is insufficient to suppress the pest population

drastically. When α = 0, releasing a small amount of pheromones has absolutely no impact on the

population.

Let us now construct the next-generation matrix for the system (29):

FV −1
2 =




0 0 rρ

0 0 (1−r)ρ

0 0 0







k+1

k(α+µ)+µ
0 0

− γν

(δ+η)
(
k(α+µ)+µ

) 1

δ

η

δ(δ+η)
γν

(δ+η)
(
k(α+µ)+µ

) 0
1

δ+η



=




rργν

(δ+η)
(
k(α+µ)+µ

) 0
rρ

δ+η

(1−r)ργν

(δ+η)
(
k(α+µ)+µ

) 0
(1−r)ρ

δ+η

0 0 0




The next-generation matrix FV −1
2 corresponding to the dynamical system (29) has only one linearly

independent row (or column), and therefore it possesses only one non-zero eigenvalue:

λ2
1 =

rργν

(δ+η)
(
k(α+µ)+µ

) , λ2
2 = λ2

3 = 0. (31)

Notably, this positive eigenvalue, which defines the spectral radius of the next-generation matrix FV −1
2 ,

depends on the external parameters k and α. On the other hand, let us recall that the spectral radius

of FV −1
2 expresses the mean number of descendants produced by one individual during its lifetime and

defines the basic offspring number for the dynamical system (29), that is,

ÑM (k, α) :=
rργν

(δ+η)
(
k(α+µ)+µ

) .

It is worthwhile to point out that ÑM (k, α) = NM only if k = 0 and α = 0; otherwise, we have

ÑM (k, α) < NM , where NM denotes the basic offspring number corresponding to the dynamical system

(3)-(5) describing the natural ACP dynamics under the male scarcity (cf. formula (8)).

Let us also recall that the fulfillment of condition ÑM (k, α) < 1 would guarantee a local extinction

of the ACP population described by the dynamical system (29). Therefore, one may choose the values

of parameters k > 0 and α ∈ [0, 1] to satisfy this condition, namely

k > k∗(α) =
µ(NM − 1)

α+ µ
, (32)

where k∗(α) is a curve decreasing with respect to α ∈ [0, 1]. Thus, we have established that the feedback

gain k > 0 in (27) should satisfy the condition (32) in order to guarantee a local extinction of the ACP

population.
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Similarly to the male-abundance model, we can show the existence of a positive equilibrium, E∗
2,P ,

for the male-scarcity model (29). Following Subsection 3.2, a straightforward computation leads to

M∗
2,P +A∗

2,P + U∗
2,P =

1

σ
ln ÑM (k, α).

This equality is meaningful only when ÑM (k, α) > 1, that is

k < k∗(α) =
µ(NM − 1)

α+ µ
, (33)

which is exactly the opposite of (32). Further computations show that

A∗
2,P =

(
(1 − r)ρ

δ

(α+ µ)k + µ

µNM

− 1

)
U =

(
θ̃M (k, α) − 1

)
U

exists if and only if θ̃M (k, α) =
(1− r)ρ

δ

1

ÑM (k, α)
> 1. In fact, since θM = θ̃M (0, 0) > 1, and θ̃M (k, α)

being an increasing function of k and α, we deduce that θ̃M (k, α) > 1, for all k ≥ 0, α ∈ [0, 1] satisfying

the condition ÑM (k, α) > 1. Furthermore, the coordinates of E∗
2,P have a form similar to (21) with θM

and NM replaced by θ̃M (k, α) and ÑM (k, α), respectively.

Finally, using the same computations as in Appendix A, we derive the following result.

Proposition 7. Consider the dynamical system (29), and assume NM > 1.

• If k∗(α) < k, then E0 is locally asymptotically stable (LAS).

• If k∗(α) > k and θM > 1, then E
∗
2,P is LAS and E0 is unstable.

Remark 4. The previous result shows that elimination is reachable if the proportion of the released

pheromones is sufficiently large. Indeed, emitting an amount of pheromones proportionally to the number

of A individuals present at each time will avoid having the Allee effect and bistability (exhibited in the

open-loop case, see Subsection 4.1) and also allow that E0 be reachable and LAS even when a gradually

decreasing amount of pheromones is being released.

In the following section, we discuss the interplay between the choice of the strength of lure Ap,

including the feedback gain k, and the male-killing rate α and provide illustrations of the open-loop

and closed-loop approaches using numerical simulations.

5 Numerical simulations and discussion

Using the parameter values from Table 1, we calculate first the basic offspring numbers NM and NF

for the natural dynamics of D. citri (see formulas (8)) described by the PWS dynamical system (3)-(5):
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Figure 6: Open-loop control. Numerical estimates of the critical pheromones amount, Acrit
p , versus α,

the trapping killing rate, such that for all Ap > Acrit
p , the equilibrium E0 = 0 is globally asymptotically

stable (GAS)

NM = 37.4256, NF = 32.2013.

Thus, for the natural ACP dynamics, we have NM > NF > 1 meaning the abundance of males, so the

population of D. citri evolves according to the system (3)-(6).

Let us assume that, at the initial time t = 0, the natural ACP population is close to its steady state

E1 ∈ Ma, that is,

M(0) = 1519 ≈ M∗
1 , A(0) = 1590 ≈ A∗

1, U(0) = 383 ≈ U∗
1 .

In the sequel, we perform numerical simulations of the PWS system (23) with the initial conditions

given above and varying the external parameters Ap and α.

Thanks to Theorem 2 (page 20) formulated for the open-loop control approach and using the formula

derived in Appendix C, we can estimate the critical amount of pheromones,Acrit
p , necessary to guarantee

the convergence towards E0 = 0 for different values of α, the trapping killing rate — see Figure 6. This
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Figure 7: Open-loop control. The total amount of pheromones needed to reach elimination for different

values of Ap,min > 0 such that Ap = Acrit
p +Ap,min.

figure shows a considerable difference betweenα = 0 and α > 0, meaning that pheromones alone are not

enough to control the population. Of course, the duration to enter more or less rapidly in the basin of

attraction of E0 = 0 will depend on the amount of pheromones released. Here, we can use the massive

and small releases strategy developed earlier for the Sterile Insect Technique approach [4].

In Figure 7, we show the total amount of pheromones needed to reach elimination under the open-

loop control approach where Ap is chosen above Acrit
p , i.e., Ap = Acrit

p + Ap,min, for different values of

Ap,min. As expected, the lowerAp,min > 0, the lowest the total pheromones amount, but the intervention

becomes longer. Thus, there is a balance to be found between the amount of pheromones available for

releasing and the duration of the treatment.

Then, Figure 8 shows that combining pheromones and trapping is also essential to lower the time

needed to (nearly) reach elimination. In fact, the lowest time value is t = 535 days even if Ap is very

large and α is close to 1. This is an interesting result because it shows that even if a sufficiently large

value for Ap is available (to have E0 = 0 as a global attractor), using it in vast quantities will not be
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Figure 8: Open-loop control. Minimal time estimates for (nearly) eliminating the ACP population,

initially at equilibrium, with
∥∥(M,A,U)T
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∞

< 10−1, induced by the trapping rate α and the amount
Ap of released pheromones.

helpful. Of course, the larger α, the smaller Ap: this shows that there is a tradeoff between these two

quantities. In any case, it is deduced that releasing the pheromones alone is impractical.

Turning to the closed-loop control approach, Figure 9 presents the plot of the curve k∗(α) (blue dotted

line) that divides the positive quadrant into two regions. The unshaded region below the curve k∗(α)

contains all the values of k and α that guarantee only the suppression of the local ACP population. In

contrast, the shaded region above the curve k∗(α) contains all the values of k and α that guarantee the

elimination of the local ACP population.

From Figure 9, one may deduce that local elimination of the ACP population is possible even if α = 0

(meaning that none of the male insects are killed when approaching or entering the trap). However,

in such a case, the feedback gain k should be substantial (k ≥ 36.43), meaning that a vast amount of

sex pheromone should be emitted (Ap ≥ 36.43A(t), in terms of the “false” females). On the other hand,

Figure 9 also displays that the effect of male-killing rate α on the reduction of the total amount of sex

pheromone needed is more visible for smaller values of α (below 50%) than for its larger values (above

50%). Nonetheless, even the traps with 100% male-killing rate (α = 1) will still need a small feedback

gain of about k = 1 (Ap ≥ A(t), in terms of the “false” females) to reach an eventual local elimination of
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Figure 9: Closed-loop control. The choice of the feedback gain k and male-killing rate α according to
the condition (32)

D. citri.

Figure 10 shows the evolution of the male M and female F = A + U population in the phase plane

(M,F ) for different values of the male-killing rate α. When the feedback gain is below the curve k∗(α)

(here we have chosen k = 2.5), we observe the convergence of the phase trajectories to another positive

equilibrium E
∗
1,P whose coordinates are given by (30). For different values of α, the corresponding E

∗
1,P

are marked by the black points on the left chart of Figure 10. Notably, this equilibrium moves closer to

the origin (E0) as α increases, and the population of males decays faster than that of females.

On the other hand, if the feedback gain is above the curve k∗(α) (here we have chosen k = NM ), we

observe the convergence of the phase trajectories to the trivial equilibrium E0 (see the right chart in

Figure 10). Here, the density of males also decays faster than the density of females.

To compare the closed-loop and open-loop approaches, at least at the beginning of the pheromones

treatment, we show the amount of pheromones needed to start the closed-loop control: see Figure 11

(page 30). Thus, contrasting this figure with Figure 6 (page 25), it is straightforward to see that the

closed-loop control is very costly compared to the open-loop control. Indeed, the closed-loop control

requires almost 9 times more pheromones than the open-loop control, regardless of the values for α.

Notably, the result presented in Figure 11 is somewhat idealistic because it corresponds to “contin-

uous estimations” of the population size of female psyllids A(t), available for mating, assuming that

for all t ≥ 0 the size of A(t) can be accurately assessed. In practice, however, estimating the size of

a local insect population can be a challenging and expensive task. Therefore, continuous population

size estimations are unfeasible, and most Integrated Pest Management (IPM) programs conduct such
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elimination (k > k∗(α), right chart)

assessments with different frequencies but not more often than every two weeks.

Using the closed-loop control approach, we have assessed the total amount of pheromones Ap (also

for different values of the male-killing rate α) needed to reach elimination if the size of female psyllids

available for mating, A(t), is estimated every 2n weeks, where n = 1, 2, . . . , 6. The underlying results

are displayed in Figure 12, where Ap =
(
k∗(α) + 1

)
× A(t2nj ), and t2nj with j = 1, 2, ..., denote the times

when the wild population is estimated.

According to definition (27), closed-loop control becomes useful once the population is or has become

small enough, meaning that Ap = kA(t) is not too large. This rationale leads us to consider a mixed-type

control and choose Ap, for instance, in the following way:

Ap = min
{
Acrit

p (α) +Ap,min;
(
k∗(α) + 1

)
A(t∗)

}

with Ap,min = 500, for a given α, where A(t∗) is an estimated value of A at a given time t∗. Like in the

closed-loop case, we estimate the population size every 2n weeks, where n = 1, 2, . . . , 6. Thus we choose

Ap(t
2n
j ) = min

{
Acrit

p (α) + 500;
(
k∗(α) + 1

)
A(t2nj )

}
, j = 1, 2, ...

and n = 1, 2, .., 6.

To illustrate this approach, we provide in Figure 13 (page 32) the total amount of pheromones, for

different values of α, related to the estimates of the population size carried out every 2n weeks, where

n = 1, 2, ..., 6. As expected, the mixed-type control is functional when α is large enough (compare with

Figure 7). Last, the smaller is n, the less is the total amount of pheromones for any α. However, we
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must be aware that estimating the population size in the field can be very difficult. Altogether, the

mixed-type control provides the best result.

6 Conclusions

Citrus fruits are among the most important crops worldwide, and many citrus cultures worldwide face

the threat of Huanglongbing (HLB) or citrus greening disease [10]. This disease is mainly transmitted

by the Asian citrus psyllid, Diaphorina citri, an invasive psyllid species that colonizes citrus orchards

in different parts of the world [1]. Controlling this pest population is a challenging task, and Integrated

Pest Management (IPM) programs are seeking environmentally friendly strategies that may replace the

traditional ones based on pesticides. In this context, using pheromone traps seems rather promising

because the attraction and direct removal of male insects induce mating disruption, thus reducing

future offspring and suppressing the overall pest population.
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Figure 12: Closed-loop control. Total amount of pheromones needed to reach elimination, when the

population is estimated every 2n weeks, where n = 1, 2..., 6.

In this paper, we proposed and analyzed a model formulated as a piecewise smooth ODE system that

describes the natural population dynamics of Asian citrus psyllids. This model was further amended

with the external control actions, expressed by the parameters Ap (the strength of lure) and α (traps

male-killing rate), to mimic the introduction of sex pheromone traps that enforce mating disruption

and may lead either to the suppression or local extinction of the ACP population. From the theoretical

standpoint, the choice of external parameters Ap and α, as well as their interplay, was conducted based

on two operational control modes, the open-loop control approach (operating on a predefined sequence

of actions) and the closed-loop control approach (whose actions can respond to changes in the system

behavior). For both techniques, we have identified a critical curve or mapping, that is, Ap as a function

of α, that plays the role of a threshold, below which only the ACP population suppression is achievable

and above which the local pest extinction can be attained. These theoretical findings also allowed

us to perform qualitative in silico testings of the model and estimate not only the total amount of sex

pheromones needed for the local elimination of the ACP population but also the minimum time to reach
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Figure 13: Mixed-type control. Total amount of pheromones needed to reach elimination under an

“open-loop – closed-loop” control approach, when the population is estimated every 2n weeks, where
n = 1, 2..., 6.

a local extinction of this pest.

Summarizing the outcomes of the present work, we would like to highlight the following insight

regarding the control of D. citri using the pheromone traps:

• Pheromone traps are a reliable alternative to pesticide use because they can suppress and even

eliminate the ACP pest population while producing no harm to the crop.

• Releasing the pheromones alone without male-killing (i.e., with α = 0) may also be employed to

reach the final goal of pest population suppression or elimination. Nonetheless, it would require

emitting a massive quantity of pheromones, while using male-killing traps would considerably

reduce the pheromone quantity needed for controlling the pest population.

• Increasing the male-killing rate α of the traps may reduce the overall costs (i.e., the total amount

of pheromones needed for intervention) and the time to reach elimination.
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• Open-loop control strategies show better results when applied to established pest populations

bearing large sizes. In contrast, closed-loop control strategies perform better for emerging popu-

lations or when the population is small. Thus, combining these two control approaches renders

the best overall results and requires a smaller amount of pheromones.

It is worthwhile to point out that the model proposed in this paper lays solid grounds for combining

the pheromone traps with other control intervention measures as a part of the IPM programs. The

latter can be tested to enhance the control efficiency against Huanglongbing, using a limited amount

of pheromones, possibly by designing the optimal control strategies. Furthermore, extensions of the

present work may include the transmission of infection caused by Candidatus Liberibacter spp. and

lead to the formulation and study of epidemiological models to reduce the risk of HLB spreading and

its damage to citrus crops.

Finally, we hope that the outcomes of this study will provide valuable insights for developing alter-

natives to pesticides and also shed some light on the practical implementation of ecologically friendly

pest management conducted in field trials.
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Appendix A: proof of Propositions 2 and 3

Proof of Proposition 2. First, we compute the Jacobian related to system (6) with Φ1 defined by (4):

J(X) =



J11 J12 J13
J21 J22 J23
J31 J32 J33




=




−µ−rρσUe−σ(M+A+U) −rρσUe−σ(M+A+U) rρ(1−σU)e−σ(M+A+U)

−(1−r)ρσUe−σ(M+A+U) −(ν+δ)−(1−r)ρσUe−σ(M+A+U) η+(1−r)ρ(1−σU)e−σ(M+A+U)

0 ν −(η+δ)




,
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where X = (M,A,U). Thus, it is easy to compute that

J(E0) =




−µ 0 rρ
0 − (ν + δ) η + (1− r) ρ
0 ν − (η + δ)


 ,

and to show that the characteristic polynomial is given by

P 0
1 (λ) = −(µ+ λ)

[
λ2 + (η + ν + 2δ)λ+ (η + δ)(ν + δ)−

(
η + (1− r)ρ

)
ν
]

= −(µ+ λ)
[
λ2 + (ν + η + 2δ)λ+ δ(ν + η + δ)− (1 − r)ρν

]

= −(µ+ λ)
[
λ2 + (ν + η + 2δ)λ+ δ(ν + η + δ)

(
1−NF

)]

When NF < 1, this polynomial has three roots with negative real parts meaning that E0 is LAS. Al-

ternatively, p1(λ) has one root with positive real part when NF > 1 meaning that E0 is a saddle point

(not a repeller). In effect, a trajectory engendered by the initial condition M(0) > 0, A(0) = 0, U(0) = 0

converges to E0 even if NF > 1.

Let us now show that E∗
1 is LAS when NF > 1. The Jacobian evaluated at E∗

1 is

J
(
E

∗
1

)
=




−µ− rρ

NF

σU∗
1 − rρ

NF

σU∗
1

rρ

NF

(
1− σU∗

1

)

− (1− r)ρ

NF

σU∗
1 −(ν + δ)− (1− r)ρ

NF

σU∗
1 η +

(1− r)ρ

NF

(
1− σU∗

1

)

0 ν −(η + δ)




(A-1)

The characteristic polynomial of J
(
E

∗
1

)
has the form

P ∗
1 (λ) = λ3 + a1λ

2 + a2λ+ a3,

where a1 = −Tr J
(
E

∗
1

)
, a3 = − detJ

(
E

∗
1

)
, and

a2 = det

∣∣∣∣
J11 J12
J21 J22

∣∣∣∣+ det

∣∣∣∣
J11 J13
J31 J33

∣∣∣∣+ det

∣∣∣∣
J22 J23
J32 J33

∣∣∣∣ := ∆
(1)
1 +∆

(1)
2 +∆

(1)
3

(A-2)

with Jij , i, j = 1, 2, 3 denoting the elements of (A-1). According to Routh-Hurwitz criterion (see, e.g.,

[23]), all roots of P ∗
1 have negative real parts if and only if the following conditions are satisfied:

a1 > 0, a3 > 0, and a1a2 − a3 > 0. (A-3)

Let us now check these conditions. First we note that

Tr J
(
E

∗
1

)
= −µ− rρ

NF

σU∗
1 − (ν + δ)− (1− r)ρ

NF

σU∗
1 − (η + δ) < 0,

and thus we have
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a1 = −Tr J
(
E

∗
1

)
= µ+ ν + η + 2δ +

ρ

NF

σU∗
1 > 0. (A-4)

To compute detJ
(
E

∗
1

)
, we observe that

det J
(
E

∗
1

)
= −ν∆

(1)
32 − (η + δ)∆

(1)
33 ,

where ∆
(1)
32 ,∆

(1)
33 are minors of J

(
E

∗
1

)
obtained by elimination of the third row and either second or third

column from (A-1). Effectively, we have

∆
(1)
32 = −

(
µ+

rρ

NF

σU∗
1

)
×
[
η +

(1− r)ρ

NF

(
1− σU∗

1

)]
+

(1− r)ρ

NF

σU∗
1 × rρ

NF

(
1− σU∗

1

)

= µ
(1 − r)ρ

NF

σU∗
1 − η

rρ

NF

σU∗
1 − µ

(1− r)ρ

NF

− µη,

∆
(1)
33 =

(
µ+

rρ

NF

σU∗
1

)
×
[
(ν + δ) +

(1− r)ρ

NF

σU∗
1

]
− rρ

NF

σU∗
1 × (1− r)ρ

NF

σU∗
1

= µ
(1 − r)ρ

NF

σU∗
1 + (ν + δ)

rρ

NF

σU∗
1 + µ(ν + δ).

Then using the relationship

(η + δ)(ν + δ)− ην = δ(δ + η + ν) =
(1 − r)ρν

NF

, (A-5)

we obtain

detJ
(
E

∗
1

)
= −ν

[
µ
(1− r)ρ

NF

σU∗
1 − η

rρ

NF

σU∗
1 − µ

(1 − r)ρ

NF

− µη

]

− (η + δ)

[
µ
(1 − r)ρ

NF

σU∗
1 + (ν + δ)

rρ

NF

σU∗
1 + µ(ν + δ)

]

= −µ(ν + η + δ)
(1− r)ρ

NF

σU∗
1 − δ(ν + η + δ)

rρ

NF

σU∗
1 + µ

(1− r)ρν

NF

− µδ(ν + η + δ)

= −
[
(1 − r)µ+ rδ

]
(ν + η + δ)

ρ

NF

σU∗
1 = −(ν + η + δ)

ρϑ

NF

σU∗
1 < 0.

Thus, we have

a3 = − detJ
(
E

∗
1

)
=

ρϑ

NF

(ν + η + δ)σU∗
1 > 0. (A-6)

To compute the coefficient a2, we evaluate ∆
(1)
i , i = 1, 2, 3 that appear in (A-2):
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∆
(1)
1 =

(
µ+

rρ

NF

σU∗
1

)
×
(
ν + δ +

(1− r)ρ

NF

σU∗
1

)
− rρ

NF

σU∗
1 × (1− r)ρ

NF

σU∗
1

= µ(ν + δ) + µ
(1− r)ρ

NF

σU∗
1 + (ν + δ)

rρ

NF

σU∗
1 ,

∆
(1)
2 = (η + δ)

(
µ+

rρ

NF

σU∗
1

)
,

∆
(1)
3 = (η + δ)

(
ν + δ +

(1− r)ρ

NF

σU∗
1

)
− ν

(
η +

(1− r)ρ

NF

(1 − σU∗
1 )

)

Then according to (A-2) and using (A-5) we have

a2 = µ(ν + δ) + µ(η + δ) + (η + δ)(ν + δ)− ην − (1− r)ρν

NF

+
ρ

NF

σU∗
1

[
(1− r)µ + r(ν + δ) + r(η + δ) + (1− r)(η + δ) + (1− r)ν

]

= µ(ν + δ) + µ(η + δ) + (ϑ+ ν + η + δ)
ρ

NF

σU∗
1 > 0.

Our goal now is to show that a1a2 − a3 > 0. Before proceeding, we rewrite a1 and a2 in terms of a3

using the formula (A-6):

a1 = (ν + η + δ) + (µ+ δ) +
a3

ϑ(ν + η + δ)
, a2 = µ(ν + η + 2δ) +

a3
ν + η + δ

+
a3
ϑ
,

so that

a1a2 − a3 =

(
(ν + η + δ) + (µ+ δ) +

a3
ϑ(ν + η + δ)

)(
µ(ν + η + 2δ) +

a3
ϑ

+
a3

ν + η + δ

)
− a3

= (ν + η + δ)
(
µ(ν + η + 2δ) +

a3
ϑ

)
+ a3

+

(
(µ+ δ) +

a3
ϑ(ν + η + δ)

)(
µ(ν + η + 2δ) +

a3
ϑ

+
a3

ν + η + δ

)
− a3

= (ν + η + δ)
(
µ(ν + η + 2δ) +

a3
ϑ

)

+

(
(µ+ δ) +

a3
ϑ(ν + η + δ)

)(
µ(ν + η + 2δ) +

a3
ϑ

+
a3

ν + η + δ

)
> 0.

Finally, the conditions (A-3) are satisfied and we conclude that E∗
1 is LAS whenever NF > 1.

Proof of Proposition 3. The Jacobian related to the system (7) with Φ2 defined by (5) is given by

J(X) =




−µ−rρσUe−σ(A+M+U) −rρσUe−σ(A+M+U) rρ(1−σU)e−σ(A+M+U)

−γν−(1−r)ρσUe−σ(A+M+U) −δ−(1− r)ρσUeσ−(A+M+U) η+(1−r)ρ(1−σU)e−σ(A+M+U)

γν 0 −(η+δ)




where X = (M,A,U). Thus, it is easy to show that
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J(E0) =




−µ 0 rρ
−γν −δ η + (1 − r)ρ
γν 0 −δ − η


 ,

and to show that the characteristic polynomial is given by

P 0
2 (λ) = −(δ+ λ)

[
λ2 + (δ + η+ µ)λ+ (δ + η)µ− γνρr

]
= −(δ+ λ)

[
λ2 + (δ + η + µ)λ+ (δ + η)µ

(
1−NM

)]

When NM < 1, this polynomial has three roots with negative real parts meaning that E0 is LAS.

Alternatively, p2(λ) has one root with positive real part when NM > 1 meaning that E0 is a saddle point

(not a repeller). In effect, a trajectory engendered by the initial condition M(0) > 0, A(0) = 0, U(0) = 0

converges to E0 even if NM > 1.

Let us now show that E∗
2 is LAS when NM > 1. We recall here that U∗

2 =
γν

η + δ
M∗

2 , and thus we

have

J
(
E

∗
2

)
=




−µ
(
1 + σM∗

2

)
−µσM∗

2

rρ

NM

− µσM∗
2

−
(
γν +

(1− r)

r
µσM∗

2

)
−
(
δ +

(1 − r)

r
µσM∗

2

)
η +

(1− r)ρ

NM

− 1− r

r
µσM∗

2

γν 0 −(η + δ)




(A-7)

The characteristic polynomial of J
(
E

∗
2

)
has the form

P ∗
2 (λ) = λ3 + b1λ

2 + b2λ+ b3,

where b1 = −Tr J
(
E

∗
2

)
, b3 = − detJ

(
E

∗
2

)
, and

b2 = det

∣∣∣∣
J11 J12
J21 J22

∣∣∣∣+ det

∣∣∣∣
J11 J13
J31 J33

∣∣∣∣+ det

∣∣∣∣
J22 J23
J32 J33

∣∣∣∣ := ∆
(2)
1 +∆

(2)
2 +∆

(2)
3

(A-8)

with Jij , i, j = 1, 2, 3 denoting the elements of (A-7). According to Routh-Hurwitz criterion (see, e.g.,

[23]), all roots of P ∗
2 have negative real parts if and only if the following conditions are satisfied:

b1 > 0, b3 > 0, and b1b2 − b3 > 0. (A-9)

Let us now check these conditions. First we note that

Tr J
(
E

∗
2

)
= −2δ − η − µ

(
1 + σM∗

2

)
− (1− r)

r
µσM∗

2 < 0,

and thus we have
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b1 = −Tr J
(
E

∗
2

)
= µ+ η + 2δ +

µ

r
σM∗

2 > 0.

To compute detJ
(
E

∗
2

)
, we observe that

detJ
(
E

∗
2

)
= γν∆

(2)
31 − (η + δ)∆

(2)
33 ,

where ∆
(2)
31 ,∆

(2)
33 are minors of J

(
E

∗
2

)
obtained by elimination of the third row and either first or third

column from (A-7). Effectively, we have

∆
(2)
31 = −µσM∗

2

(
η +

(1− r)ρ

NM

− 1− r

r
µσM∗

2

)
+

(
rρ

NM

− µσM∗
2

)(
δ +

(1− r)

r
µσM∗

2

)

= −ηµσM∗
2 − δµσM∗

2 + δ
rρ

NM

= −(η + δ)µσM∗
2 +

µδ(η + δ)

γν
= µ(η + δ)

[
δ

γν
− σM∗

2

]
,

∆
(2)
33 = µ

(
1 + σM∗

2

)(
δ +

(1− r)

r
µσM∗

2

)
− µσM∗

2

(
γν +

(1− r)

r
µσM∗

2

)

= δµ+

(
δ + µ

(1− r)

r

)
µσM∗

2 − γνµσM∗
2 = δµ+

ϑµ

r
σM∗

2 − γνµσM∗
2 ,

and therefore

det J
(
E

∗
2

)
= γνµ(η + δ)

[
δ

γν
− σM∗

2

]
− (η + δ)

[
δµ+

ϑµ

r
σM∗

2 − γνµσM∗
2

]

= (η + δ)

[
δµ− γνµσM∗

2 − δµ− ϑ

r
µσM∗

2 + γνµσM∗
2

]
= −(η + δ)

ϑ

r
µσM∗

2 < 0

Thus we have

b3 = − detJ
(
E

∗
2

)
= (η + δ)

ϑ

r
µσM∗

2 > 0 (A-10)

To compute the coefficient b2, we evaluate ∆
(2)
i , i = 1, 2, 3 that appear in (A-8):

∆
(2)
1 = ∆

(2)
33 = δµ+

ϑµ

r
σM∗

2 − γνµσM∗
2 ,

∆
(2)
2 = (η + δ)µ

(
1 + σM∗

2

)
− γν

(
rρ

NM

− µσM∗
2

)
= (η + δ)µ

(
1 + σM∗

2

)
− µ(η + δ) + γνµσM∗

2

= (η + δ)µσM∗
2 + γνµσM∗

2 ,

∆
(2)
3 = (η + δ)

(
δ +

(1− r)

r
µσM∗

2

)
.

Then using (A-8), we obtain

b2 = δµ+
ϑµ

r
σM∗

2 + (η + δ)µσM∗
2 + δ(η + δ) + (η + δ)

(1− r)

r
µσM∗

2

= δ(µ+ η + δ) + (η + δ)
1

r
µσM∗

2 +
ϑ

r
µσM∗

2 = δ(µ+ η + δ) +
η + δ + ϑ

r
µσM∗

2 > 0.
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Our goal now is to show that b1b2 − b3 > 0. Before proceeding, we rewrite b1 and b2 in terms of b3

using the formula (A-10):

b1 = (µ+ δ) + (η + δ) +
b3

ϑ(η + δ)
, b2 = δ(µ+ η + δ) +

b3
ϑ

+
b3

η + δ
,

so that

b1b2 − b3 =

(
(µ+ δ) +

b3
ϑ(η + δ)

+ (η + δ)

)(
δ(µ+ η + δ) +

b3
ϑ

+
b3

η + δ

)
− b3

= (η + δ)

(
δ(µ+ η + δ) +

b3
ϑ

)
+ b3 +

(
(µ+ δ) +

b3
ϑ(η + δ)

)(
δ(µ+ η + δ) +

b3
ϑ

+
b3

η + δ

)
− b3

= (η + δ)

(
δ(µ+ η + δ) +

b3
ϑ

)
+

(
(µ+ δ) +

b3
ϑ(η + δ)

)(
δ(µ+ η + δ) +

b3
ϑ

+
b3

η + δ

)
> 0.

Finally, the conditions (A-9) are satisfied and we conclude that E∗
2 is LAS whenever NM > 1.

Appendix B: proof of Proposition 5

We have to solve the following algebraic system





rρUe−σ(M+A+U) − α
Ap

A+Ap

M − µM = 0,

(1− r)ρUe−σ(M+A+U) − γν
A

A+Ap

M + ηU − δA = 0,

γν
A

A+Ap

M − ηU − δU = 0.

(B-1a)

(B-1b)

(B-1c)

From Eqs. (B-1a) and (B-1c), we obtain first

ρUe−σ(M+A+U) =
1

r

(
α

Ap

A+Ap

+ µ

)
M, U =

γν

η + δ

A

A+Ap

M (B-2)

and then using (B-1b), we arrive to

(
1− r

r

(
α

Ap

A+Ap

+ µ

)
− γν

A

A+Ap

+ η
γν

η + δ

A

A+Ap

)
M = δA.

The above expression can also be written as

(
(1− r) (α+ µ)Ap +

(
(1− r)µ− δγνr

η + δ

)
A

)
M = rδ

(
A+Ap

)
A.

Further, using the quantity θM , defined by (16), we arrive to

(
(1− r) (α+ µ)Ap +

δγνr

η + δ

(
θM − 1

)
A

)
M = rδ

(
A+Ap

)
A.
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Here, when θM > 1, we have

M =
rδ
(
A+Ap

)

(1− r) (α+ µ)Ap +
γrνδ

η + δ

(
θM − 1

)
A

A,

or

M =
η + δ

γν

A+Ap

(η + δ)(1− r)(α + µ)

γrνδ
+
(
θM − 1

)
A

A

and

U =
γν

η + δ

A

A+Ap

M =
1

(η + δ) (1− r) (α+ µ)

γrνδ
Ap +

(
θM − 1

)
A

A2.

Thus, M and U are now expressed in terms of A and the external parameters α,Ap. By plugging

the above expressions for M and U into the left-hand side formula of (B-2), we obtain the following

relationship

Ae−σ(M+A+U) =
1

ρr

(
(α+ µ)Ap + µA

)η + δ

γν
=

1

µNM

(
(α+ µ)Ap + µA

)
.

Finally, replacing M and U in the exponential term leads to the following equation to solve

NMAf(A;Ap)−
α+ µ

µ
Ap = A, (B-3)

where

f(A;Ap) := exp


−σ


1 +

δrAp + δr

(
γν

η + δ
+ 1

)
A

(1− r) (α+ µ)Ap +
δrγν

η + δ

(
θM − 1

)
A


A


 ,

which is a function of A also depending on the external parameter Ap ≥ 0. Notably, when Ap = 0, we

recover f(A; 0) =
1

NM

. For the fixed values of α and Ap, let us denote the left-hand side of the equation

(B-3) by the function

ϕ(A;Ap) := NMAf(A;Ap)−
α+ µ

µ
Ap

that fulfills the condition ϕ(0;Ap) < 0 whenever Ap > 0. When A > 0, function ϕ(A;Ap) increases

first and then decreases. Therefore, depending on the value Ap > 0, there may exist two, one, or no

solutions to equation (B-3) whose right-hand side is a straight line, see Figure B.1. As shown in Figure
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Figure B.1: Possible intersections between ϕ(A;Ap) (red color) and A (blue color) for different values of
Ap

B.1, equation (B-3) has two solutions when Ap is relatively small. Then, by gradually increasing the

value of Ap, one may get only one solution of (B-3). In such a case, the corresponding value of Ap will

render the threshold value Ap > Acrit
p . Namely, equation (B-3) has no solution when Ap > Acrit

p and no

positive equilibria of the system (25) can exist for Ap > Acrit
p .

Thus, to identify the threshold value Acrit
p together with the underlying unique solution to equation

(B-3), one must resolve the system of two equations:

ϕ(A;Ap) = A,
∂ϕ(A;Ap)

∂A
= 1. (B-4)

Even though no analytical formula can be obtained for Acrit
p , its underlying value can be adequately

approximated by solving the system (B-4) numerically.
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Appendix C: proof of Theorem 1

The formal proofs of items (a) and (b) are similar to previous explanations, so we leave them to the

readers. Let us focus on item (c). Setting the first and third components of (26) equal to zero leads to

rρU =

(
α

Ap

A+Ap

+ µ

)
MeσM ,

and, assuming M > 0,

rργνA− (η + δ)
(
(α+ µ)Ap + µA

)
eσM = 0,

that is

(
NM − eσM

)
A =

α+ µ

µ
Ape

σM ⇒ A =
(α+ µ)

µ
(
NM − eσM

)Ape
σM .

Setting the second component of (26) to zero and replacing A and U provides

rρδ
α + µ

µ
Ap =

(
NM − eσM

)(
(1− r)ρ+ η

)(
α

Ap

A+Ap

+ µ

)
M

=
(
NM − eσM

)(
(1− r)ρ+ η

)

α

Ap

α+ µ

µ
(
NM − eσM

)ApeσM +Ap

+ µ


M,

=
(
NM − eσM

)(
(1− r)ρ+ η

)
µ

(α+ µ)NM

αeσM + µNM

M.

From the above relationships, we have the following equation

(
(1− r)ρ + η

)
µNMM

(
NM − eσM

)
= rρδAp

(
NM +

α

µ
eσM

)
. (C-1)

which can be viewed as g1(M) = g2(M ;Ap, α), where

g(M) :=
(
(1 − r)ρ+ η

)
µNMM

(
NM − eσM

)
and h(M ;Ap, α) := rρδAp

(
NM +

α

µ
eσM

)
.

Here, the function g(M) is increasing for small values of M and then decreasing as M becomes

larger, so there exists M̂ > 0 where g1 attains a maximum g
(
M̂

)
. On the other hand, the function

h(M ;Ap, α) is increasing for all Ap > 0 and α > 0 (or constant when α = 0). Thus, for any fixed α ∈ [0, 1]

there exists a quantity Ãcrit
p > 0 such that Eq. (C-1) has: (a) no positive roots when Ap > Ãcrit

p ; (b)

two positive roots M∗
1,p and M∗

2,p when Ap < Ãcrit
p . Notably, when Ap = Ãcrit

p , the two positive roots

collide (M∗
1,p = M∗

2,p) meaning that the auxiliary system (26) undergoes a pitchfork bifurcation. Figure
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C.1 illustrates possible intersections between g(M) (blue-colored curve) and g(M ;Ap, α) (red-colored

curves) for different values of Ap. In the sequel, we address items (a) and (b) mentioned above in more

detail.

(a) Assume Ap > Ãcrit
p and let q ∈ R+, with q ≥ q∗ :=

µ

rρ

NM

σ
lnNM . We denote the right-hand side of

the auxiliary system (26) by

H(X) :=




rρUe−σM − α
Ap

Ap +A
M − µM

(1 − r)ρU + ηU − δA

ν
γM

Ap +A
A− ηU − δU




,

where X = (M,A,U), and define

Xq :=




rρ

µ

1

NM

q

2
(1− r)ρ+ η

δ
q

q




.

It is not difficult to check that H
(
E0

)
= E0 and H

(
Xq

)
≤ E0. Then, according to Anguelov et

al. (see Theorem 7 in [3]), we deduce that E0 is globally asymptotically stable (GAS) on
[
E0,Xq

]
.

Therefore, E0 is GAS on Ω and also on R
3
+ because Ω is an absorbing set (see Proposition 1).

(b) Assume Ap < Ãcrit
p . Let Ẽ∗

1,p and Ẽ
∗
2,p be two equilibria such that Ẽ∗

i,p =
(
M∗

i,p, A
∗
i,p, U

∗
i,p

)
, i = 1, 2,

whereM∗
1,p and M∗

2,p are positive roots of (C-1) that fulfill M∗
1,p < M∗

2,p (in an “element-by-element”

sense). Since A and U are increasing functions of M , we deduce that E0 < Ẽ
∗
1,p < Ẽ

∗
2,p. As it holds

that H
(
Xq

)
≤ E0 = H

(
Ẽ

∗
2,p

)
, by applying again Theorem 7 from [3], we conclude that Ẽ∗

2,p is GAS

on
[
Ẽ

∗
2,p,Xq

]
, that is, Ẽ∗

2,p is GAS on
⋃

q≥q∗

[
Ẽ

∗
2,p,Xq

]
=

{
X ∈ R

3
+ : X ≥ Ẽ

∗
2,p

}
.

Finally, we deduce a similar result for E0 < Ẽ
∗
1,p, using Theorem 8 from [3], namely, all solutions

initiated in
{
X ∈ R

3
+ : X < Ẽ

∗
1,p

}
converge to E0.
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Figure C.1: Possible intersections between {g(M) (blue color) and h(M ;Ap, α) (red color) for different

values of Ap
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