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The application of super-resolution optical microscopy to investigating synaptic
structures has revealed a highly heterogeneous and variable intra-synaptic organization.
Dense subsynaptic protein assemblies named subsynaptic domains or SSDs have been
proposed as structural units that regulate the efficacy of neuronal transmission. However,
an in-depth characterization of SSDs has been hampered by technical limitations of
super-resolution microscopy of synapses, namely the stochasticity of the signals during
the imaging procedures and the variability of the synaptic structures. Here, we synthetize
the available evidence for the existence of SSDs at central synapses, as well as the
possible functional relevance of SSDs. In particular, we discuss the possible regulation
of co-transmission at mixed inhibitory synapses as a consequence of the subsynaptic
distribution of glycine receptors (GlyRs) and GABAA receptors (GABAARs).

LAY ABSTRACT
Super-resolution imaging strategies bypass the resolution limit of conventional optical
microscopy and have given new insights into the distribution of proteins at synapses in
the central nervous system. Neurotransmitter receptors and scaffold proteins appear to
occupy specialized locations within synapses that we refer to as subsynaptic domains
or SSDs. Interestingly, these SSDs are highly dynamic and their formation seems to
be related to the remodeling of synapses during synaptic plasticity. It was also shown
that SSDs of pre-and post-synaptic proteins are aligned in so-called nanocolumns,
highlighting the role of SSDs in the regulation of synaptic transmission. Despite recent
advances, however, the detection of SSDs with super-resolution microscopy remains
difficult due to the inherent technical limitations of these approaches that are discussed
in this review article.

Keywords: subsynaptic domain (SSD), super-resolution microscopy, single molecule localization microscopy
(SMLM), inhibitory receptors, gephyrin

INTRODUCTION

Single molecule localization microscopy (SMLM) bypasses the diffraction limit by detecting
signals from a sparse subset of molecules that are temporally separated, thus achieving a
spatial resolution of single molecules of 10–40 nm (Schermelleh et al., 2010; Turkowyd et al.,
2016; Sieben et al., 2018). SMLM includes several related techniques, namely STORM, PALM
and uPAINT (Betzig et al., 2006; Hess et al., 2006; Rust et al., 2006; Giannone et al., 2010).
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In 2010, Dani et al. (2010) measured the laminar distribution
of synaptic proteins using multicolor three-dimensional (3D)
STORM, demonstrating the capability of SMLM to visualize
the ultra-structure of synapses (Specht et al., 2014). This marks
the beginning of super-resolution optical imaging of synaptic
structures. Numerous studies have since applied SMLM to
explore the heterogeneity and complexity of protein assemblies
at synapses. Another type of super-resolution optical microscopy
achieves sub-diffraction resolution by means of structured
excitation, such as stimulated emission depletion (STED; Klar
et al., 2000) and structured illumination microscopy (SIM;
Gustafsson, 2000). Regardless of the different working principles,
super-resolution microscopy techniques have yielded significant
insights into the distribution of synaptic proteins on the
nanometer scale. Given their wide-field, volumetric imaging
strategies, three-dimensional and quantitative information can
be gained from a large sample size.

In 2013, several groups reported independently that different
synaptic proteins are distributed heterogeneously at synapses
(MacGillavry et al., 2013; Nair et al., 2013; Specht et al., 2013).
SMLM images showed that the excitatory scaffold protein PSD-
95 occupies subdomains within the post-synaptic density (PSD)
that regulate AMPAR clustering (MacGillavry et al., 2013; Nair
et al., 2013). The existence of PSD-95 subdomains was confirmed
with STED microscopy both in vitro and in vivo (Broadhead
et al., 2016; Dzyubenko et al., 2016; Hruska et al., 2018; Masch
et al., 2018; Wegner et al., 2018). Likewise, subsynaptic domains
of gephyrin were shown to play a role in inhibitory plasticity at
GABAergic synapses (Pennacchietti et al., 2017; Crosby et al.,
2019). These findings point towards a mechanism whereby
subsynaptic domains drive the recruitment of neurotransmitter
receptors to specific locations within the PSD, thus regulating
synaptic transmission.

SMLM and STED microscopy have also shown that
pre-synaptic proteins of the active zone (AZ) and synaptic
adhesion proteins display subsynaptic distributions (Perez de
Arce et al., 2015; Chamma et al., 2016a,b; Tang et al., 2016;
Glebov et al., 2017; Haas et al., 2018). Using multicolor 3D-
STORM, Tang et al. (2016) demonstrated that subsynaptic
domains of RIM1/2 are aligned with those of PSD-95, an
arrangement that is referred to as trans-synaptic nanocolumn.
The alignment of pre- and post-synaptic elements appears to be
due to neuroligin/neurexin adhesion complexes (Perez de Arce
et al., 2015; Haas et al., 2018). These exciting observations not
only demonstrate the power of SMLM to visualize the ultra-
structures of synapses but also point towards possible roles of
subsynaptic domains in synaptic function (reviewed in Biederer
et al., 2017; Liu et al., 2017; Chen et al., 2018; Scheefhals and
MacGillavry, 2018).

Despite these advances, the concept of subsynaptic domains
remains ambiguous, not least because the technical and biological
limitations in identifying subsynaptic domains have not been
sufficiently scrutinized. Here, we review the available evidence
for the existence of subsynaptic domains, highlighting the
factors that need to be taken into account in detecting small
protein assemblies using SMLM. We then discuss the possible
role of subsynaptic domains in the regulation of glycinergic

and GABAergic co-transmission based on recent data from
inhibitory synapses.

WHAT IS A SUBSYNAPTIC DOMAIN?

Terminology and Definition
A major source of confusion is that different names
have been used in the literature to describe subsynaptic
domains. Among these, the terms nanodomain, nanocluster,
subcluster, subdomain and nanomodule have been used in an
interchangeable manner (e.g., MacGillavry et al., 2013; Nair
et al., 2013; Broadhead et al., 2016; Haas et al., 2018; Hruska
et al., 2018). The lack of a clear and unified terminology has
made it difficult to refer to specific molecular structures and
to be aware of the differences and similarities between studies.
Regarding the choice of words, the term cluster should best be
avoided, because it can also refer to the clustering algorithms
that are widely used for image analysis of SMLM data (Nicovich
et al., 2017). The prefix nano is redundant because synapses
themselves have diameters of only a few hundred nanometers.
Furthermore, nanodomain has been widely used to describe
the high Ca2+ ion concentrations in the proximity of an open
calcium channel (Augustine et al., 2003; Eggermann et al., 2013;
Ghelani and Sigrist, 2018).

We, therefore, refer to these structures as subsynaptic domain
or SSD (Crosby et al., 2019) for the following reasons: (1) the
term is self-explanatory, referring to a space that is smaller than
the whole synaptic compartment and that is occupied by a given
type of molecules; and (2) it is flexible in that it can be equally
applied to membrane receptors, scaffold and signaling proteins,
whether they are pre-synaptic or post-synaptic. We define SSD
as a sub-compartment of the synapse in which the density of a
specific synaptic protein is higher than in the surrounding area,
and that is typically observed with super-resolution microscopy.
We believe that the term SSD could thus provide some clarity in
defining specific molecular entities at synapses.

SSD Size and Protein Copy Numbers
The most basic feature of SSDs that holds biologically relevant
information is their size and the copy number of proteins
that they contain. A wide range of sizes was detected by
SMLM and STED microscopy (Table 1). For instance, SSDs of
excitatory scaffold proteins in cultured hippocampal neurons
have a diameter of∼80 nm as judged by coordinate-based SMLM
analysis (MacGillavry et al., 2013), whereas an average diameter
of 120 nm was measured in reconstructed super-resolution
images (Nair et al., 2013). STED microscopy detected SSDs of
PSD-95 with a diameter of 200 nm (Fukata et al., 2013). These
differences in SSD size are likely due to the different resolution
of the imaging systems and the application of a threshold
during image processing. A comparative study of PSD-95 in
hippocampal tissue using PALM and STED determined median
SSD diameters of 126 nm and 158 nm, respectively, exemplifying
the impact of the imaging approach (Broadhead et al., 2016).
The typical diameter of the whole PSD in hippocampal neurons
ranges from 100 nm to 800 nm, with a mean of about 300 nm
(Harris and Stevens, 1989; Arellano et al., 2007). Therefore, the
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lower limit of SSD sizes of ∼50 nm reflects the image resolution
of the super-resolution imaging techniques, while the upper
limit corresponds to the size of the entire synapse. Given that
synapse sizes vary substantially across the central nervous system,
an interesting question is whether SSDs of different synaptic
proteins have stereotypical sizes that are the same at different
types of synapses (see Crosby et al., 2019).

Information about protein copy numbers is essential to
establish the structural basis of SSD formation. To date, there
are hardly any quantitative data about SSD molecule numbers.
SSDs of AMPARs have been estimated to contain an average of
∼20 receptor complexes (Nair et al., 2013). Due to the limited
accessibility of the epitopes for immunolabeling, however, the
actual number of receptors per SSD could be higher. This could
have an effect on the role of SSDs in synaptic function since
the number of active receptors is directly related to the strength
of synaptic transmission (Masugi-Tokita et al., 2007; Tarusawa
et al., 2009; Fukazawa and Shigemoto, 2012).

Number of SSDs Per Synapse
Most synapses contain only one SSD or no SSD at all. More
specifically, a single SSD was detected in 50% to 80% of synapses
imaged with SMLM, SIM or STED microscopy, less than 20%
had more than three SSDs, and six SSDs was the upper limit
(MacGillavry et al., 2013; Nair et al., 2013; Broadhead et al., 2016;
Chamma et al., 2016a,b; Pennacchietti et al., 2017; Hruska et al.,
2018; Crosby et al., 2019). It is likely that the different imaging
techniques and analyses again have an effect on the detection of
multiple SSDs. This raises the question whether the SSD simply
reflects the center of mass of the protein assembly, and if so,
whether the presence of single or multiple SSDs actually matter
for the regulation of synaptic function.

There exists a positive correlation between the number of
SSDs and the size of the PSD or the dendritic spine (Fukata et al.,
2013; Nair et al., 2013; Hruska et al., 2018; Crosby et al., 2019).
EM studies have revealed a large variability in PSD area, ranging
from 100 nm to 800 nm in diameter (Table 1). More than half of
the PSDs are small (<0.05 µm2), which is similar to the fraction
of synapses with only one SSD (Arellano et al., 2007). Moreover,
the number of AMPAR molecules is positively correlated with
the PSD size, and large complex PSDs have a higher density
of AMPARs than small, non-perforated PSDs (Ganeshina et al.,
2004; Shinohara et al., 2008; Fukazawa and Shigemoto, 2012).
Together, these data indicate that SSDs may only play a role at
large PSDs, reflecting the superior strength of these synapses.

Trans-synaptic Nanocolumns
From the viewpoint of neuron connectivity, pre-synaptic and
post-synaptic SSDs can be aligned to form trans-synaptic
structural units that regulate synaptic function (Biederer et al.,
2017; Chen et al., 2018). Such an organization has been observed
at excitatory synapses using 3D-SMLM, and was suitably
named trans-synaptic nanocolumn (Tang et al., 2016). SMLM
studies have further shown that synaptic adhesion complexes
such as neuroligin and neurexin are also organized in SSDs,
suggesting that they contribute to the formation of trans-synaptic
nanocolumns (Perez de Arce et al., 2015; Haas et al., 2018). The TA
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term nanocolumn, therefore, refers to a specific concept, namely
the alignment of pre- and post-synaptic SSDs that brings together
different functional elements. Future studies are expected to
explore the possible role of nanocolumns in synaptic plasticity.

The Dynamics of SSDs
The hypothesis that SSDs regulate synaptic transmission implies
that SSDs adapt dynamically to changes in synaptic strength.
Indeed, live SMLM in cultured neurons has revealed the mobility
and morphological changes of SSDs. Synaptic scaffolds undergo
dynamic changes on a timescale of 5–10 min, displaying marked
differences in the number, position and shape of SSDs at
different time points (Nair et al., 2013; Specht et al., 2013;
Rodriguez et al., 2017). STED microscopy further showed that
these morphological changes occurred both in vitro and in vivo
(Hruska et al., 2018; Wegner et al., 2018). The dynamics of
SSDs are in agreement with the exchange of individual proteins
at synaptic and extra-synaptic sites, which is a hallmark of the
dynamic synapse (Choquet and Triller, 2013; Delgado and Selvin,
2018). Therefore, SSDs are momentary representations of the
protein distribution and need to be viewed as dynamic snapshots
rather than rigid structural units.

HOW TO DETECT SUBSYNAPTIC
DOMAINS WITH SMLM

The identification of SSDs consists in detecting small numbers of
densely packed molecules in a confined space with a high local
background from neighboring molecules with lower density.
Despite these challenges, SMLM is well suited to resolve the
internal organization of small structures such as synapses at
single molecule level. In the following, we discuss the relevant
factors of the image acquisition and data analysis that have an
impact on the identification of SSDs.

Image Acquisition
SMLM techniques aim to record large numbers of single
fluorophore detections from densely labeled structures, while
ensuring that the signals are sufficiently sparse to be well
separated. STORM, PALM and uPAINT have all been employed
for detecting SSDs. The three techniques have the same intrinsic
challenges when it comes to the ultrastructure of synapses,
chief among them being the fluorophore. Most fluorophores
are detected repeatedly due to their fluorescence lifetime,
photo-switching and blinking. This can create dense clusters
of redundant detections that are easily mistaken for SSDs.
The blinking behavior of the fluorophores (organic dyes or
fluorescent proteins) is dependent on their photo-physical and
photo-chemical properties, and it can be modulated by the laser
power and the composition of the imaging buffer (Dempsey
et al., 2011; Endesfelder et al., 2011; van de Linde et al.,
2011; Nahidiazar et al., 2016). Sub-optimal imaging conditions
such as inefficient laser illumination or an incompatible buffer
system can result in artificial clustering (Annibale et al., 2011;
Burgert et al., 2015; Nahidiazar et al., 2016). Even with an
optimized imaging protocol, different fluorophores will produce
different representations of the analyzed structure (Dempsey

et al., 2011; Baddeley and Bewersdorf, 2018). The evaluation
of the number and the size of SSDs is therefore strongly
dependent on the fluorophores, and control experiments with
different fluorophores are crucial to validate the experimental
findings (Yang and Specht, in press). In addition to the
fluorophores, attention should also be drawn to the labeling
strategies used for sample preparation. The distance between the
fluorophores and the actual positions of the target molecules
(e.g., due to the size of antibodies used for labeling), and under-
sampling due to a limited labeling efficiency can add to the
uncertainties in the identification of SSDs (Deschout et al., 2014;
Maidorn et al., 2016).

Image Segmentation
Depending on the type of SMLM data (pointillist or
reconstructed super-resolution images), different algorithms
have been adopted for segmenting SSDs. For coordinates-based
data, a local density threshold is generally applied. The local
density can for instance be defined as the number of detections
within a radius of five times the mean nearest neighbor distance
of all the detections within each synapse, and SSDs are identified
as regions above a certain threshold (MacGillavry et al., 2013;
Tang et al., 2016; Pennacchietti et al., 2017). As regards the
reconstructed images, an intensity threshold may be adopted
instead. For example, wavelet segmentation has been used
to identify SSDs at synapses in the whole field of view (Nair
et al., 2013; Chamma et al., 2016a,b). Similarly, watershed
segmentation can be employed to segment SSDs of individual
synapses in reconstructed SMLM images or deconvoluted STED
images (Broadhead et al., 2016; Dzyubenko et al., 2016). The
difficulty of all these approaches is that the detected size and the
number of SSDs are directly dependent on the algorithms and
the chosen parameters, which makes an accurate identification
of SSDs challenging.

Dealing With Small Molecule Numbers and
the Variability of Synapses
Synapses exhibit a large variability not only in size but also in
terms of molecule numbers. Neurotransmitter receptors such as
AMPARs or GABAARs have relatively low copy numbers, with
an average of∼50 receptor complexes per synapse (ranging up to
200 copies; Table 1). The main scaffold proteins at excitatory and
inhibitory synapses outnumber the receptors by a factor of four
to five. PSD-95 and gephyrin molecules amount to 40–500 per
synapse, with an average of ∼300 copies (Sugiyama et al., 2005;
Sheng and Kim, 2011; Specht et al., 2013; Patrizio et al., 2017).
The low copy numbers of synaptic proteins, especially receptors,
makes the identification of SSDs with SMLM challenging since
the labeling of the structures is often rather faint. At the same
time, the high local density of synaptic proteins can further
reduce the efficiency of immunolabeling due to epitope masking.
The overall receptor density at synapses is in the order of
700 AMPARs/µm2 for the whole PSD (50 AMPARs/0.07 µm2).
An average SSD with a diameter of 70 nm (area of 0.0038 µm2)
contains about 20 AMPARs, resulting in an estimated density of
∼5,000 AMPAR complexes/µm2 (Nair et al., 2013). Considering
the molecular size of the receptor complexes (10 nm × 20 nm;
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FIGURE 1 | Pointillist images showing synaptic gephyrin clusters with one SSD (left) or four SSDs (right). The points represent the detections of single fluorophores
from PALM imaging. Scale bar: 100 nm (adapted with permission from Pennacchietti et al., 2017).

Patriarchi et al., 2018), 20 AMPARs would occupy a membrane
area of at least 0.004 µm2. This means that the receptors are
very densely packed inside the SSD, adding to the uncertainties
that result from the stochasticity of the immunolabeling and
fluorophore detection.

Alternative Approaches
Given the rapid advances in super-resolution imaging
technologies, promising alternatives for the investigation of
complex structures such as synapses are quickly emerging.
Among these, smaller probes such as nanobodies have been
produced to bypass the limitations of labeling density and
to minimize the distance between the fluorophores and the
target proteins (Chamma et al., 2016a; Maidorn et al., 2016).
DNA-PAINT allows multi-color SMLM imaging (Nieves
et al., 2018). DNA origami standards provide a more precise
way for calibrating protein copy numbers given that the
absolute quantification of molecules at SSDs is faced with large
stochasticity of the imaging technique (Zanacchi et al., 2017).
Furthermore, new algorithms are being developed to segment
synaptic clusters in coordinates-based datasets more efficiently
(Nicovich et al., 2017; Baddeley and Bewersdorf, 2018).

THE EMERGING ROLE OF SSDs IN
INHIBITORY SYNAPTIC TRANSMISSION

Electron microscopy of symmetric synapses has revealed a
discontinuous network of filaments at the inhibitory PSD
and in the synaptic cleft (Linsalata et al., 2014; High et al.,
2015). Super-resolution optical microscopy confirmed that the
inhibitory scaffold protein gephyrin forms synaptic clusters
of variable morphology that can undergo dynamic changes
and may contain SSDs (Specht et al., 2013; Dzyubenko et al.,
2016; Pennacchietti et al., 2017; Crosby et al., 2019). SMLM
imaging in cultured hippocampal neurons further revealed that
extra-synaptic gephyrin molecules are recruited to synaptic
sites during NMDA-induced inhibitory long-term potentiation
(Pennacchietti et al., 2017). The increase in molecule density was
accompanied by an increased fraction of gephyrin clusters with
multiple SSDs (Figure 1). More recently, Crosby et al. (2019)
conducted a comprehensive analysis of pre- and postsynaptic

components using 3D-SIM, reaching a resolution of ∼120 nm
laterally and ∼300 nm axially. It was shown that GABAARs
form SSDs with an average diameter of ∼300 nm that are
closely associated with SSDs of gephyrin and pre-synaptic RIM
(Crosby et al., 2019). This implies the existence of trans-
synaptic nanocolumns as an organizing principle of inhibitory
synapses. Given that the measured size of the SSDs was
close to the resolution limit, the concept of nanocolumns at
inhibitory synapses will require further validation. Nonetheless,
these studies strongly suggest that the internal organization
of inhibitory synapses plays an important role in regulating
synaptic transmission.

Unlike the cortex and hippocampus where fast neuronal
inhibition is mainly mediated by GABAARs, both glycine
and GABA receptors coexist at synapses in the brainstem
and the spinal cord. Gephyrin provides binding sites for the
immobilization of both types of receptor (reviewed in Choii
and Ko, 2015; Alvarez, 2017; Groeneweg et al., 2018; Specht,
2019). Several GABAAR subunits bind to gephyrin, albeit with
a lower affinity than the GlyRβ subunit (e.g., Maric et al., 2011;
Kowalczyk et al., 2013). We do not yet know whether GlyRs and
GABAARs form SSDs at mixed synapses, and if so, how they
are related to the SSDs of gephyrin. Mixed inhibitory synapses
are activated by the co-release of glycine and GABA from
presynaptic vesicles (Jonas et al., 1998; Aubrey and Supplisson,
2018). This creates a situation, where the exact position of GlyRs
and GABAARs relative to the pre-synaptic release site can have
a strong impact on the efficacy of the agonists and thus the
activity of the receptors. Through its capacity to resolve the
spatial organization of mixed inhibitory synapses, SMLM may
provide answers to these open questions.

OUTLOOK

The concept of SSDs as dynamic units underlying synaptic
strength provides a new angle to interpret the function of
synapses. SMLM and other super-resolution imaging techniques
are powerful tools to investigate the internal organization of
synapses. Given the intrinsic stochasticity of SMLM and the
inherent variability of synaptic protein assemblies, however,
the identification and characterization of SSDs demand great
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scrutiny in the experimental and analytical procedures. Super-
resolution techniques may still have some way to go before we
can truly resolve the fast molecular processes at synapses.
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