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Structure of fluctuating thin sheets under random forcing
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We propose a mathematical model to describe the athermal fluctuations of thin sheets driven by the type of
random driving that might be experienced prior to weak crumpling. The model is obtained by merging the Föppl–
von Kármán equations from elasticity theory with techniques from out-of-equilibrium statistical physics to obtain
a nonlinear strongly coupled φ4-Langevin field equation with a spatially varying kernel. With the aid of the
self-consistent expansion (SCE), this equation is analytically solved for the structure factor of a fluctuating sheet.
In contrast to previous research which has suggested that the structure factor follows an anomalous power law,
we find that the structure factor in fact obeys a logarithmically corrected rational function. Numerical simulations
of our model confirm the accuracy of our analytical solution.
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I. INTRODUCTION

Thin sheets are able to exhibit a remarkable variety of
structures with extreme variation in complexity. For example,
the same sheet of paper can be used to construct a sim-
ple greeting card, an intricate work of origami, or a “mere”
crumpled ball. Though obtaining the crumpled ball certainly
requires less deliberation, the underlying structure is no less
complex than that of the origami artwork. Indeed, though the
structure of a randomly crumpled sheet has been the subject
of active research, both experimentally [1–9] and through
modeling [1,10–12], a mathematical theory derived from first
principles remains lacking.

Early work on crumpling focused on membranes or so
called “tethered sheets” in which a two-dimensional triangular
lattice of spheres with fixed distances between neighboring
spheres is randomly fluctuated in space [13–18]. The great
advantage of such models is that they are readily generalized
to include the effects of self-avoidance, an important prop-
erty in the context of strong crumpling [10]. An interesting
insight that was used in these early works is a useful analogy
with two-dimensional models of Heisenberg ferromagnetism,
where one could think of the normals to the surface as Heisen-
berg spins. In this framework, a flat sheet corresponds to a
ferromagnetic state while a crumpled sheet to a paramagnetic
state.

The subsequent development of a mathematical theory
which included elastic effects led to a description of the
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various types of singular structures which can arise within thin
sheets, notably, structures such as ridges and d-cones [19–25].
From the theory of elasticity, it is known that thin sheets un-
dergo two types of deformation—energetically cheap bending
and energetically expensive stretching. The theory of ridges
and d-cones describes from first principles how stretching be-
comes highly localized in thin sheets to minimize the energy
expenditure and these become the creases of a folded sheet.
This theory, however, has only been successfully applied to
characterize situations with relatively few ridges.

In this paper we propose a different approach, combin-
ing methods from elasticity theory with out-of-equilibrium
statistical physics. From elasticity theory we consider the
Föppl–von Kármán equations—the theory of linear elasticity
applied to thin sheets while also accounting for the geo-
metric nonlinear effects of deformation [26]. The result is a
pair of coupled nonlinear partial differential equations which
describe the deformation of thin sheets and though these
equations are difficult to solve in general, it has indeed been
shown that ridges and d-cones are particular solutions [20,21].
By studying a dynamic noisy variant of these equations, we
are able to model a thin sheet subjected to a continually
varying athermal random force. In this manner we are able
to begin characterizing the structure of a randomly fluctuating
thin sheet, a structure which could conceivably resemble to
some degree the structure of a crumpled sheet. The underlying
logic here being that it is the pure elastic deformations that
set the fundamental modes of the sheet and these are then
plastified into creases by some irreversible process when the
curvature is large. From this perspective, a weakly crum-
pled sheet is a nonlinear echo of its elastic fluctuations.
Similar arguments are indeed often invoked in the study
of irreversible processes in mechanical systems. A famous
example being the fragmentation of thin rods, described in
[27,28], where the points that a buckled thin rod snaps are the
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points of maximal curvature of the purely elastically deformed
rod.

Indeed, the question of characterizing the structure of fluc-
tuating thin sheets is a fundamental one in its own right with
ramifications spanning a diversity of fields [29]. Applications
range from the biophysics of cell membranes [30], to the
properties of graphene [31–36], to the character of wave tur-
bulence [37–45]. In recent years, it has become apparent that
the precise structure of fluctuating thin sheets is important for
understanding their mechanical and elastic properties [46–51]
as well as their acoustic [52,53] and optical emissions [54].
Accordingly, we consider the lack of an out-of-equilibrium
model for fluctuating surfaces as a deficiency which we begin
to remedy here.

The paper is organized as follows. In Sec. II we outline and
prepare the variant of the Föppl–von Kármán equations which
we intend to study while in Sec. III we use a method known
as the self-consistent expansion (SCE) to obtain analytical
solutions for the structure factor of a fluctuating sheet. In
Sec. IV our solution is compared with numerical simulations
of the dynamic Föppl–von Kármán equations and the conclu-
sions are discussed in Sec. V. Various technical details of the
solution derived in Sec. III are postponed to an Appendix.

II. THE OVERDAMPED DYNAMIC FÖPPL–VON KÁRMÁN
EQUATIONS

The Föppl–von Kármán equations

Pex = Eh3
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∇4ξ

− h
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∂y2
+ ∂2ξ

∂y2
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, (1)

0 = ∇4χ + E

[
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−
(

∂2ξ
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)2
]

(2)

have long been used to study the equilibrium out-of-plane
displacement ξ (x, y) of a thin sheet subject to an external
pressure Pex. Here h denotes the thickness of the sheet, E
its Young modulus, and ν its Poisson ratio. The scalar field
χ (x, y) is the Airy stress potential of the deformation. The
Monge parametrization used, in which the vertical displace-
ment ξ (x, y) is written as a function of x and y, implies
that we consider deformations that are mostly flat and thus
we will only focus in the continuation on weak fluctuations.
Clearly self-avoidance of any real sheet further strengthens
this assumption.

To study a driven system we simply apply Newton’s second
law to each element of the sheet with density ρ,

hρ
∂2ξ

∂t2
= −Pex + Pdamping + Pdriving. (3)

Though similar equations have been studied in the context
of wave turbulence [37–45], our approach deviates from
this prior research in that we consider specific damping and
driving pressures. In particular, for the damping, we con-
sider ordinary fluid friction Pdamping = −α

∂ξ

∂t where α denotes
the coefficient of friction while for the driving we consider

zero-mean conserved Gaussian noise Pdriving = η(�r, t ) with
noise amplitude D, that is,

〈η(�r, t )〉 = 0, (4)

〈η(�r, t )η(�r ′, t ′)〉 = −Dδ(t − t ′)∇2δ(�r − �r ′). (5)

While other driving forces such as thermal fluctuations could
certainly be considered, our aim here is to develop a mini-
mal model for the type of athermal fluctuations one might
expect immediately prior to crumpling. In the spirit of crit-
ical phenomena models that incorporate the symmetries and
conserved quantities of their systems, we impose conserved
noise on the sheet as this ensures that the sheet’s center of
mass will not wander in space. Indeed, any more specific form
of noise which is consistent with the conservation of center
of mass could also be considered. Applying the principle of
parsimony however, any more specific form would need ad-
ditional justification, for example, by being experimentally
motivated.

Finally, in further contrast to the wave turbulence con-
text, we focus on the overdamped limit in which the inertia
term hρ

∂2ξ

∂t2 can be neglected relative to the damping term.
Ultimately, this gives the overdamped dynamic Föppl–von
Kármán equation

α
∂2ξ

∂t
+ Eh3

12(1 − ν2)
∇4ξ

− h

(
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)
= η(�r, t ). (6)

Together with Eq. (2), this equation describes the stochastic
time varying deformation of a sheet fluctuating under the
influence of conserved Gaussian noise. Alternatively, for a
sheet of dimensions L × L, Eqs. (2) and (6) can be written
in Fourier space and combined into the single equation

α
∂ξ̃�n
∂t

+ (2π )4

L4

Eh3

12(1 − ν2)
|�n|4ξ̃�n

+ (2π )4

L4

hE

2

∑
��1 �=�n

∑
��2

∑
��3

V�n,��1,��2,��3
ξ̃��1

ξ̃��2
ξ̃��3

= η̃�n(t ), (7)

where the kernel of the sum V�n,��1,��2,��3
, given by

V�n,��1,��2,��3
= δ�n,��1+��2+��3

|�n × ��1|2| ��2 × ��3|2
|�n − ��1|4

, (8)

is simply the Fourier transform of the transverse projection
operator of the sheet deformation [29,55], having denoted
�n × �� = nx�y − ny�x. Here ξ̃�n = ξ̃�n(t ) and η̃�n(t ) denote the
Fourier components of ξ (�r, t ) and η(�r, t ), respectively, that is
ξ (�r, t ) = ∑

�n ξ̃�n(t )ei 2π
L �n·�r and similarly for η(�r, t ). The sums

in Eq. (7) are carried out over all integer lattice points of R2

excluding the point ��1 = �n. As the nonlinear term of Eq. (7)
is essentially a quartic interaction, this equation can also be
thought of as a type of Langevin φ4-field theory [56] deco-
rated by a nontrivial spatially varying kernel V�n,��1,��2,��3

. It is
worth noting that the zeroth mode, �n = 0, of Eq. (7) vanishes
and thus ξ̃�0 remains constant in time. Accordingly, not only is
the noise conservative (by design) but the deterministic forces

033096-2



STRUCTURE OF FLUCTUATING THIN SHEETS UNDER … PHYSICAL REVIEW RESEARCH 4, 033096 (2022)

are as well, though this conservation is achieved in a different
manner than model B within the classical classification of Ho-
henberg and Halperin [57] where a Laplacian is also applied
to the deterministic forces.

It will be convenient to work with a nondimensionalized
form of Eq. (7). To this end we can define the dimensionless
length, time, vertical displacement, and noise in Fourier space:

r̄ = �r/L, (9)

t̄ = [(2π )6hDE/(α3L8)]1/2t, (10)

ξ̄�n(t̄ ) = [(2π )2αhE/D]1/4ξ̃�n(t ), (11)

η̄�n(t̄ ) = {α3L16/[(2π )10hD3E ]}1/4η̃�n(t ), (12)

which gives rise to the nondimensionalized equation

∂ξ̄�n
∂ t̄

+ g|�n|4ξ̄�n + 1

2
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∑
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V�n,��1,��2,��3
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ξ̄��2
ξ̄��3

= η̄�n(t̄ )

(13)

containing the single dimensionless parameter

g = 2π

12(1 − ν2)

√
αh5E

D
(14)

and nondimensionalized zero-mean conserved Gaussian noise
with covariance

〈η̄�n(t̄ )η̄�n′ (t̄ ′)〉 = |�n|2δ�n,−�n′δ(t̄ − t̄ ′). (15)

Since the dimensionless parameter g scales like h5/2, g will
be small for sufficiently thin sheets. Indeed, a typical sheet of
aluminum foil or steel would have a thickness h ∼ 0.5 mm
and Young’s modulus E ∼ 200 GPa. The magnitude of the
driving force needed to induce fluctuations has been measured
in [40] as being around D ∼ 5 × 10−3 N2/Hz. The frequency
dependent frictional damping rate γ ( f ) of a fluctuating steel
sheet has been measured in [42] as being constant for small
frequencies and slowly growing for large frequencies at a rate
of γ ∼ f 0.6. Since we intend to describe the large scale fea-
tures of a fluctuating sheet and γ anyway grows slowly with
large frequencies, little is lost by treating γ as constant. From
[42] we thus take γ ∼ 5 Hz. Since the coefficient of friction
is simply α = ρhγ where ρ ∼ 8 × 103 kg m−3 denotes the
density of the sheet and (1 − ν2) ∼ 1, we obtain under typ-
ical circumstances that g ∼ 0.1 which is indeed significantly
smaller than unity. For even thinner sheets or more violent
driving forces, g will only shrink and thus it is clear that the
physically interesting case is indeed g 	 1.

Equation (13) is a nonlinear Langevin equation for a type
of quartic interaction and thus describes the sheet’s structure
both in-equilibrium and out-of-equilibrium, that is, in princi-
ple, Eq. (13) can be used to obtain both static moments (equal
time) such as the sheet’s structure factor

S�n = 〈ξ̄�n(t̄ )ξ̄−�n(t̄ )〉 (16)

and time-dependent moments such as the time-dependent cor-
relation function

S�n(t̄1, t̄2) = 〈ξ̄�n(t̄1)ξ̄−�n(t̄2)〉. (17)

Though the methods used in the continuation can be applied
to both static and time-dependent quantities, in the following
we will focus only on determining the static structure factor
and will defer the slightly more involved analysis of time-
dependent quantities to the future.

It is interesting to mention here that based on the analogy
to the Heisenberg model, the static structure factor is also
related to the correlations between normals to the surface.
As explained in [55] the tipping angles θ (x, y) of the nor-
mals relative to the z axis obey approximately 〈θ2(x, y)〉 

〈|∇ξ (x, y)|2〉.

Examining Eq. (13), one sees that the small parameter g
appears in front of the linear part and thus we find that the
fluctuations in the vertical displacement are strongly coupled
to the nonlinear term. On the other hand, the linear term also
grows rapidly with �n since it is proportional to |�n|4. As such,
any perturbative expansion around the linear part of Eq. (13)
which merely treats the nonlinear term as a small correction
would be meaningless. At the same time, the linear term
itself can also not simply be neglected. Accordingly, a more
sophisticated approach is required.

III. THE SELF-CONSISTENT EXPANSION (SCE)

The self-consistent expansion (SCE) can be conceived
of as a renormalized perturbation theory [58] capable of
providing series approximations even in the presence of
strong coupling. It has been used to solve systems similar
to our own such as the KPZ equation and its variations
[59–67], fracture and wetting fronts [68,69], and turbulence
[70]. Additionally, the SCE is known to provide an extremely
successful solution to the zero-dimensional φ4 theory giving
good results at low orders and providing exact convergence
at high orders [71,72]. Accordingly, it is reasonable to
suppose that the SCE might shed light on our system as
well. Though both simple self-consistent arguments [55]
and more sophisticated self-consistent epsilon expansions in
d = 4 − ε dimensions [73,74] have previously been applied
to closely related problems, the approach presented here has
the advantages of being natural, transparent, and directly
applicable to the problem at hand.

A. The Fokker-Planck equation

To apply the SCE to our system, it is convenient to write
its corresponding Fokker-Planck equation [75]

∂P

∂ t̄
= OP, (18)

where P = P({ξ̄�n}, t̄ ) denotes the probability that the system
will have Fourier components {ξ̄�n} at time t̄ and O denotes
the Fokker-Planck operator for our system. For Eq. (13), the
Fokker-Planck equation takes the explicit form

∂P

∂ t̄
= 1

2

∑
�n

|�n|2 ∂2P

∂ξ̄�n∂ξ̄−�n
+ g

∑
�n

|�n|4 ∂

∂ξ̄�n
(ξ̄�nP)

+ 1

2

∑
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∂

∂ξ̄�n

⎡
⎣P

∑
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∑
��2

∑
��3
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ξ̄��1

ξ̄��2
ξ̄��3

⎤
⎦, (19)
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where we have denoted ξ̄�n = ξ̄�n(t̄ ) for the sake of conciseness.
Multiplying this equation by any functional F ({ξ̄�n}) of the
Fourier components of the field ξ and integrating over all ξ̄�n
gives after some integration by parts

∂〈F〉
∂ t̄

= 1

2

∑
�n

|�n|2
〈

∂2F

∂ξ̄�n∂ξ̄−�n

〉
− g

∑
�n

|�n|4
〈
∂F
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ξ̄�n

〉

− 1

2

∑
�n

∑
��1 �=�n

∑
��2

∑
��3

V�n,��1,��2,��3

〈
∂F

∂ξ̄�n
ξ̄��1

ξ̄��2
ξ̄��3

〉
, (20)

where we have defined the expectation values

〈F〉 =
∫ ∏

�n
d ξ̄�n F ({ξ̄�n})P({ξ̄�n}, t̄ ). (21)

In this paper we will only consider static quantities and thus
the left-hand side of Eq. (20) will vanish. When the function
F ({ξ̄�n}) is chosen such that 〈F〉 is a moment of P({ξ̄�n}, t̄ ),
Eq. (20) becomes an equation relating different moments to
each other. For example, for F = ξ̄�nξ̄�n′ , Eq. (20) reads

0 = |�n|2δ�n,−�n′ − g(|�n|4 + |�n′|4)〈ξ̄�nξ̄�n′ 〉

− 1

2

∑
��2

∑
��3

⎡
⎣∑

��1 �=�n
V�n,��1,��2,��3

〈
ξ̄�n′ ξ̄��1

ξ̄��2
ξ̄��3

〉

+
∑
��1 �=�n′

V�n′,��1,��2,��3

〈
ξ̄�nξ̄��1

ξ̄��2
ξ̄��3

〉⎤⎦, (22)

which expresses the second moment 〈ξ̄�nξ̄�n′ 〉 in terms of the
fourth moment 〈ξ̄�nξ̄��1

ξ̄��2
ξ̄��3

〉. We could obtain an expres-
sion for the fourth moments by subbing F = ξ̄�n1 ξ̄�n2 ξ̄�n3 ξ̄�n4

into Eq. (20) though the resulting expression would need
knowledge of the sixth moment. Reminiscent of the BBGKY
hierarchy [76–78], this property is generic and deciding how
to implement closure to these equations is a complicated
question. Ideally, we would like to argue that the higher order
moments only contribute at a higher order such that they can
be neglected at zeroth order and used to perturbatively correct
subsequent orders. As discussed at the end of Sec. II, the
strong coupling of the nonlinear term guarantees that such a
perturbative expansion is destined to fail.

B. The self-consistent expansion

Instead, the SCE methodology argues that though we can-
not neglect the higher order moments relative to the lower
order ones, there might exist some other linear theory which
we can expand around instead. That is, we can define a linear
operator

O0P = 1

2

∑
�n

|�n|2 ∂2P

∂ξ̄�n∂ξ̄−�n
+
∑

�n
�|�n|

∂

∂ξ̄�n
(ξ̄�nP), (23)

where �|�n| is a free parameter which will be determined in the
continuation and rewrite Eq. (18) as

∂P

∂ t̄
= O0P + (O − O0)P. (24)

At this stage one can think of �|�n| as an unknown renormaliza-
tion of the the bending rigidity, related to κR(q) in [55], and its
precise significance will become apparent as the calculation
proceeds.

Explicitly in terms of moments, this equation becomes

0 = 1
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〉
−
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〉

−
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(g|�n|4 − �|�n|)
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〉

− 1

2

∑
�n

∑
��1 �=�n

∑
��2
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V�n,��1,��2,��3

〈
∂F

∂ξ̄�n
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ξ̄��2
ξ̄��3

〉
. (25)

�|�n| can be thought of as an effective coupling constant such
that corrections to this linear theory are kept small. The value
of �|�n| will be determined in the continuation though due to the
isotropic character of our system, we have however already
assumed that it can only depend on the size of �n and not its
direction. Now if 〈F〉(m) denotes an mth order expansion of
〈F〉, then by assumption, the latter terms which follow from
the nonlinear operator (O − O0) will contribute at a higher
order and thus we can devise an iterative scheme

0 = 1
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∑
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|�n|2
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∂ξ̄�n∂ξ̄−�n

〉(m)

−
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�n
�|�n|

〈
∂F

∂ξ̄�n
ξ̄�n

〉(m)

−
∑

�n
(g|�n|4 − �|�n|)

〈
∂F

∂ξ̄�n
ξ̄�n

〉(m−1)

− 1

2

∑
�n

∑
��1 �=�n

∑
��2

∑
��3

V�n,��1,��2,��3

〈
∂F

∂ξ̄�n
ξ̄��1

ξ̄��2
ξ̄��3

〉(m−1)

(26)

relating higher order moments to lower order ones. This equa-
tion can now be used to obtain any moment up to any order.
For example, to obtain the second moment at zeroth order, it is
sufficient to sub F = ξ̄�nξ̄�n′ and m = 0 into Eq. (26), in which
case the (m − 1) terms drop out and one immediately obtains

〈ξ̄�nξ̄�n′ 〉(0) = |�n|2
2�|�n|

δ�n,−�n′ . (27)

Similarly, subbing in F = ξ̄�n1 ξ̄�n2 ξ̄�n3 ξ̄�n4 and m = 0 ultimately
gives the four-point function at zeroth order as

〈ξ̄�n1 ξ̄�n2 ξ̄�n3 ξ̄�n4〉(0) = 〈ξ̄�n1 ξ̄�n2〉(0)〈ξ̄�n3 ξ̄�n4〉(0)

+ 〈ξ̄�n1 ξ̄�n3〉(0)〈ξ̄�n2 ξ̄�n4〉(0)

+ 〈ξ̄�n1 ξ̄�n4〉(0)〈ξ̄�n2 ξ̄�n3〉(0)
, (28)

which is just Isserlis’ theorem [79,80], also known as Wick’s
theorem [78], for the four-point function of a multivariate
Gaussian distribution.

To study the effect of the nonlinearity, we proceed to higher
orders. Subbing in F = ξ̄�nξ̄�n′ and m = 1 gives the following
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expression for the two-point function at first order:

(�|�n| + �|�n′|)〈ξ̄�nξ̄�n′ 〉(1) = |�n|2δ�n,−�n′ − 2(g|�n|4 − �|�n|)〈ξ̄�nξ̄�n′ 〉(0)

− 1

2

∑
��1 �= �n
��2, ��3

V�n,��1,��2,��3

〈
ξ̄�n′ ξ̄��1

ξ̄��2
ξ̄��3

〉(0)

− 1

2

∑
��1 �= �n′
��2, ��3

V�n′,��1,��2,��3

〈
ξ̄�nξ̄��1

ξ̄��2
ξ̄��3

〉(0)
,

(29)

where we have already found expressions for the zeroth order
two-point and four-point functions. Subbing in these expres-
sions together with the kernel V�n,��1,��2,��3

allows us to simplify
the sums to obtain

〈ξ̄�nξ̄�n′ 〉(1) = 〈ξ̄�nξ̄�n′ 〉(0) + 〈ξ̄�nξ̄�n′ 〉(0)

�|�n|

×
⎛
⎝�|�n| − g|�n|4 − 1

2

∑
�� �=�n

| ��|2|�n × ��|4
�| ��||�n − ��|4

⎞
⎠. (30)

This equation expresses the two-point function at first or-
der as a correction to the zeroth order two-point function.
If we wish our expansion for the two-point function to be
meaningful, it must be the case that corrections to the zeroth
order approximation be small. Accordingly, self-consistency
demands that we select �|�n| so as to ensure that this be the
case, however, since we have complete freedom to choose
�|�n|, we can go even further and demand that the first order
correction vanish entirely. There are of course other ways
to select �|�n|, however, previous work [71] has shown this
method to be extremely successful as it introduces closure into
our hierarchy of moment equations in a manner that ensures
they are self-consistently correct up to first order. Though we
will not need to do so here, this approach can be applied at
any order to obtain a corresponding self-consistent mth order
theory. Each such theory will give a different expression for
�|�n| thus �|�n| is not strictly an effective coupling constant or
renormalized bending rigidity but rather the coefficient of a
particular linear theory whose mth order expansion closely
resembles the mth order expansion of the nonlinear theory we
are interested in. For the first order theory we are developing
here, we obtain

�|�n| = g|�n|4 + 1

2

∑
���=�n

| ��|2|�n × ��|4
�| ��||�n − ��|4 , (31)

which is a two-dimensional nonlinear discrete integral equa-
tion for �|�n|. While solving such equations is in general
extremely challenging, in this particular case, the equation is
indeed amenable to analytic methods. In the Appendix we
provide a detailed derivation of the approximate solution

�|�n| 
 n4

√
3π

4

[
A(g) − ln

(
n

nmax

)][
1 + B(g)

n

nmax

]
, (32)

where nmax is some upper-frequency cutoff which must be
imposed on the equation. A(g) and B(g) are constants which

FIG. 1. The first order approximation for the structure factor S�n
of the sheet as given by Eq. (35) for various values of g (solid
and dashed lines). The dot-dashed line is a guideline for the power
law ∼n−2. For small n, the logarithmic correction can be seen to
introduce a small deviation from the power law, while for large n, the
polynomial correction [1 + B(g) n

nmax
] introduces a small increasing

tail which becomes more pronounced with shrinking g.

only depend on g and are determined by the implicit solutions
to Eqs. (A17) and (A18) in the Appendix. Since the physically
interesting case is g 	 1, it is more convenient to provide the
small g expansions

A 
 0.137 + 0.336g + 0.243g2 + 0.112g3 + O(g4), (33)

B 
 −0.265 + 0.360g − 0.395g2 + 0.311g3 + O(g4). (34)

Combining with Eq. (27), we obtain that the structure factor
up to first order is

〈ξ̄�nξ̄�n′ 〉(1) = δ�n,−�n′

n2
√

3π
[
A(g) − ln

(
n

nmax

)][
1 + B(g) n

nmax

] . (35)

In Fig. 1 this structure factor S(1)
n = 〈ξ̄�nξ̄−�n〉(1) is plotted for

various values of g together with a guide line for ∼n−2. Since
the log-log plots appear straight over large intervals, they give
the illusion of a power law with anomalous exponent close
to but not exactly −2. In actual fact, it is the logarithmic and
polynomial corrections which causes the deviation from the
nonanomalous power law. While for small n, all values of g
tend towards the same asymptote, for large n, the polynomial
correction, determined by the coefficient B(g), becomes in-
creasingly important, even giving rise to a small increasing
tail for extremely small values of g.

Before moving to the next section, we would like to discuss
the renormalization of the coupling constant g. Simple power
counting of the linear terms shows that the nonlinear quartic
interaction scales as L2−d , where d is the dimensionality of the
sheet. Since d = 2 for the problem of interest, the nonlinear
term is marginal and its relevance or irrelevance at long dis-
tances can only be decided by a renormalization group calcu-
lation. This point is also discussed in [55] where the assump-
tion that the coupling constant is not renormalized is assumed.
It turns out that the self-consistent expansion does not indicate
any renormalization of the coupling constant g itself—at least
not at the leading order used in this paper. It is however
important to stress that this option cannot be ruled out.
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IV. COMPARISON WITH SIMULATIONS

Equation (13), which describes the fluctuations of the
sheet height in Fourier space, is an ordinary Langevin field
equation and thus in principle can be simulated over say a
square lattice by forward iteration with a small discretization
of the time step. In practice, the conserved noise can easily
be computed in the Fourier space but computing the quartic
interaction term directly can be time consuming. To circum-
vent this problem, a pseudospectral method, as described in
[44], can be implemented. This entails expressing the quartic
interaction as the Fourier transform of its real space coun-
terpart which can be calculated far more quickly though this
also has the effect of imposing periodic boundary conditions
on our fluctuating sheet. The fact that a maximum frequency
nmax must be chosen to perform simulations poses no prob-
lem as our solution, given by Eq. (35), indeed assumes the
existence of such a cutoff. Physically, this corresponds to the
fact that no sheet can be probed with infinite resolution.
The time step δt however must be taken to be sufficiently
small to avoid numerical instability. The maximum size δt
can be taken while ensuring stability is determined by the
maximum frequency used, with larger values of nmax requiring
smaller time steps. Accordingly nmax cannot be too large if
we wish to simulate Eq. (13) over sufficiently long periods of
time to obtain meaningful results for the structure factor S�n.
The results shown in Fig. 2 were obtained for the frequencies
�n ∈ [−20, 20] × [−20, 20], i.e., a 41 × 41 square lattice such
that the maximum frequency is nmax = 20

√
2 ≈ 28. To obtain

numerically stable results, a time step of δt = 10−6 was used
and for each value of g ∈ {1, 0.1, 0.01, 0}, ten simulations
were run over 106 time steps.

To validate the functional form of the structure factor S�n
predicted by our theory, Eq. (35) with A(g) and B(g) as free
parameters was fitted (solid black lines) to each data set shown
in Fig. 2 (colored shapes). It can be seen that no matter
the value of g, Eq. (35) indeed captures the shape of the
structure factor. The dashed line in each figure is a guideline
proportional to n−2 from which it can easily be seen how
the logarithmic correction in Eq. (35) slightly modifies the
slope of the structure factor.

The periodic boundary conditions over a square lattice have
the effect of breaking the isotropy of the system and thus the
structure factor S�n is found to also depend on the angle of �n
and not just its magnitude. For this reason, in each figure, sep-
arate data has been plotted for angles of 0◦, 15◦, 30◦, and 45◦.
Curiously, the degree of anisotropy decreases with increasing
g vanishing completely as g approaches 1. Even though our
theory is derived under the assumption of complete isotropy,
the functional form of S�n remains a superb fit for each data set
in the presence of the anisotropy. Indeed, for any given g, the
anisotropy only seems to effect the tail parameter B(g), while
the parameter A(g), related to the logarithmic correction, is en-
tirely unaffected by the angle of �n. This robustness to slightly
anisotropic circumstances can be viewed as further validation
of the functional form given by Eq. (35).

Comparisons between the theoretical values of A(g) and
B(g), given by Eqs. (33) and (34), and the values obtained
from fitting Eq. (35) to our simulation data are shown in
Fig. 3. The theoretical values predicted by Eq. (33) for A(g)

FIG. 2. Numerical results for the structure factor S�n = 〈ξ̄�nξ̄−�n〉
derived from simulating Eq. (13) with various values of g: (a) g = 1,
(b) g = 0.1, (c) g = 0.01, and (d) g = 0. The simulations are not
completely isotropic, thus for each simulation the structure factor has
been computed at angles of 0◦ (blue plus signs), 15◦ (red circles), 30◦

(green triangles), and 45◦ (purple squares) relative to the “x axis.”
The solid black lines are fits of Eq. (35) to each data set while the
dashed lines are guidelines proportional to n−2.

(solid line) can be seen to be extremely accurate over a wide
range of g values, only breaking down as g approaches 1. In
contrast, due to the anisotropic nature of B(g), the theoretical
values predicted by Eq. (34) (solid line) do not capture any
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FIG. 3. Comparisons between the theoretical values of A(g) and
B(g) given by Eqs. (33) and (34) (solid lines) and the values ob-
tained from fitting Eq. (35) to the simulation data (various shapes).
The dashed lines in the latter plot are angular dependent scalings
f (θ )B(g) of Eq. (34). Equation (33) and the scaled forms of Eq. (34)
beautifully predict the fitted value of A(g) and B(g) over a wide range
of g values.

of the particular fit values. One can however obtain superb
fits by simply scaling the function B(g) given by Eq. (34) by
a constant, that is, by finding for each angle θ the quantity
f (θ ) which minimizes the difference between f (θ )B(g) and
the numerical results for B(g) [81]. The dashed lines in Fig. 3
show these optimal scalings and can be seen to be excellent
fits for all angles over the entire range of g values. As men-
tioned above, the origin of this angular dependent scaling is
due to the periodic boundary conditions used in our simulation
though it is curious that this anisotropy only effects B(g) and
not A(g). Though the particular nature of f (θ ) is not fully
understood, these results inform us that, at least in this case, a
more precise expression for the structure factor would be

〈ξ̄�nξ̄�n′ 〉(1) = δ�n,−�n′

n2
√

3π
[
A(g) − ln

(
n

nmax

)][
1 + B(g) n

nmax/ f (θ )

] ,
(36)

where A(g) and B(g) are still given by Eqs. (33) and (34),
respectively. This expression suggests the angular scaling is
essentially just a renormalization of the maximum frequency
supported by the sheet in each direction as a result of the
boundary conditions. As elaborated on in the Appendix, the
function B(g) is essentially determined by matching the gen-
eral solution of Eq. (31) with its large �n boundary condition
and thus it is perhaps unsurprising that an anisotropic renor-
malization of the maximum supported frequency should imply
a rescaling of B(g) n

nmax
.

V. DISCUSSION

We have combined the Föppl–von Kármán equations from
elasticity theory with out-of-equilibrium statistical physics
to develop a mathematical model for fluctuating thin sheets.
Solving this model we have shown that the structure factor of
such sheets will follow nontrivial scaling—a logarithmically
corrected power law for small frequencies which becomes a
rational function for large frequencies. The solution detailed
in the Appendix suggests that the problem requires an up-
per frequency cutoff and also provides definite relationships
between the coefficients appearing in our solution and the
physical properties such as sheet thickness h and Young’s
modulus E . This opens up the possibility for experimental
study through the measurement of such coefficients.

Indeed, while experimental investigation of fluctuating
sheets has been performed in the context of studying wave
turbulence [38–42], we are not aware of any attempt to mea-
sure the structure factor of the fluctuating sheet itself. On the
other hand, the structure factor of a crumpled sheet has been
measured several times [1,3–5] and in each of these instances,
anomalous power laws have been loosely fitted to the data.
Observed exponents cannot be simply explained by the struc-
ture factor of a single ridge ∼1/q4 and as random crumpling
is merely the plastification of a particular set of random defor-
mations of a thin sheet, it is not unreasonable to hypothesize a
connection between the structure of a fluctuating sheet and
that of a crumpled sheet. Accordingly, our results suggest
that the structure factor of crumpled sheets might be better
described by rational functions with logarithmic corrections,
than by crude anomalous power laws. The wide range of ap-
plications of fluctuating sheets including extremely thin sheets
such as graphene suggests that many potential experiments to
test our results can be developed.

Furthermore, it is not only our results which have indicated
the importance of logarithmic corrections to the structure
factor and renormalized bending rigidity of thin sheets. In
recent years, work carried out on thermally fluctuating sheets
in the presence of external tension [48,50] have also observed
logarithmic effects, though these are not identical with ours.
In particular, our logarithmic correction occurs with a square
root while theirs occurs unadorned. This prevalence among
related yet distinct models is supportive of our argument that
more sophisticated analyses which go beyond simple power
laws are needed for a proper understanding of such systems.

Perhaps the biggest limitation of our theory is the absence
of self-avoidance. As has been shown in [10], self-avoidance
plays a significant role in the context of strong crumpling. On
the other hand, in the context of weak crumpling, instances of
self-avoidance will occur infrequently. Accordingly, neglect-
ing self-avoidance simply limits the scope of our theory rather
than its validity.

As described in the Introduction, much research into crum-
pled paper has focused on the formation of singular structures
such as ridges and d-cones and their interactions. Since these
structures are known to solve the Föppl–von Kármán equa-
tions [20,21], it is interesting to ask whether the approach
taken in this paper can be connected directly to this research.
For example, we wonder whether our approach can be re-
framed as some sort of many-body model whose constituent
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parts are the various ridges and d-cones? If this were the
case, our approach could be conceived of as a type of “many
crease” generalization of the theory of singular structures in
thin sheets.

Furthermore, we reemphasize that the structure factor of
fluctuating thin sheets is an input into much contemporary
research including the mechanical and elastic properties of
deformed sheets [46–51] and their acoustic [52,53] and op-
tical emissions [54]. While such research has so far tended
to assume ordinary power laws, our results suggest that a
wider family of inputs needs to be considered including ratio-
nal functions, possibly with logarithmic corrections. Indeed,
exploration of the effect of this wider range of functions on
acoustic emissions could suggest novel questions of inference
such as, to paraphrase Kac’s provocative question [82], can
one hear the shape of a fluctuating or crumpled sheet?

The approach we have taken in this paper naturally gen-
eralizes to investigate other types of thin sheet and forcing.
For example, instead of beginning with the flat sheet Föppl–
von Kármán equations, we could begin with the Föppl–von
Kármán equations for shells [49,83] or other types of curved
surfaces [84] and this would allow us to investigate the effect
of the underlying undeformed geometry on the fluctuating
structure. Similarly, it would be of great interest to incorporate
more realistic modeling of the forcing such as driving from the
boundaries which would amount to complex spatiotemporal
noise. Accordingly, the approach we have introduced here
is extremely generic, providing a first step to analytically
describing the behavior of a wide range of different types of
fluctuating surface.
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APPENDIX: SOLUTION TO THE INTEGRAL EQUATION

In this Appendix we outline a method for solving Eq. (31):

�|�n| = g|�n|4 + 1

2

∑
���=�n

| ��|2|�n × ��|4
�| ��||�n − ��|4 , (A1)

a two-dimensional nonlinear discrete integral equation for the
parameter �|�n|. To obtain an approximate solution, we can
consider its continuous limit. In particular, let �q = �n/L, �k =
��/L, and �(q) = �|�n|/(�L)4 such that

�(q) = g
| �q|4
�4

+ 1

2

1

�8

∑
�k �=�q

1

L2

|�k|2| �q × �k |4
�(k)| �q − �k |4 . (A2)

Here � denotes some frequency scale which ensures that �(q)
remains dimensionless. In the large sheet limit of L → ∞, the
sum becomes an integral and we obtain a two-dimensional

continuous integral equation for �(q):

�(q) = g
| �q |4
�4

+ 1

2

1

�8

∫
d2k

|�k |2| �q × �k |4
�(k)| �q − �k |4 . (A3)

Since �(k) only depends on the size of �k and not its direction,
the angular part of the integral can be carried out exactly
giving

�(q) = g
q4

�4
+ 3π

8

1

�8

(∫ q

0
dk

k7

�(k)
+ q4

∫ �

q
dk

k3

�(k)

)
.

(A4)

Our task has thus been reduced to finding the solution to this
one-dimensional continuous integral equation. In the continu-
ation, it will become apparent that this integral equation only
has a solution over finite intervals q ∈ [0, qmax] where qmax <

∞ is some finite upper frequency cutoff. As such, we have
chosen to identify the previously arbitrary frequency scale
� with the upper cutoff and introduced it into the integral
bounds.

To solve this equation, differentiate it twice with respect to
q to obtain

d�

dq
= 4g

q3

�4
+ 3π

2

q3

�8

∫ �

q
dk

k3

�(k)
(A5)

and

d2�

dq2
= 12g

q2

�4
+ 3π

2

1

�8

(
3q2

∫ �

q
dk

k3

�(k)
− q6

�(q)

)
. (A6)

These equations can now be combined to eliminate the inte-
gral giving rise to a second order nonlinear ODE

d2�

dq2
= 3

q

d�

dq
− 3π

2

1

�8

q6

�(q)
. (A7)

Apart from being far easier to solve than the integral equation,
this equation has the added benefit that the previously explicit
g dependence has dropped out. Instead, the g dependence now
enters in the form of boundary conditions. In particular, the
limits q → 0 in Eq. (A4) and q → � in Eq. (A5) give rise to
the boundary conditions

�(q = 0) = 0, (A8)

d�

dq

∣∣∣∣
q=�

= 4g

�
. (A9)

The general solutions to Eq. (A7) are easily obtained numeri-
cally with arbitrary starting values. These solutions all exhibit
movable singularities [85] such that for sufficiently large q,
�(q) plummets to 0 and beyond this movable singularity, the
solution is no longer defined. On this basis, the aforemen-
tioned upper frequency cut-off � was identified.

To investigate the solution to Eq. (A7), we begin by study-
ing the small q behavior. Expanding �(q) at lowest order in a
power series

�(q) = Aqν + O(qν+1) (A10)

results in the equation

(4 − ν)νA2q2ν + O(q2ν+1) = 3π

2

1

�8
q8. (A11)
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Comparing the exponents of q on the left- and right-hand
sides of this equation, we find that only ν = 4 can solve the
equation at lowest order, however, the factor of (4 − ν) on
the left-hand side ensures that ν = 4 will also fail to actually
balance the left- and right-hand sides. This observation forces
the conclusion that the small q expansion of �(q) is not a
power series. To obtain the actual small q behavior, the follow-
ing heuristic argument can be made. Setting �(q) = q4u(q),
Eq. (A7) can be written as an ODE for u(q),

q2u
d2u

dq2
+ 5

2
q

d (u2)

dq
= −3π

2

1

�8
. (A12)

Neglecting the second derivative term, this equation is exactly
solvable, having solution

u(q) =
√

A − 3π

5

1

�8
ln (q), (A13)

where A is some constant. Accordingly, we might expect the
small q behavior of �(q) to be logarithmically corrected by a
term proportional to

√
ln(q) and indeed, without neglecting

any terms, one can find upon substitution that for small q,
Eq. (A7) is solved by

�(q) =
( q

�

)4
√

3π

4

[
A − ln

( q

�

)]

×
[

1 + O

(
ln [ln (�/q)]

ln (�/q)

)]
, (A14)

where A is a constant determined by the boundary condition at
q = �. For example, requiring that this equation match with
Eq. (A9) gives

A = 1

8
+ 2

3π
g2 + g√

6π

√
1 + 8

3π
g2. (A15)

Since Eq. (A14) is established around q = 0 while Eq. (A9)
imposes a boundary condition far from q = 0, there is little
reason to trust this approximation as we move away from
q = 0. To obtain reliable results across the entire domain q ∈
[0,�], we can also expand the solution to Eq. (A7) around
q = � and stitch the expansions together. To this end, we
propose a type of two-point expansion that uses the known
analytic behavior around the two end points [86]

�(q) 

( q

�

)4
√

3π

4

[
A − ln

( q

�

)][
1 + B

q

�

]
, (A16)

where B is another constant. For q close to 0, this modification
has no effect while for q close to �, B can be chosen to ensure
that �(q) be correct up to zeroth order. In particular, subbing
this expression into the boundary condition given by Eq. (A9)
gives

16√
3π

g
√

A = (8A − 1) + (10A − 1)B, (A17)

while subbing it into Eq. (A7) and expanding around q = �

implies that at lowest order, we must have

8A = (1 + 8A + B + 12AB − 20A2B)(1 + B). (A18)

This pair of equations determines the constants A and B. It
is worth mentioning that the equations have multiple real

FIG. 4. A and B as functions of g. The solid lines are the exact
solution obtained from Eqs. (A17) and (A18). The dashed lines are
the power series expansions around g = 0 given by Eqs. (A20) and
(A21).

solutions but only one of these solutions actually generates
an approximation for �(q) which approximately satisfies the
original integral equation given by Eq. (A4). This useful so-
lution is plotted in Fig. 4 as a function of g. Unfortunately,
this single solution ceases to exist for values of g greater than
roughly 0.912, however, since we are interested in small g,
this poses little difficulty to us in practice. Furthermore, as
g grows, it turns out that using Eq. (A14) with Eq. (A15)
becomes an increasingly good approximation. Considering
higher order corrections is also an option, though this results
in little gain at the cost of significantly increased complexity.

It is not difficult to numerically evaluate Eqs. (A17) and
(A18) for any particular value of g. Since we are primarily
interested in the case where g is small, however, it is more
convenient to have a small g expansion for A and B. This also
has the added advantage of avoiding the spurious solutions of
Eqs. (A17) and (A18). To this end, we expand

A(g) =
∞∑

n=0

Angn, B(g) =
∞∑

n=0

Bngn, (A19)

where the An and Bn are constants. Subbing these expressions
into Eqs. (A17) and (A18) and equating coefficients of g order
by order, we obtain up to O(g4),

A(g) 
 0.137 + 0.336g + 0.243g2 + 0.112g3 + O(g4),

(A20)

B(g) 
 −0.265 + 0.360g − 0.395g2 + 0.311g3 + O(g4).

(A21)

These approximations are plotted as the dashed lines in Fig. 4
and can be seen to be faithful for values of g � 0.4. Figure 5
shows a comparison between Eq. (A16) with A(g) and B(g)
given by Eqs. (A20) and (A21) (dots) and direct numerical
solutions of Eq. (A7) (solid and dashed lines). The numerical
solutions were obtained with � = 1 via a shooting method
[87] in which numerical integration of Eq. (A7) starting at
q = � was performed with varying initial values of �(q = �)
until solutions were found with the desired boundary condi-
tion given by Eq. (A8). As can be seen, for small g, Eq. (A16)
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FIG. 5. Comparison between numerical solutions of Eq. (A7)
(solid and dashed lines) and the theory predicted by Eq. (A16) with
A(g) and B(g) given by Eqs. (A20) and (A21) (dots). For small g, the
theory exhibits excellent agreement with the numerical solutions.

with A(g) and B(g) given by Eqs. (A20) and (A21) is a superb
approximation for the numerical solution though the quality
decreases once g reaches the size of unity. It is understood

that this is because the series expansions for A(g) and B(g) are
only valid for small g and indeed, as stated above, for nonsmall
values of g a better approximation is simply Eq. (A14) with
A(g) given by Eq. (A15). Finally, we note that solutions to
Eq. (A7) with differing frequency cut-offs � are self-similar,
that is, if �(q) is a solution for a given maximum frequency �,
then the scaled solution �(aq)/a4 with a > 0 will be a solu-
tion with maximum frequency a�. Accordingly, the validity
of the comparison shown in Fig. 5 is not limited to the case
where � = 1 since all other cases can be directly obtained by
merely scaling the results.

Returning to the discrete system we began with, we obtain
an approximate solution for �|�n| is

�|�n| 
 (�L)4�
(

q = n

L

)
, (A22)

or explicitly

�|�n| 
 n4

√
3π

4

[
A − ln

(
n

nmax

)][
1 + B

n

nmax

]
, (A23)

where nmax = �L denotes a discrete upper-frequency cutoff.
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