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Mechanobiology of the cell wall – insights from tip-growing plant
and fungal cells
Celia Municio-Diaz1,2,*, Elise Muller3,*, Stéphanie Drevensek3, Antoine Fruleux4, Enrico Lorenzetti3,
Arezki Boudaoud3,‡ and Nicolas Minc1,2,‡

ABSTRACT
The cell wall (CW) is a thin and rigid layer encasing the membrane of
all plant and fungal cells. It ensures mechanical integrity by bearing
mechanical stresses derived from large cytoplasmic turgor pressure,
contacts with growing neighbors or growth within restricted spaces.
The CW is made of polysaccharides and proteins, but is dynamic
in nature, changing composition and geometry during growth,
reproduction or infection. Such continuous and often rapid
remodeling entails risks of enhanced stress and consequent
damages or fractures, raising the question of how the CW detects
and measures surface mechanical stress and how it strengthens to
ensure surface integrity? Although early studies in model fungal and
plant cells have identified homeostatic pathways required for CW
integrity, recent methodologies are now allowing the measurement of
pressure and local mechanical properties of CWs in live cells, as well
as addressing how forces and stresses can be detected at the CW
surface, fostering the emergence of the field of CWmechanobiology.
Here, using tip-growing cells of plants and fungi as case study
models, we review recent progress on CW mechanosensation and
mechanical regulation, and their implications for the control of cell
growth, morphogenesis and survival.

KEY WORDS: Cell wall, Growth, Cell mechanics, Morphogenesis,
Plants, Fungi, Yeast

Introduction
Mechanosensation in animal cells influences processes ranging
from cell migration and differentiation to organ development and
function (DuFort et al., 2011). Surface molecules, such as Piezo
channels, cadherins and integrins, allow animal cells and tissues to
detect stimuli as diverse as shear forces, touch, stretch or
compression, and transduce them into adaptive responses (Ingber,
2003). For walled cells, such as those of plants and fungi, the
functions and mechanisms of surface mechanosensation remain
poorly understood (Bacete and Hamann, 2020; Mishra et al., 2022;
Wolf et al., 2012). However, walled cells are continuously
challenged with surface forces that are orders of magnitude larger
than those in animal cells, deriving from their turgid cytoplasm and
contacts with neighboring cells or obstacles (Boudaoud, 2010;
Hamant and Traas, 2010; Mishra et al., 2022). These entail risks of
CW breakage and cell lysis, raising the question of how forces on

the CW might be detected in space and time and transduced to
ensure surface integrity and survival.

Walled cells of plants and fungi are generally non-motile and
exploit diverse modes of growth to colonize space, reproduce or
infect. One wide-spread mode is tip growth, in which cells elongate
in a polar manner while maintaining tube-like shapes (Fischer et al.,
2008; Hepler et al., 2001). Tip-growing cells include multiple yeast
species, filamentous fungi and stramenopiles (oomycetes, brown
algae; also called heterokonts), as well as specialized plant cells,
such as pollen tubes, rhizoids and root hairs. Tip-growth speeds can
vary by two to three orders of magnitude between species, from
yeast cells that elongate at ∼1 µm/h up to fungi, such as Neurospora
crassa, or plant pollen tubes that elongate as fast as ∼500 µm/h
(López-Franco et al., 1994; Qin and Yang, 2011; Taheraly et al.,
2020). Tube diameter also varies widely, from a fraction of a micron
in infecting hyphae of the pathogen Fusarium oxyparum (Ruiz-
Roldán et al., 2010), to ∼10–20 µm in the fungus Sclerotinia
sclerotiorum (Fischer-Parton et al., 2000) or in the pollen tubes of
Lilium longiflorum (Campàs et al., 2012) (Table 1). In spite of this
diversity, tip-growing cells share one common feature, their growth
is defined by the assembly and irreversible expansion of the CW.

CWs are built from cross-linked polysaccharides, and also
contain specific proteins. They are often multilayered with
thicknesses ranging from ∼50 to 500 nm, and compositions that
vary among species or across life cycles. In fungi, α- and β-glucans,
chitin and galactomannans are the most abundant sugar chains
(Bowman and Free, 2006). In plant pollen tubes, rhizoids and root
hairs, CWs are mostly composed of hemicellulose, cellulose,
pectins and callose (Chebli et al., 2012; Schoenaers et al., 2017).
Polysaccharides elongate in the Golgi and/or at the plasma
membrane; this is mediated by the catalytic activity of
transmembrane enzymes, such as glucan or callose synthases,
which are under the control of Rho-GTPases (Rho in fungi and ROP
in plants) (Anderson and Kieber, 2020; Bowman and Free, 2006).
CW remodeling, digestion or crosslinking involves other sets of
enzymes, such as transferases, hydrolases and lyases, which often
are directly secreted into the CW matrix (Bowman and Free, 2006;
Chebli and Geitmann, 2017; Hoffmann et al., 2021) (Fig. 1A).
During tip growth, CW assembly and remodeling are restricted to
cell tips, and to sites of cell division in septate species. This is
achieved through the polarized activity of the cytoskeleton and
secretion machineries (Hepler et al., 2001; Riquelme, 2013). In
many plant and fungal cells, this polar activity might also be
influenced by a tip-focused Ca2+ gradient, which affects actin
assembly, secretion or CW biochemistry (Jackson and Heath, 1993;
Pierson et al., 1994). Growth is powered by a large osmotically
generated turgor pressure, which pushes newly synthesized wall
portions at cell tips forward (Hepler et al., 2013; Lew, 2011). An
important consequence is that growing tips are often the most fragile
parts of cells, as exemplified by fungal and plant cells with
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mutations in factors that regulate the CW lysing there (Banavar
et al., 2018; Hill et al., 2012; Miyazaki et al., 2009). Thus, tip
growth might be viewed as a life-threatening process in which CW
deformation must be acutely monitored to adapt wall reinforcement
and ensure its integrity, highlighting the importance of mechanical
feedback. Here, by focusing on work in model plant and fungal tip-
growing cells, we will first review recent models for tip-growth and
experimental assays developed to measure CW stiffness, thickness
and turgor, and then describe molecular CW mechanosensors and
their function as core components of mechanochemical feedback
that supports CW integrity.

Mechanics of tip-growing cells
Sustaining turgor pressure
CW failure
The CW can be viewed as a thin elastic shell, which deforms when a
force is applied to it and returns to its original shape when the force
is released. In walled cells, the main surface forces derive from
turgor pressure, P. Turgor puts the CW under a tension proportional
to Pr, with r being the cell radius. The typical values of CW tension,
∼1–10 N/m, are two to three orders of magnitude higher than
tensions required to rupture the plasma membrane, highlighting the
vital role of the CW (Tan et al., 2011). This tension deforms
the elastic CW, with a strain proportional to∼Pr/Eh, where E is the
elastic modulus of the CWand h its thickness. Typical elastic strains
measured in fungi and plant cells are in the range of∼10–30% (Davi
et al., 2019; Vogler et al., 2013), smaller yet close to estimated
critical failure strains of∼45% that rupture the CW in yeast (Stenson
et al., 2011). Thus, an increase in turgor, or a reduction in CWelastic
modulus or thickness, might bring the wall closer to a rupture point.
Indeed, CW rupture and lysis phenotypes in both plants and fungi
have been reported in mutants or conditions that affect the CW, and
are most often alleviated by reducing turgor with osmoprotectants
(Cruz et al., 2013; Miyazaki et al., 2009; Munoz et al., 2013; Neeli-
Venkata et al., 2021). Similarly, exposure to hypoosmotic
conditions that increase turgor can cause CW rupture (Bartnicki-
Garcia and Lippman, 1972; Hill et al., 2012; Nakayama et al.,
2012). Interestingly, in tip-growing cells, CW rupture is most often
observed at cell tips or at ingressing division septa, suggesting that
remodeling CWs are more fragile than other CW portions
(Bartnicki-Garcia and Lippman, 1972; Hill et al., 2012; Munoz
et al., 2013). These considerations highlight the importance of

measuring turgor and CW mechanical properties around cells to
understand surface integrity.

Assessing turgor pressure
Several methods had been developed to measure turgor by as early
as the 1960s (Bastmeyer et al., 2002; Beauzamy et al., 2014; Lew
et al., 2004) (Table 1). The pressure probe is the most direct method,
though intrusive. Here, an oil-filled micropipette impales the cell,
and a transducer measures the pressure needed to maintain the cell
cytoplasm or vacuole in place. Other methods include osmometry of
cell extracts, plasmolysis (by determining the dose of external
osmolytes needed to detach the membrane from the CW), strain
assays that identify external osmolarity needed to deflate cells as
much as when piercing the CW, or micro-indentation with force
probes (Fig. 2A). In pollen tubes, for instance, turgor was found to
be ∼0.3 MPa, based on micro-indentation and mechanical
modelling (Vogler et al., 2013), consistent with pressure probe
measurements in the range 0.1 to 0.4 MPa (Benkert et al., 1997).
These values differ from estimates of 0.8 MPa obtained with
plasmolysis (Benkert et al., 1997), possibly owing to
osmoregulation. Similar values, ranging from ∼0.5 MPa to
∼1.5 MPa were reported in different fungi (Atilgan et al., 2015;
Chevalier et al., 2022 preprint; Gervais et al., 1999; Lew et al.,
2008) (Table 1). These large pressures are comparable to that in a
bottle of champagne, and 100–1000 fold higher than within animal
cells (Stewart et al., 2011).

Measuring CW elastic moduli
The mechanical properties of CWs can be measured with micro-
indentation by applying small forces (nanonewtons to
micronewtons range) with atomic force microscope (AFM) or
larger forces (micronewtons to millinewtons) with a micro-indenter
– a tip indents the CW, and its force–displacement curve is measured
(Fig. 2A). For displacements smaller than the CW thickness, the
curve is mostly sensitive to CWmechanics (Milani et al., 2013). For
larger displacements, the curve often appears linear. Its slope is
known as ‘apparent stiffness’ and depends on CW mechanics,
thickness, turgor and cell shape, as well as indentation tip geometry,
and was measured in pollen tubes and multiple fungal species
(Bolduc et al., 2006; Geitmann and Parre, 2004; Gibbs et al., 2021;
Smith et al., 2000; Vogler et al., 2013; Zhao et al., 2005).
Mechanical properties of whole pollen tubes or fungal hyphae have

Table 1. Geometrical and mechanical parameters of some model tip-growing cells

Model

Tip size and growth Mechanical parameters

ReferencesDiameter
Growth
speed CW thickness

CW elastic
modulus

Turgor
pressure

Pollen tube A. thaliana 5 µm 0.5 µm/min 200 nm 35–75 MPa 0.2 MPa Chebli et al., 2012; Chen et al., 2015;
Shamsudhin et al., 2016; Vaz Dias
et al., 2019

L. longiflorum 10–20 µm 12 µm/min 200–700 nm 20–90 MPa 0.1–0.4 MPa Benkert et al., 1997; Shamsudhin et al.,
2016; Vogler et al., 2013

Root hair A. thaliana 10 µm > 1 µm/min 100–150 nm 1–7 MPa 0.7 MPa Galway, 2000; Grierson et al., 2014;
Lew, 1996; Shibata et al., 2022

Fungi S. pombe 4 μm 0.02–0.04 μm/min 130–170 nm 30–70 MPa 1–1.5 MPa Abenza et al., 2015; Atilgan et al., 2015;
Davi et al., 2019; Minc et al., 2009;
Taheraly et al., 2020

Fungi A. nidulans 2.5 μm 0.2–0.8 μm/min 60–90 nm 50–150 MPa 0.3–1.4 MPa Chevalier et al., 2022; Gervais et al.,
1999; Horio and Oakley, 2005; Zhao
et al., 2005

Fungi C. albicans 2 μm 0.3 μm/min 100–200 nm 3–7 MPa 1–3 MPa Ene et al., 2015; Puerner et al., 2020;
Thomson et al., 2015
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also been assessed by bending cells in microfluidic flow devices
(Couttenier et al., 2022; Nezhad et al., 2013), or by reducing turgor
and measuring CW deflation (Abenza et al., 2015; Atilgan et al.,
2015; Hu et al., 2017; Nezhad et al., 2013) (Fig. 2A). Recently, such
a deflation assay was combined with sub-resolution imaging of CW

thickness, enabling measurements of CW mechanics at the
subcellular scale and with higher throughput than indentation-
based methods (Chevalier et al., 2022 preprint; Davi et al., 2019)
(Fig. 2B). Although the obtained values vary between these reports,
possibly because methods such as AFM are more sensitive to matrix

CW
expansion

rate

Plants Fungi

Plasma membrane 

Cell wall

Cytoplasm

(i) CW heterogeneity (ii) Stress and shape

σc~Pr/h

σl~Pr/2h

σt~Pr/2h

P

P

Crosslinks

P

CW fibrils
anisotropies

Thickness

CW stiffness

CW composition

P

P

B  CW stiffness gradients C  CW growth

(iii) Growth

h

A  CW synthesis and composition

E Y

η

Cytoplasm Cell wall

h
P Turgor pressure

CW thickness

CW stress

Transferases: cellulose/
B glucan synthases,
glucanosyltransferases

Cell wall

Cytoplasm

ROP/Rho GTPases

Lyases: pectate lyases

Hydrolases: endoglucanase,
pectin methylesterases

Oxidoreductases:
peroxidases

Methylesterifications 

Crosslinks
Ca2+

Exocytic vesicles

GPI anchor

Chitin

Cell wall
proteins

Callose 

Arabinogalactan

Hemicellulose

Glucans

Pectin 

Cellulose

Mannans

Key

P

Cytoplasm C ll llC

OH

OH OH

OH

Callose

Chitin

CW effective viscosity

Fig. 1. Cell wall assembly, composition and mechanics in tip-growing fungal and plant cells. (A) Schematic illustration of a tip-growing cell with
secretory vesicles secreting CW synthesis enzymes to the membrane and other remodeling enzymes into the CW. A more-detailed diagram of a typical CW
composition with the different types of polysaccharides for fungal and plant CWs is shown below. (B) Possible mechanisms to generate gradients of CW
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polysaccharides (Milani et al., 2013), they nevertheless suggest
apparent stiffnesses of a similar magnitude to pressure-derived
tensions of ∼0.5–5 N/m, and bulk elastic moduli of 10–100 MPa,
akin to a material such as rubber (Table 1).

Mechanical anisotropy of the CW
In a cylindrical cell, circumferential CW tension is twice that of
longitudinal tension. In some bacterial cells and epidermal plant
cells, circumferential tension can be resisted by the organization of
CW strands in circumferential arrays (Baskin, 2005; Carballido-
López, 2006). In contrast, ultrastructural data in tip-growing cells,
including root hairs and fission yeast indicate that CW fibrils are
organized in layers parallel to the cell surface but with no intrinsic
polarity within each layer (Galway et al., 1997; Newcomb and
Bonnett, 1965; Takagi et al., 2003). In the flanks of pollen tubes,
cellulose fibrils are nearly longitudinal (Chebli et al., 2012). Cell

deflation experiments are also consistent with there being a low
mechanical anisotropy of the CW in pollen tubes but also in
multiple fungi (Abenza et al., 2015; Atilgan et al., 2015; Chevalier
et al., 2022 preprint; Vogler et al., 2013). All these observations
suggest that there is no need for circumferential reinforcements of
the flanks of a tip-growing cell.

Gradients of CW mechanical properties
Interestingly, multiple measurements in plant and fungal cells
indicate marked gradients in CW stiffness with tips being ∼1.5 to
5 times softer than the cell sides (Bolduc et al., 2006; Chevalier et al.,
2022 preprint; Davì et al., 2018; Zhao et al., 2005). Such gradients
could emerge from spatial variations of CW thickness, as observed in
fission yeast (Davì et al., 2018) and in a brown alga (Rabillé et al.,
2019), or of its biochemical properties (Fig. 1B). This second
possibility has been extensively assessed in pollen tubes, where CW
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Left, turgor reduction after a hyperosmotic shock causes the CW to shrink. Quantification of strain changes for the computation of CW stiffness and
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compute CW stiffness from the amount of bending they cause. Right, indentation of the CW with a force probe. (B) Subresolution imaging to measure CW
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composition exhibits a longitudinal gradient (Chebli et al., 2012).
Notably, pectins are highly esterified at the apex, whereas they are
instead de-esterified at the flanks. De-esterification elicits Ca2+

binding to negative charges on pectins, enabling pectin cross-linking
to stiffen the CW at cell flanks (Chebli et al., 2012; Parre and
Geitmann, 2005a; Röckel et al., 2008). Callose deposition in the
flanks might also increase stiffness there (Chebli et al., 2012;
Leszczuk et al., 2019; Parre and Geitmann, 2005b).
In conclusion, turgor deforms the CW close to its failure point,

which entails risks of CW failure and cell death. These risks might be
enhanced at cell tips where freshly assembled walls are apparently
softer, possibly due to polarized CW assembly and remodeling.

Setting the pace of tip growth
An increase in CW expansion rate could lead to CW over-thinning
and rupture. To understand surface integrity, it is therefore important
to investigate how turgor and CWmechanics control CWexpansion
and tip growth. Although the elastic modulus that links the wall
tension to its instantaneous deformation, as discussed above, can
‘easily’ be assessed experimentally, its correlation to cell growth
is more indirect. Indeed, growth requires an irreversible plastic
and/or viscous expansion of the CW. Accordingly, the influential
mathematical model for CW expansion introduced by Lockhart
(Lockhart, 1965) is based on a visco-plastic description of the CW,
with growth occurring above a threshold plastic strain, and in
proportion to the tensile stress created by turgor and to an effective
CW viscosity (Fig. 1C).

Role of turgor
The assumed role of turgor in Lockhart’s model is supported by a
large body of data in pollen tubes and fungal hyphae, which show
that reducing turgor by increasing medium osmolarity can decrease
the average tip growth rate, often in a dose-dependent manner
(Gervais et al., 1999; Haupt et al., 2018; Lew, 2011; Minc et al.,
2009; Zonia et al., 2006). Interestingly, however, the natural tip
growth rates of fungi and pollen tubes are not generally correlated
with turgor values (Benkert et al., 1997; Chevalier et al., 2022
preprint; Minc et al., 2009), and in the oomycetes Achyla bisexualis
and Saprolegna ferax, an abolishment of turgor does not completely
halt tip growth (Money and Harold, 1993). One plausible
explanation is that growth could be limited by the conductivity of
the plasma membrane to water (Dumais, 2021). An alternative is
that CW expansion is primarily set by dynamic changes in its
mechanical properties.

Patterns of surface expansion
The applicability of Lockhart’s general framework to tip-growing
cells requires mechanisms to polarize CW expansion at the tip. CW
expansion can be mapped by following the movement of static
tracers deposited on the CW surface (Dumais et al., 2004;
Hejnowicz et al., 1977) such as fluorescent microspheres (Shaw
et al., 2000). Using this approach, steep longitudinal gradients in
CW expansion were measured in root hairs ofMedicago truncatula
(Shaw et al., 2000; Dumais et al., 2004), with highest expansion
rates at the apex (Fig. 1C). Similar results were also obtained in yeast
and fungal hyphae (Abenza et al., 2015; Bartnicki-Garcia et al.,
2000), suggesting that the patterns of CW expansion in tip-growing
cells might be based on conserved mechanisms.

Patterns of effective viscosity
Lockhart introduced an effective viscosity (also referred to
as the inverse of CW extensibility), which does not simply

reflect the fluid-like properties of the CW material, but rather
the coupling between CW mechanics and remodeling. This
effective viscosity is defined as the ratio between tensile stress
in the CW and expansion rate of the CW. It can thus be
determined by combining maps of CW expansion with CW
geometry. Indeed, Laplace’s law relates surface tension, pressure
and surface curvature from mechanical balance, and allows to
compute patterns of CW tensile stresses from local CW curvature
(Abenza et al., 2015; Dumais et al., 2004; Hejnowicz et al., 1977)
(Fig. 1C). Such analysis has been performed in root hairs,
pollen tubes and multiple fungi, and suggests that CW expansion
and tensile stress are respectively maximal and minimal at cell
tips, so that the effective CW viscosity is minimal there (Dumais
et al., 2004; Shaw et al., 2000). Which biochemical mechanism
patterns this viscosity remains an important open question, but
it has been suggested to derive from the polar distribution of
secretory vesicles that control CW remodeling and turnover
(Abenza et al., 2015; Chevalier et al., 2022 preprint; Emons
and Ketelaar, 2009; Geitmann and Emons, 2000; Ketelaar et al.,
2008).

Mechanical models
As turgor pressure is uniform, expansion at cell tips requires the CW
to be either heterogeneous (consistent with most measurements
described above) or anisotropic (which seems unlikely based on the
above). Accordingly, models of tip growth all rely on the existence
of patterns of CW mechanical properties. One type of model
proposes a polar distribution of effective viscosity (following
observed patterns of extensibility) and yields elongated cells with a
stationary shape (Dumais et al., 2006; Campàs et al., 2012; Campàs
and Mahadevan, 2009; Rabillé et al., 2019). Another type of model
assumes a polar distribution of CW stiffness (following
experimental measurements), along a thin shell inflated by turgor
and takes the new shape as a reference shape, with subsequent
iterations of the process (Abenza et al., 2015; Drake and Vavylonis,
2013; Fayant et al., 2010; Goriely and Tabor, 2008; 2003a,b). These
two types of model yield similar outputs, likely because elastic
increments between successive reference shapes are equivalent to
viscous relaxation.

Models coupling polarity and mechanics
Early models for tip-growing cells were mostly based on geometric
rules (Koch, 1982; Ricci and Kendrick, 1972; Trinci and Saunders,
1977). For instance, the hyphal geometry was considered to be
driven by a so-called vesicle supply center, from which vesicles are
emitted, and it was modeled how patterns of CW secretion could
govern cell morphology through CW expansion (Bartnicki-Garcia
et al., 1989; Gierz and Bartnicki-Garcia, 2001). Later, such a vesicle
supply center was combined with CW mechanics, which predicted
elongated cells (Eggen et al., 2011; Tindemans et al., 2006). A
similar idea was applied to the germination of fission yeast spores
(Bonazzi et al., 2014) to predict the transition from spherical spores
to elongated tip-growing cells.

Overall, inspection of the literature indicates that tip growth
speeds might be primarily determined by CW remodeling rates at
cell tips, with turgor-derived tension being required for CW
expansion but not dictating tip growth speeds per se. However, CW
expansion poses another fundamental issue for surface integrity; it
must be appropriately balanced with synthesis to ensure that CWs
remain intact as they expand. Evidence for feedback systems
coordinating these processes, and underlying mechanisms are
discussed in the next sections.
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Mechanical feedback and mechanosensing during tip growth
Although most of the above studies point to important links between
CW composition and steady spatial gradients in CW mechanics,
only a few address the dynamic interplay between CW synthesis,
growth and mechanical integrity. However, if CWexpansion occurs
much faster than CW synthesis, the CWwill thin over time, bearing
larger and larger stresses, eventually yielding to rupture. To prevent
failure, cells would need to sense and respond to mechanical stress
associated with CW thinning.

Mathematical models with feedback
Several models have been developed to understand the stability of
CWs and how cells prevent bursting. The mechanical feedback
considered in theoretical models mainly concerns wall synthesis or
remodeling. For example, in a model for pollen tube elongation, cell
elongation was assumed to downregulate pectin deposition in the
CW (Rojas et al., 2011), whereas for fission yeast, it was proposed
to upregulate wall synthesis (Davì et al., 2018). Without such
assumptions, steady growth would be unstable; the models would
predict wall thickness to vanish or growth to stop following

perturbations of the steady state. These assumptions might account
for proteins that sense the mechanical state of the CW (Banavar
et al., 2018; Davì et al., 2018). Alternatively, feedback could rely on
stretch-activated channels and ion dynamics, as modeled in several
studies (Kroeger et al., 2011; 2008; Liu and Hussey, 2014). For
example, one proposed model is based on a sensor that detects
differences in water potential between the extracellular medium and
the cytoplasm, which can modulate the deposition rate of CW
material at the tip (Hill et al., 2012). Another study modeled ion
dynamics and found it to be sufficient to account for a feedback
between cell growth (through ion dilution) and CW synthesis,
suggesting that mechanosensing is not entirely necessary (Liu et al.,
2010).

Experimental signatures of mechanical feedback
Mechanical feedback systems for CW dynamics imply that specific
surface sensors probe CW tensional stress or strain rates to trigger
adaptive responses that adjust CW synthesis (see below), ensuring
that CW thickness, strain or stress remain close to the steady values
that are compatible with both surface growth and integrity (Fig. 3A).
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The mere existence of mutants in surface sensors, downstream
kinases or transcription factors linked to CW synthesis, which
exhibit tip bursting in plant and fungal cells, is a strong indication
that such feedback exists and is relevant to tip growth (Banavar
et al., 2018; Davì et al., 2018; Li et al., 2015; Zhou et al., 2021).
These feedback systems could be particularly important during
growth transitions, when the CW must rapidly change geometry or
mechanics, such as during yeast mating (Banavar et al., 2018),
fungal host invasion (Puerner et al., 2020; Ryder et al., 2019) or
pollen tube navigation in the confined spaces of the pistils (Zhou
et al., 2021).
Another signature of mechanical feedback is the existence of

oscillations in growth and CW mechanics. Oscillatory growth has
been documented for decades in filamentous fungi, pollen tubes and
root hairs (Cardenas et al., 2008; López-Franco et al., 1994;
Monshausen et al., 2007; Qin and Yang, 2011). It provides a natural
situation to study how modulations in elongation rates might
feedback on CW synthesis and mechanics. It has been, for instance,
suggested to result from feedback that couples CW deformation and
synthesis (Rojas et al., 2011), giving rise to delayed out-of-phase
oscillations between growth, CW secretion, CW thickness and
apparent stiffness (McKenna et al., 2009; Zerzour et al., 2009)
(Fig. 3B). CW thickness dynamics in fission yeast also exhibits
fluctuating behavior with delayed feedback (Davì et al., 2018).
Adaptation of CW synthesis or mechanics to abrupt changes in

growth speeds is another signature of mechanical feedback.
Changes in tip growth rates might be caused by natural barriers,
such as the rigid wall encasing fungal spores, or by alterations of the
environment, for instance when pollen tubes enter specific plant
compartments. However, it can also be triggered by growing cells
against microfabricated obstacles, in narrow gaps, or by affecting
turgor (Bonazzi et al., 2014; Burri et al., 2018; Haupt et al., 2018;
Reimann et al., 2020; Sanati Nezhad et al., 2013; Thomson et al.,
2015; Zhou et al., 2021). One study analyzed the behavior of pollen
tubes passing through gaps of different sizes and observed increased
diameters after cells pass through gaps, suggesting that tip CWs
become softer when facing increased mechanical resistance (Sanati
Nezhad et al., 2013). Other evidence of mechanical feedback comes
from growing pollen tubes in matrices with different stiffnesses. By
studying different species, a ‘durotropic’ behavior was observed for
pollen tubes from species where transmitting tracts are solid – tubes
growth rates increase in stiff matrix – and the opposite for tubes from
species with hollow tracts (Reimann et al., 2020). Mechanistically,
pollen tube growth in a stiffer medium could decrease callose and
pectin synthesis, making the CW more deformable (Parre and
Geitmann, 2005a,b).
Growth arrest that occurs upon the presence of physical obstacles

might also alter the location of CW assembly, by causing cortical
polar domains of active Rho-GTPases to detach from cell tips, and
to reform along a mechanically favorable direction that drives polar
CW synthesis and growth away from the obstacle (Brand et al.,
2007; Burri et al., 2018; Haupt et al., 2018; Thomson et al., 2015)
(Fig. 3C). This process, often called ‘thigmotropism’, supports the
existence of positive feedback between growth and polarity
stability, and might allow pathogenic fungi to sense substrate
topology and mechanics to optimize navigation in host tissues
(Almeida and Brand, 2017).
Overall, tip-growing cells are equipped with homeostatic feedback

mechanisms that allow them to modulate CW mechanics and/or
reorient sites of synthesis when facing mechanical resistance. How
growth modulations, contact with a physical barrier, or more
generally mechanical cues on the cell surface, may be sensed by

cells, to feedback onto CW synthase, Rho-GTPase activity, vesicle
trafficking or Ca2+ signaling, is therefore an important open question,
which we discuss in the next section.

Molecular mechanisms for CW mechanosensation
CW mechanosensors
Perturbations in the CW might be directly sensed by proteins
embedded in the CW. In fungi, a conserved class of sensors are
those that activate the CW integrity signaling pathway (CWI),
which promotes CW synthesis in response to damages, such as
those caused by CW-perturbing chemicals (Cansado et al., 2021;
Dichtl et al., 2016). These sensors belong to the ‘cell wall integrity
and stress response component’ (WSC) or ‘mating-induced death’
(MID) families. They can signal to downstream effectors of the
CWI, including guanine nucleotide exchange factors (RhoGEFs)
that activate Rho for CW synthesis, and protein kinase C, which is
upstream of a MAPK cascade that controls CW regulatory genes
(Fig. 4B). Typically, fungal mutants lacking these sensors exhibit
reduced colony growth, frequent tip bulging and bursting that can be
suppressed by an osmostabilizer, indicative of soft and fragile CWs
(Cruz et al., 2013; Dichtl et al., 2012; Maddi et al., 2012; Ohsawa
et al., 2017; Rodicio et al., 2008; Tong et al., 2016). Both sensor
types share a similar structure of a signal peptide, a head group, an
extracellular serine/threonine-rich (STR) domain, embedded in the
CW, followed by a transmembrane domain and a cytoplasmic tail
(Elhasi and Blomberg, 2019; Rodicio and Heinisch, 2010)
(Fig. 4A). The head group differs between families; MID-type
sensors have a N-glycosylated asparagine, whereas the WSC-type
have a polysaccharide-binding WSC domain (Heinisch et al., 2010;
Wawra et al., 2019). The STR domain is highly glycosylated and
AFM experiments suggest it behaves like a ‘nano-spring’
∼30–50 nm in length, that could potentially compress when
forces are applied to the CW (Dupres et al., 2009). Accordingly,
both MID-type and WSC-type sensors have been suggested to be
involved in the survival of cells grown under mechanical
compression (Delarue et al., 2017; Mishra et al., 2017; Neeli-
Venkata et al., 2021). In addition, a recent study showed that fission
yeast Wsc1 can form large clusters in subcellular regions where the
CW is subjected to enhanced mechanical stress, allowing the
formulation of hypotheses for how cells might detect local forces on
their CW (Neeli-Venkata et al., 2021) (Fig. 4B).

Other fungal CW sensors might help cells cope with mechanical
stresses by regulating turgor. In fungi, the high-osmolarity glycerol
(HOG) pathway is essential for the adaptation of turgor to
hyperosmotic conditions, with the mucin proteins Hkr1 and Msb2
serving as putative surface sensors (Saito and Posas, 2012). These
are transmembrane proteins with a large glycosylated STR domain
followed by a Hrk1-Msb2 homology (HMH) domain, which both
are embedded in the CW, a transmembrane domain and a
cytoplasmic tail (Fig. 4A). Both form clusters at the cell surface
when subjected to hyperosmotic stresses, and have been proposed to
detect CW tension through a conformational change that exposes
the HMH domain and activates the HOG pathway (Tatebayashi
et al., 2007; Yang et al., 2009). Msb2, but not Hrk1, is also involved
in the adaptation of cell growth under mechanical compression
(Delarue et al., 2017). MsbA, the Msb2 ortholog in the fungus
Aspergillus fumigatus, is a CWI sensor that influences CW
composition, thickness and cell growth (Gurgel et al., 2019)
(Fig. 4B).

Several CW-binding mechanosensors have also been identified
in plants and described in excellent recent reviews (Anderson and
Kieber, 2020; Bacete and Hamann, 2020; Monshausen and
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Haswell, 2013; Rui and Dinneny, 2020). Here, we focus on those
characterized in tip-growing cells. The transmembrane
Catharanthus roseus receptor-like kinase (CrRLKs) subfamily is
found throughout the plant kingdom, and many members have been
implicated in tip growth (Boisson-Dernier et al., 2011; Franck et al.,
2018; Nissen et al., 2016). Among them, FERONIA/SIRENE
(FER/SIR) has attracted most attention. Loss-of-function feronia
( fer) mutants are characterized by retarded growth with short,
collapsed or bursting root hairs (Duan et al., 2010; Li et al., 2015),
suggesting an impaired CW integrity and a loss of mechanical
transduction. Indeed, fer-mutant roots exhibit diminished ability to
penetrate hard agar as compared to wild-type roots, reflecting a
defective adaptation of CW mechanical rigidity (Shih et al., 2014).
In analogy with STR- and WSC-domain-containing sensors in
fungi, FER has been proposed to interact with pectins to detect
defects in the CW under stress and elicit Ca2+ signaling to reinforce
pectins and preserve surface integrity (Feng et al., 2018). Finally,
the cytoplasmic domain of FER also activates the GEF-plant Rho
GTPase (ROP/ARAC), which subsequently phosphorylates
RBOHD (Franck et al., 2018) to produce reactive oxygen species
(ROS) that control root hair development (Duan et al., 2010).
CrRLKs involved in pollen tube growth have also been identified

in Arabidopsis thaliana. In particular, BUDDHA’S PAPER SEAL
1 and 2 (BUPS1 and BUPS2) are required for normal tip growth of
pollen tubes, and mutations in BUPS1 drastically reduce fertility
(Ge et al., 2017; Zhou et al., 2021; Zhu et al., 2018). BUPS1 was
recently shown to sense mechanical changes of the CWand promote
CW strengthening when pollen tube tips emerge from compressing
female tissues (Zhou et al., 2021). Indeed, mutants with pollen tube
BUPS1 knockdown (amiRBUPS1-1) grown in a microfluidic

channel, to mimic the confined in vivo pistil growth path, exhibit
a much higher rupture frequency than wild-type pollen tubes when
they emerge from a narrow structure; this impaired CW integrity
was associated with defects in the adjustment of CW rigidity (Zhou
et al., 2021). BUPS1 and BUPS2 interact with other CrRLKs, such
as ANXUR1 (ANX1) and ANX2, and both receptors bind to the
RALF4 and RALF19 signal peptides to maintain pollen tube
integrity (Ge et al., 2017; Mecchia et al., 2017; Zhou et al., 2021;
Feng et al., 2018; Ge et al., 2017; Xiao et al., 2019). This binding
activates a signaling cascade involving a RopGEF, ROP1 and a
NADPH oxidase, which leads to ROS production to produce tip-
localized H2O2. ROS also mediates activation of Ca2+ channels and
subsequent exocytosis of CW materials, as well as RALF4, to
amplify the signal (Zhou et al., 2021) (Fig. 4C).

Other putative mechanosensing systems
Other types of plant and fungal surface sensors might indirectly
regulate CW integrity, or turgor, without interacting with CW
polysaccharides. For instance, in A. thaliana, the plasma membrane
MSL channels, which are homologs of the Escherichia coli
mechanosensitive MscS channels, have been proposed to serve as
tension-regulated osmotic safety valves. They enable cells to loose
ions to decrease turgor in response to hypoosmotic shocks that tense
the cell surface (Basu and Haswell, 2017). Notably, in pollen tubes
of A. thaliana, MscS-LIKE IONS CHANNEL 8 (MSL8) is required
for cellular integrity during germination and tube growth (Hamilton
et al., 2015) (Fig. 4A). In fission yeast, the homologs of these
channels, Msy1 and Msy2, localize to the endoplasmic reticulum
and are essential for turgor adaption and survival under
hypoosmotic conditions (Nakayama et al., 2012).

Mid1 and Cch1 are the subunits of a conserved stretch-activated
Ca2+ channel that localizes in the plasma membrane (Kanzaki, 1999)
(Fig. 4A). This channel has been suggested to promote CW integrity
by sensing compressive stress in budding yeast (Mishra et al., 2017).
In Candida albicans, Mid1 mediates the re-orientation of hyphal
growth in response to changes in topography (Brand et al., 2007), and
in N. crassa, mid-1 mutants exhibit slow growth and lower turgor
than seen in wild type (Lew et al., 2008). Furthermore, fission yeast
mutants of Yam8, the Mid1 ortholog, are hypersensitive to CW-
damaging agents (Carnero et al., 2000; Tasaka et al., 2000). MID1
COMPLEMENTING ACTIVITY 1 (MCA1) and MCA2 are two
Ca2+-permeable mechanosensitive channels that have been identified
in A. thaliana based on partial complementation of Mid1-deficient
budding yeast, and exhibit weak similarity to yeast Mid1 (Yoshimura
et al., 2021). Although their role in tip growth is unknown, the
inability of roots of mca1-null mutants or mca1- and mca2-null
double mutants to penetrate a harder medium suggests that these
proteins have a role inmediatingmechanical feedback (Furuichi et al.,
2012; Nakagawa et al., 2007; Yamanaka et al., 2010).

Pkd2 is a membrane channel of the transient receptor potential
(TRP) family, which influences CW synthesis and Ca2+ homeostasis
in fission yeast and is essential for cell viability (Aydar and Palmer,
2009; Ma et al., 2011). It has recently been described as a putative
surface sensor that regulate turgor (Sinha et al., 2022). Finally, Sln1 is
a transmembrane histidine kinase, that act as another upstream surface
sensor of the HOG pathway (Reiser et al., 2003; Saito and Posas,
2012). It mediates the large upregulation of turgor during fungal
appressorium formation needed for plant infection (Ryder et al.,
2019). Interestingly, two Sln1 orthologs, the Arabidopsis thaliana
histidine kinases AHK1 andCRE1, have also been proposed as turgor
sensors based on their ability to complement budding yeast sln1Δ
(Reiser et al., 2003; Urao et al., 1999).

Fig. 4. Molecular mechanisms for mechanosensation in the cell wall.
(A) Schematic illustration of the structure of some plant and fungi
mechanosensors – the CWI sensors from Schizosaccharomyces pombe,
Wsc1 and Mid2, the HOG sensor Msb2 from Saccharomyces cerevisiae, the
plant CrLKs, FER, ANX1 and ANX2 (ANX1/2), BUPS1 and BUPS2
(BUPS1/2), the mechanosensitive MSL8 channels from A. thaliana and
Mid1–Cch1 from Saccharomyces cerevisiae. STR, serine/threonine-rich;
TMD, transmembrane domain; HMH, Hrk1-Msb2 homology. (B) Top,
overview of some characterized surface sensors in plant and fungal tip-
growing cells. In response to CW stress (denoted with σ) or modulation of its
mechanical properties, these might alter their conformation, that is, STR-
domain-containing sensors might compress, bend and/or cluster, and
membrane ion channels could open. These changes then lead to the
downstream activation of repair pathways that adapt the properties of CW or
turgor (mechanoadaptation). Middle, illustration of a proposed mechanism
for mechanosensing in the fungal CW by Wsc1 in the fission yeast
Schizosaccharomyces pombe. The WSC domain could mediate clustering
of the sensor to optimize mechanosensing, whereas a glycosylated STR
domain might compress to activate CW synthesis through Rho1 and Pck1
and Pck2 (Pck1/2), which initiate a MAPK cascade. Bottom, in pollen tubes
following mechanical stress, RALF4 and/or RALF19 signal peptides interact
with BUPS1/2–ANX1/2 to activate a signaling cascade involving ROP1 and
a NADPH oxidase (RBOH H/J) that leads to tip-localized ROS production.
ROS also mediate activation of Ca2+ channels and subsequent exocytosis of
CW materials, as well as of RALF4, to amplify the signal. (C) Examples of
phenotypes associated with mutants in different mechanosensors. Top, tip
bursting in pollen tubes of knockdown mutant amiRBUPS1 (arrows).
Adapted from Zhou et al. (2021) with permission from Elsevier. Middle,
ΔwscA mutant of the fungus A. nidulans, which forms large bulges indicative
of weakened CWs (WscA is a Wsc1 homolog in A. nidulans). Adapted from
Futagami et al. (2011) with permission from the American Society of
Microbiology. Bottom, ΔmsbA mutant of the fungus A. fumigatus exhibit a
thicker CW indicative of defects in the homeostatic systems that control
synthesis (MsbA is a Msb2 homolog in A. fumigatus). Adapted from Gurgel
et al. (2019), where it was published under a CC-BY 4.0 license. Scale
bars: 200 μm (top); 10 μm (middle); 0.5 μm (bottom).
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Mathematical models for mechanosensing
Although quantitative data for how walled cell mechanosensors
detect and transduce surface forces are still mostly lacking,
mathematical models might help researchers to understand which
signals and properties of the signals (e.g. their time-average,
increments and/or pulses) are sensed, and guide future experiments
(Fruleux et al., 2019). The stretch-activated mechanosensitive
channels introduced above have received considerable attention
(Basu and Haswell, 2017). Models have been established to
reproduce the observed relationships between membrane tension (or
osmotic pressure) and ionic current (Monshausen and Haswell,
2013) by considering the free energy landscape of the protein
complex and its interaction with the plasma membrane (Wiggins
and Phillips, 2004; 2005). The incorporation of membrane-
mediated interactions between the channels in these models gives
rise to cooperative gating (Haselwandter and Phillips, 2013), which
could help buffer noise and avoid small-scale or transient
mechanical fluctuations being transduced. Such buffering could
also be mediated by sensor clustering and cooperative sensing, to
form ‘sensosomes’ as well described in the case of animal integrins,
which form clusters at focal adhesions. The state and dynamics
of integrins can be modeled using reaction–diffusion equations
(Ali et al., 2011;Welf et al., 2012). Here, the prediction of clustering
relies on a reduction of integrin diffusion when a force is applied to
their extracellular domain (Ali et al., 2011) or when they bind to the
extracellular matrix (Welf et al., 2012). It remains to be tested
whether similar models applied to CW mechanosensors could
explain their clustering in response to force as observed in yeast
(Neeli-Venkata et al., 2021).

Conclusions
As is the case for animal mechanobiology, the field of
mechanobiology of cells with a CW is progressing thanks to the
combination of mechanical measurements, mechanical
manipulations, mathematical models and characterization of
mechanotransduction pathways. Interestingly, akin to animal cell
behavior, both fungal and plant cells can exploit mechanochemical
feedback to actively sense the mechanics of their environment or
contact with their neighbors, and rapidly adapt their CWand growth
properties. The existence of surface sensors that directly interact
with CW polysaccharides, and form clusters as putative
‘sensosomes’ to mediate mechanosensing is also reminiscent of
how animal sensors, such as integrins, interact with the extracellular
matrix to sense tensile forces (Elhasi and Blomberg, 2019; Ingber,
2003). However, the existence of a CW leads to additional
challenges – measuring large forces associated with turgor
pressure, characterizing the dynamics of CW composition, as it is
difficult to visualize specific polysaccharides in vivo, and properly
dissecting the function of CWmechanosensing pathways, given the
dramatic effects a defective CW has on plant or fungal development.
Consequently, many aspects of CW mechanobiology remain
unclear. Notably, how the composition and structure of the CW
determine its expansion, how surface forces are detected, and how
they feedback on the CW remain outstanding open questions. We
envisage future progress in the field to come from studying a
broader range of species, the generation of new fluorescent CW
tags, or from reconstituting synthetic CWs with known composition
and structure to better understand mechanosensing (Calcutt et al.,
2021; Luo et al., 2015; Shi et al., 2019).
Finally, although the functions, geometries and compositions of

CWs vary greatly among plant and fungal cells, our comparative
survey in tip-growing cells suggest common shared general

principles. These include similar orders of magnitude of turgor
and CW elastic moduli and the presence of mechanical gradients
(Table 1), as well as the dynamic regulation of CW mechanics or
turgor by similar mechanochemical pathways, often implicating the
same types of proteins. We speculate that these common principles
have been selected in evolution as they serve as minimal ingredients
to support integrity and fast expansion in tip-growing cells.
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Carballido-López, R. (2006). Orchestrating bacterial cell morphogenesis. Mol.
Microbiol. 60, 815-819. doi:10.1111/j.1365-2958.2006.05161.x

Cardenas, L., Lovy-Wheeler, A., Kunkel, J. G. and Hepler, P. K. (2008). Pollen
tube growth oscillations and intracellular calcium levels are reversibly modulated
by actin polymerization. Plant Physiol. 146, 1611-1621. doi:10.1104/pp.107.
113035
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