
Multimodal Representations for Teacher-Guided
Compositional Visual Reasoning

Wafa Aissa, Marin Ferecatu, and Michel Crucianu

Cedric laboratory, Conservatoire National des Arts et Metiers, Paris, France
firstName.lastName@lecnam.net

Abstract. Neural Module Networks (NMN) are a compelling method
for visual question answering, enabling the translation of a question into
a program consisting of a series of reasoning sub-tasks that are sequen-
tially executed on the image to produce an answer. NMNs provide en-
hanced explainability compared to integrated models, allowing for a bet-
ter understanding of the underlying reasoning process. To improve the
effectiveness of NMNs we propose to exploit features obtained by a large-
scale cross-modal encoder. Also, the current training approach of NMNs
relies on the propagation of module outputs to subsequent modules, lead-
ing to the accumulation of prediction errors and the generation of false
answers. To mitigate this, we introduce an NMN learning strategy in-
volving scheduled teacher guidance. Initially, the model is fully guided
by the ground-truth intermediate outputs, but gradually transitions to
an autonomous behavior as training progresses. This reduces error accu-
mulation, thus improving training efficiency and final performance. We
demonstrate that by incorporating cross-modal features and employing
more effective training techniques for NMN, we achieve a favorable bal-
ance between performance and transparency in the reasoning process.
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1 Introduction

Visual reasoning, the ability to reason about the visual world, encompasses var-
ious canonical sub-tasks such as object and attribute categorization, object and
relationship detection, comparison, and spatial reasoning. Solving this complex
task requires robust computational models that can effectively capture visual
cues and perform intricate reasoning operations. In recent years, deep learn-
ing approaches have gained prominence in tackling visual reasoning challenges,
with the emergence of foundation models playing a key role in advancing the
field. Among the deep learning techniques employed for visual reasoning tasks,
integrated attention networks, such as transformers [16], have demonstrated re-
markable success in natural language processing and computer vision applica-
tions, including image classification and object detection. These models leverage
attention mechanisms to capture long-range dependencies and contextual re-
lationships for language and vision inputs. However, despite their impressive



performance, reasoning solely based on integrated attention networks may be
susceptible to taking “shortcuts” and relying heavily on dataset bias. There is
an increasing need to address the issue of interpretability and explainability, en-
abling reaserchers to understand the reasoning behind the model’s predictions.
By leveraging transformer models as a backbone for VQA systems to encode
language and visual information, we can adopt modular approaches that enable
an improved understanding and transparency in the visual reasoning process.
Modular approaches, such as neural module networks (NMNs), break down the
problem (question) into smaller sub-tasks which can be independently solved
and then combined to produce the final answer. The modular design confers the
advantage of greater transparency and interpretability, as the model explicitly
represents the various sub-tasks and their interrelationships.

In this paper we aim to bridge the gap between accuracy and explainabil-
ity in visual question answering systems by providing insights into the reason-
ing process. To accomplish this, we propose an enhanced training approach for
our modular network using a teacher forcing training technique [17], where the
ground truth output of an intermediate module is used to guide the learning
process of subsequent modules during training. By employing this approach, our
module gains the ability to learn its reasoning sub-task both in a stand-alone
and end-to-end manners leading to improved training efficiency.

To evaluate the effectiveness of our approach, we conduct experiments using
training programs sourced from the GQA dataset. This dataset provides a di-
verse range of scenarios, enabling us to thoroughly assess the capability of our
approach to reason about the visual world. Through experimentation and analy-
sis, our results demonstrate the effectiveness of our proposed method in achieving
explainability in VQA systems while maintaining a high degree of effectiveness.

In summary, this work makes two key contributions: first, the utilization of
decaying teacher forcing during training, which enhances generalization capabil-
ities, and second, the incorporation of cross-modal language and vision features
to capture intricate relationships between text and images, resulting in more
accurate and interpretable results.

The remaining sections of the paper are structured as follows: Sec. 2 provides
a discussion on related work, Sec. 3 presents our cross-modal neural module net-
work framework, and Sec. 4 introduces our teacher guidance procedure. In Sec. 5,
we outline the validation protocol, followed by the presentation of experimental
results in Sec. 6. Finally, in Sec. 7, we conclude the paper by synthesizing our
findings and discuss potential future developments.

2 Related work

In this section, we begin by examining integrated and modular approaches em-
ployed in visual reasoning tasks. We then introduce the teacher forcing training
method and its application to modular neural networks.

Transformer networks. Transformers [16] have been widely applied as
foundation models for various language and vision tasks due to their remarkable



performance. They have also been adapted for reasoning problems like Visual
Question Answering (VQA). Notably, models such as ViLBERT [13], Visual-
BERT [12] and LXMERT [15] have demonstrated interesting performance on
popular VQA datasets like VQA2.0 [6] and GQA [8]. These frameworks follow
a two-step approach: first, they extract textual and image features. Word em-
beddings are obtained using a pre-trained BERT [5] model, while Faster RCNN
generates image region bounding boxes along with their corresponding visual
features. Subsequently, a cross-attention mechanism is employed to align the
word embeddings with the image features, leveraging training on a diverse range
of multi-modal tasks.

Despite the benefits of the integrated approaches, these models also have no-
table drawbacks. One prominent limitation is their lack of interpretability, mak-
ing it challenging to understand—and debug, when necessary—the underlying
reasoning process. Moreover, these models often rely on “shortcuts” in the rea-
soning, which means learning biases present in the training data. Consequently,
their performance tends to suffer when confronted with out-of-distribution data,
as shown on GQA-OOD [9]. This research also emphasizes the importance of
employing high-quality input representations for the transformer model.

To address interpretability concerns, we use features produced by an off-the-
shelf cross-modal transformer encoder in a step-by-step explainable reasoning
architecture. This approach balances the power of the transformer model in
capturing relationships between modalities with the ability to understand the
reasoning process.

Neural module networks. To enhance the transparency and emulate a
human-like reasoning, compositional Neural Module Networks (NMNs) such as
those introduced by [7] and [11] break down complex reasoning tasks into more
manageable subtasks through a multi-hop reasoning approach. A typical NMN
comprises a generator and an executor. The generator maps a given question
to a sequence of reasoning instructions, known as a program. Subsequently, the
executor assigns each sub-task from the program to a neural module and prop-
agates the results to subsequent modules.

In a recent study by [4], a meta-learning approach is adopted within the NMN
framework to enhance the scalability and generalization capabilities of the re-
sulting model. The generator decodes the question to generate a program, which
is utilized to instantiate a meta-module. Visual features are extracted through
a transformer-based visual encoder, while a cross-attention layer combines word
embeddings and image features. Although the combination of a generator and an
executor in NMNs may appear more intricate compared to an integrated model,
the inherent transparency of the “hardwired” reasoning process in NMNs has the
potential to mitigate certain reasoning “shortcuts” resulting from data bias.

A more recent study [1] has investigated the effects of curriculum learning
techniques in the context of neural module networks. The research demonstrated
that reorganizing the dataset to begin training with simpler programs and pro-
gressively increasing the difficulty by incorporating longer programs (based on
the number of concepts involved in the program) facilitates faster convergence



and promotes a more human-like reasoning process. This highlights the impor-
tance of curriculum learning in improving the training dynamics and enhancing
the model’s ability to reason and generalize effectively.

Interestingly, [10] demonstrated that leveraging the programs generated from
questions as additional supervision for the LXMERT integrated model led to a
reduction in sample complexity and improved performance on the GQA-OOD
(Out Of Distribution) dataset [9].

Building upon this, our work aims to capitalize on both the transparency
offered by NMN architectures and the high-quality transformer-encoded rep-
resentations by implementing a composable NMN that integrates multimodal
vision and language features.

Teacher forcing. Teacher forcing (TF) [17] is a widely used technique in
sequence prediction or generation tasks, especially in RNNs with an encoder-
decoder architecture. It involves training the model using the true output as novel
input, which helps improve prediction accuracy. However, during inference, the
model relies on its own predictions without access to ground-truth information,
leading to a discrepancy known as exposure bias.

Scheduled sampling (SS) is a notable approach to mitigating the train-test
discrepancy in sequence generation tasks [2]. It introduces randomness during
training by choosing between using ground truth tokens or the model’s predic-
tions at each time step. This technique, initially developed for RNN architec-
tures, has also been adapted for transformer networks [14], aiding to align the
model’s performance during training and inference.

NMNs, on the other hand, are trained using only the output of a module
as input for the next module, which has drawbacks. Errors made by an inter-
mediate module can propagate to subsequent modules, leading to cumulative
bad predictions. This effect is particularly prominent during the early stages of
training when the model’s predictions are close to random.

NMNs can leverage the TF strategy to enhance their training process. Ini-
tially, training begins with a fully guided schema, where the true previous out-
puts are used as input. As training progresses, the model gradually transitions
to a less guided scheme, relying more on the generated outputs from previous
steps as input. This gradual reduction in guidance and increased reliance on
the model’s own predictions, named decaying TF, helps NMNs better learn and
adapt to the complexity of the task. With decaying TF, modules can conform
to their expected behavior for their respective sub-tasks.

3 Cross-modal neural module network

Our model takes an image, question, and program triplet as input and predicts
an answer. We extract aligned language and vision features for the image and
question using a cross-modal transformer. The program, represented as a se-
quence of modules, is used to build an NMN, which is then executed on the
image to answer the question (refer to Fig. 1). In the next subsections we detail
the feature extraction process and describe the program executor.



Fig. 1: The proposed modular VQA framework. Plain arrows represent the out-
put flow, while dotted arrows represent the Multi-Task loss backward flow.

Cross-modal features. Compositional visual reasoning involves the abil-
ity to make logical and geometric inferences on complex scenes by leveraging
both visual and textual information. This requires accurate representations of
objects and questions. To address this, we employ LXMERT [15], a pretrained
transformer model specifically designed for multi-modal tasks. LXMERT has
demonstrated impressive performance across various tasks and serves as our fea-
ture extractor. In our approach, we discard the answer classification component
and freeze the model’s weights. To extract cross-modal representations, we pro-
cess the image I through the object-relationship encoder and the question Q
through the language encoder. Then, the Cross-Modality Encoder aligns these
representations and produces object bounding box features vj for each object bj
in I, as well as word embeddings txti for each word wi of Q.

Neural modules. Our NMN approach tackles complex reasoning tasks by
decomposing them into simpler sub-tasks, inspired by human reasoning skills
like object detection, attribute identification, object relation recognition, and
object comparison. We developed a library of modules tailored to address specific
sub-tasks. These modules are designed to be intuitive and interpretable, using
simple building blocks like dot products and MLPs. They are categorized into
three groups: attention, boolean, and answer modules. For instance, the Select
attention module focuses on detecting object bounding boxes by applying an
attention vector to the available bounding boxes within an image. On the other
hand, boolean modules like And or Or make logical inferences, while answer
modules such as QueryName provide probability distributions over the vocabulary
of possible answers. To get a glimpse of the variety within our module library you
can refer to Table 1, which showcases an example from each module category.

Modular network instantiation. A program in our framework consists of
a sequence of neural modules (Table 1). These modules are instantiated within
a larger Neural Module Network (NMN) following the program sequence. Each



Table 1: Sample module definitions. S: softmax, σ: sigmoid, r: RELU,Wi: weight
matrix, a: attention vector (36×1), V: visual features (768×36), t: text features
(768× 1), �: Hadamard product.

Name Dependencies Output Definition
Select − attention x = r(Wt),Y = r(WV),o = S(W(YTx))

RelateSub [a] attention x = r(Wt),Y = r(WV), z = S(W(YTx))
o = S(W(x� y � z))

VerifyAttr [a] boolean x = r(Wt),y = r(W(Va),o = σ(W(x� y))

And [b1,b2] boolean o = b1 × b2

ChooseAttr [a] answer x = r(Wt),y = r(W(Va),o = S(W(x� y))

QueryName [a] answer y = r(W(Va)),o = S(Wy)

module has dependencies, denoted as dm, which allow it to access information
from the previous modules, and arguments, denoted as txtm, which condition
its behavior. For example, the FilterAttribute module, which relies on the
output of the Select module, aims to shift attention to the selected objects by
considering the attribute that corresponds to the provided text argument. To
handle module dependencies, the program executor employs a memory buffer to
store the outputs, further used as inputs for subsequent modules. This approach
also enables the computation of multi-task losses (see Sec. 4) by comparing the
outputs produced by the modules with the expected ground-truth outputs.

4 Teacher guidance for neural module networks

To achieve explainable reasoning, we use teacher forcing (TF) to guide the mod-
ules by providing them with ground-truth inputs. We also employ a multi-task
(MT) loss to provide feedback and correct their behaviors towards the expected
intermediate outputs. This process is illustrated in Fig. 2.

Given a program p, a question q and image I, the modular network executes
p on I with the textual arguments txtm encoded in q, producing an answer a.
This can be represented as a = p(I, q), where p = m1 ◦m2 ◦ ... ◦mn denotes the
sequential execution of n modules within the program. Each module mt inputs
the output of the previous module mt−1 and performs a specific computation or
reasoning step to contribute to the final answer. The NMN is trained by mini-
mizing the cross entropy loss LCE over the set of (p, q, I, a) examples. In fact,
when a module is provided with its golden input and expected output, it is in-
dependently optimized to perform its specific sub-task. However, when modules
are jointly trained in a sequential manner, they learn to adapt their behaviors to
work together and engage in explicit reasoning without taking shortcuts. This
collaborative approach enables the modules to develop a deeper understanding
of the task and enables them to perform complex reasoning operations.

From a back-propagation perspective, during the early stages of training,
the gradients are computed based on the losses of individual modules when
processing correct inputs. As a result, the backward gradient flow of the MT



Fig. 2: The teacher guidance for the program execution process related to the
question ‘On what is the animal to the right of the laptop sleeping?’. Plain arrows
represent input guidance and dotted arrows represent the output feedback.

loss is interrupted at the first ground truth input. However, in the case of col-
laborative module interactions without TF, the full back-propagation can be
computed. The intermediate outputs are preserved in continuous form through-
out the program execution, enabling the flow of backward gradients between
modules. Errors and updates can be propagated through the entire network, fa-
cilitating effective learning and enhancing the overall performance of the NMN.
We give details about our guidance mechanism in the following subsections.

Input guidance. The modules receive input guidance through decaying
teacher forcing (TF). As shown in Fig. 2, at each reasoning step t the executor
randomly decides whether to use the predicted output ôt−1 or the ground-truth
output o∗t−1 from the previous module mt−1 as its input. This decision is made
by flipping a coin, where o∗t−1 is chosen with a probability of εe and ôt−1 is chosen
with a probability of 1− εe. The coin-flipping process for input selection occurs
at each reasoning step, allowing the model to train on various sub-programs.
The probability εe of selecting o∗t−1 depends on the epoch number e. As training
progresses and the epoch number increases, εe decreases, giving more preference
to the module’s predictions over the ground-truth intermediate outputs.

Output feedback. We employ a multi-task (MT) loss approach to provide
feedback to the modules based on their outputs. The loss consists of a weighted
sum L = αLatt+βLbool+γLanswer of individual losses for the attention modules,
boolean modules and answer modules, with α, β and γ scaling factors. Each
module is assigned its own average loss, considering its frequency of appearance,
to prevent overemphasis on frequent modules at the expense of infrequent ones.

For Boolean modules, we rely on the provided answer to infer the module’s
output and generate the intermediate Boolean outputs. However, for attention
modules, it is necessary to establish correspondences between the bounding boxes
in the image graph and those obtained from Faster-RCNN, which brings us to
the issue of the ground-truth intermediate outputs, detailed in the following.



Soft matching and hard matching. Two mapping techniques, namely
hard matching and soft matching, are employed to align the ground-truth bound-
ing boxes with those obtained from the feature extractor. In the hard matching
approach, a ground-truth bounding box bg is matched with the bounding box
o∗i from the feature extractor that has the highest Intersection over Union (IoU)
factor. On the other hand, the soft mapping matches bg with all o∗i that have
an IoU value above a threshold, resembling a multi-label classification task. The
choice of the matching technique directly affects the representation of the atten-
tion intermediate output vectors. Hard mapping produces one-hot-like vectors,
while soft mapping multi-label vectors, with one(s) for positive matching and
zeros for negative matching boxes. It is important to acknowledge that not all
modules have ground-truth outputs that can be extracted.

5 Protocol design

Dataset & metrics. The GQA balanced dataset [8] consists of over 1 million
compositional questions and 113,000 real-world images. The questions are rep-
resented by functional programs that capture the reasoning steps involved in
answering them. To ensure consistent evaluation, the dataset authors suggest
using the testdev split instead of the val split when utilizing object-based fea-
tures due to potential overlap in training images. In line with the latter and
following LXMERT, our model is trained on the combined train+val set. For
testing, we evaluate the model’s performance on the testdev-all split from
the unbalanced set. This allows us to gather additional examples and gain a
comprehensive understanding of the NMN’s behavior. To simplify the module
structure in the GQA dataset, we consolidate specific modules into more general
ones based on similar operations. For example, modules like ChooseHealthier
and ChooseOlder are combined into ChooseAttribute module, with an argu-
ment txtm specifying the attribute to select. This reduces the number of modules
from 124 to 32. Our experiments directly utilize the pre-processed GQA dataset
programs, with a specific focus on evaluating the teacher forcing training on the
Program Executor module. While our system employs a transformer model as a
generator to convert the question into its corresponding program, this task is rel-
atively straightforward compared to the training of the executor. As in previous
studies [11,4], we achieve nearly perfect translation results on testdev-all.

We assess the performance of our approach by measuring answer accuracy.
Additionally, we conduct a qualitative evaluation of the intermediate outputs,
visualized through plotted images in Sec. 6.

Evaluated methods. As presented in the previous sections, we propose two
contributions to improve neural module networks for VQA. First, we use teacher
guidance during training, leading to better generalization. Second, we leverage
cross-modal language and vision features to capture complex relationships be-
tween text and images, resulting in more accurate and interpretable results.

We use the following notations to describe the various experimental setups:
- LXV: Employ the cross-modal representations from the LXMERT model [15].



- TF: Apply decaying teacher forcing to guide the inputs of the modules.
- MT: Apply multi-task losses to guide the expected outputs of the modules.
- Soft: Use the soft matching technique described in Sec. 4.
- Hard: Employ the hard matching technique described in Sec. 4.
- BertV: Use unimodal contextual language and vision representions, where
contextual text embeddings are extracted by the BERT model [5] and Faster-
RCNN bounding boxes features are provided by the GQA dataset [8].
- FasttextV: Employ unimodal non-contextual fastText embeddings [3] along
with Faster-RCNN bounding boxes features.

6 Results analysis

In our evaluation, we begin by comparing the different teacher-guided training
strategies. We also compare the impact of the addition of the multi-task losses
and its correlation with the decaying TF along with the soft and hard matching
techniques. Later, we compare the usage of multi-modal representations against
uni-modal representations.

Analysis of the teacher guided training. We aim to enable modular
reasoning for visual question answering on the GQA dataset. We evaluate the
effectiveness of our approach by measuring the answer accuracy of several models
(described in Sec. 5), and report the results in Table. 2. Overall, our findings
demonstrate that using a combination of input guidance (denoted as TF) and
output guidance (MT) achieves the highest accuracy, with a score of 63.2%.

When comparing LXV-TF (decaying teacher forcing) with LXV-MT (multi-
task loss), we observe that the multi-task loss alone achieves higher accuracy
than using decaying teacher forcing alone. This can be attributed to the fact
that when using TF alone, the final loss L is solely determined by the answer
modules loss Lanswer and during early training stages, the application of TF lim-
its the backpropagation process, preventing it from reaching the first modules of
the programs. As a result, the impact of Lanswer on initial modules is limited.

Interestingly, the combination of multi-task loss and decaying teacher forcing
exhibits complementary effects, leveraging the strengths of both techniques to
enhance training dynamics and overall performance.

To assess the effectiveness of the decaying teacher forcing guidance, we com-
pare LXV-MT against LXV-TF-MT. The TF guidance has led to accuracy

Table 2: Performance of various training methods on the testdev-all set.
Model accuracy
LXV-TF-hard 0.548
LXV-MT-hard 0.598
LXV-TF-MT-hard 0.630
LXV-TF-soft 0.536
LXV-MT-soft 0.563
LXV-TF-MT-soft 0.632



improvements in both soft and hard matching settings for NMN. This tech-
nique can be viewed as a form of curriculum learning, where the model trains
on programs of increasing length and complexity. During training, we observed
a faster increase in accuracy for the models using TF compared to those with-
out TF, as the answer modules receive ground truth inputs in the early stages.
As training progresses, the training performance continues to improve until it
reaches a peak, after which it slightly degrades due to the reduced use of TF
and the modules adjusting to collaborative functioning. Nonetheless, as training
continues, the testing performance surpasses that of the models without TF.

When combining the MT loss with LXV-TF, modules are optimized based
on their intermediate outputs losses and they can benefit from the additional
guidance provided by the back-propagation of Latt and Lbool. We reach the best
performances outlined by LXV-TF-MT-soft and LXV-TF-MT-hard. The
increase in accuracy ranges from +8.2% in the hard matching setting to +9.6%
in the soft matching setting.

Unimodal vs cross-modal representations. We measure the impact of
different input representations on the performance (see Table. 3). For unimodal
embeddings we encode the question with fastText word embeddings or BERT
language model, and the image with Faster-RCNN features. For cross-modal
representations, we encode the question and the image with LXMERT. The
experiments are conducted using our best training strategies from the previous
section, i.e. we employ the TF guidance and the MT loss for all the experiments.

When comparing fastText and BERT, empirical observations indicate that
BERT tends to achieve better performance when utilizing hard matching, which
involves a focused and selective attention mechanism. Conversely, fastText
demonstrates improved performance with the soft matching mechanism, enabling
a multi-label approach. The choice between these matching mechanisms relies on
the inputs of the models and the training strategy, as each model may demon-
strate superior performance in different scenarios.

Cross-modal aligned features provided by LXMERT (denoted as LXV) have
shown a significant increase in accuracy, with a +12.1% improvement when us-
ing soft matching and a +12.4% improvement when using hard matching. This
validates our intuition that leveraging cross-modal features pretrained on diverse
tasks and large datasets can greatly benefit NMNs. By incorporating these fea-
tures, the modular reasoning process is performed with a better understanding of

Table 3: Language and vision representations results on testdev-all.
Model accuracy
FasttextV-TF-MT-hard 0.495
BertV-TF-MT-hard 0.506
LXV-TF-MT-hard 0.630
BertV-TF-MT-soft 0.485
FasttextV-TF-MT-soft 0.511
LXV-TF-MT-soft 0.632



word embeddings and bounding box features, leading to enhanced performance
and more accurate predictions.

Qualitative analysis of the modular approach. In Fig. 3, we illustrate
the reasoning process for three different questions. We highlight the bounding
boxes with the highest attention values from the attention output vector. For
boolean modules, we display the output probability and finally the predicted
answer. Taking “Question 2” as an example, the first step successfully selects
the skateboard as the object of focus. In the second step, the attention shifts to
white objects. Since the skateboard is not white, the attention is then redirected
to the white building. The “exist” module assesses if there is an object with a
high attention value and produces a probability score based on which the answer
is predicted. These examples demonstrate the explainability of our approach and
the ability to trace the model’s decision-making process.

Fig. 3: Visualization of the reasoning process.

7 Conclusion

We have presented a neural module framework trained using a teacher guid-
ance strategy, which has demonstrated several key contributions. First, our ap-
proach enhances generalization and promotes a transparent reasoning process,
as evidenced by the experimental results on the GQA dataset. Additionally, the
utilization of cross-modal language and vision features allows to capture intri-
cate relationships between text and images, leading to improved accuracy. By
harnessing our proposed approach, the neural modules acquire the capability to
learn their reasoning sub-tasks both independently and in an end-to-end manner.



This not only enhances training efficiency but also increases the interpretability
of the system, allowing for a better understanding of the underlying reasoning
processes. In addition to the aforementioned contributions, our work paves the
way to a better understanding of NMNs for the task of visual reasoning. Promis-
ing directions include extending our approach to other visual reasoning datasets
for a broader evaluation, and exploring alternative training strategies to enhance
performance and efficiency.
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